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Summary10

Genetic diversity plays a central role in tumor11

progression, metastasis, and resistance to treat-12

ment. Experiments are shedding light on this13

diversity at ever finer scales, but interpretation14

is challenging. Using recent progress in numer-15

ical models, we simulate macroscopic tumors to16

investigate the interplay between global growth17

dynamics, microscopic composition, and circu-18

lating tumor cell cluster diversity. We find that19

modest differences in growth parameters can20

profoundly change microscopic diversity. Simple21

outwards expansion leads to spatially segregated22

clones, as expected, but a modest cell turnover23

can result in mixing at the microscopic scale,24

consistent with experimental observations. Us-25

ing multi-region sequencing data from a Hepato-26

cellular Carcinoma patient to validate our mod-27

els, we propose that deep multi-region sequenc-28

ing is well-powered to distinguish between lead-29

ing models of cancer evolution. The genetic com-30

position of circulating tumor cell clusters, which31

can be obtained from non-invasive blood draws,32

is therefore informative about tumor evolution33

and its metastatic potential.34

Highlights35

1. Numerical and theoretical models show in-36

teraction of front expansion, selection, and37

mixing in shaping tumor heterogeneity.38

2. Cell turnover increases intratumor hetero-39

geneity40

3. Simulated circulating tumor cell clusters41

and microbiopsies exhibit substantial diver-42

sity.43

4. Simulations suggest attainable sampling 44

schemes able to distinguish between preva- 45

lent tumor growth models. 46

Introduction 47

Most cancer deaths are due to metastasis of 48

the primary tumor, which complicates treatment 49

and promotes relapse (Nguyen, Bos, and Mas- 50

sagué 2009; Eccles and Welch 2007; Holohan et 51

al. 2013). Circulating tumor cells (CTC) are 52

bloodborne enablers of metastasis that can be 53

isolated and genetically characterized (Massagué 54

and Obenauf 2016; Aceto et al. 2014). Counts 55

of single CTCs have been used to predict tu- 56

mor progression (Cristofanilli, Budd, et al. 2004; 57

Cristofanilli, Hayes, et al. 2005) and monitor cu- 58

rative and palliative therapies in breast (Rack 59

et al. 2014; Hayes et al. 2006) and lung cancers 60

(Maheswaran et al. 2008). CTCs have also been 61

isolated in clusters of 2-30 cells (Marrinucci et al. 62

2012). These CTC clusters, though rare, are as- 63

sociated with more aggressive metastatic cancer 64

and poorer survival rates in mice and breast and 65

prostate cancer patients (Aceto et al. 2014). 66

Cellular growth within tumors follows Dar- 67

winian evolution with sequential accumulation 68

of mutations and selection resulting in subclones 69

of different fitness (Nowell 1976; Greaves and 70

Maley 2012). Certain classes of mutations are 71

known to give cancer cells advantages beyond 72

local growth rates. For example, acquiring mu- 73

tations in ANGPTL4 in breast tumors does not 74

appear to provide a growth advantage to cells 75

in the primary, however it enhances metastatic 76

potential to the lungs (Padua et al. 2008). Sim- 77

ilarly, breast tumors are more likely to metasta- 78

size into the lung or brain if they acquire mu- 79

tations in TGFβ or ST6GALNAC5, respectively 80

(Bos et al. 2009; Padua et al. 2008). These genes 81

are referred to as metastasis progression genes 82

or metastasis virulence genes (Nguyen, Bos, and 83

Massagué 2009; Nguyen and Massagué 2007). 84

Mutations, including those in metastasis pro- 85

gression and virulence genes, are not uniformly 86

distributed in the tumor. Tumors show substan- 87

tial intratumoral heterogeneity (ITH) (Navin et 88
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al. 2010; Sottoriva et al. 2015; McGranahan and89

Swanton 2015) where subclones have private mu-90

tations that can lead to subclonal phenotypes91

(Yates et al. 2015; J. Zhang et al. 2014; Ger-92

linger, Horswell, et al. 2014). A high degree of93

ITH can allow tumors to explore a wide range94

of phenotypes: this might result in a few can-95

cer cells that have a metastatic phenotype in96

early tumor growth. Additionally, ITH can con-97

tribute to therapy resistance and relapse (Hi-98

ley et al. 2014; Holohan et al. 2013). Study-99

ing ITH is therefore important for understand-100

ing cancer progression and improving therapeu-101

tic and prognostic decisions (Hiley et al. 2014;102

Jamal-Hanjani, Hackshaw, et al. 2014; Alizadeh103

et al. 2015). To capture the complete mutational104

spectrum of a primary tumor, multiple study de-105

signs have been proposed that divide the tumor106

into regionally representative samples, known as107

multiregion sequencing (Gerlinger, Rowan, et al.108

2012; Gerlinger, Horswell, et al. 2014; J. Zhang109

et al. 2014; Yates et al. 2015).110

Next-generation sequencing (NGS) of single111

CTCs has shown that they have similar genetic112

composition to both the primary and metastatic113

lesions (Heitzer et al. 2013), and can therefore be114

used as a non-invasive liquid biopsy to study tu-115

mors and tumor heterogeneity, monitor response116

to therapy, and determine patient-specific course117

of treatment (Powell et al. 2012; Heitzer et al.118

2013; Krebs et al. 2014; Hodgkinson et al. 2014).119

Here we ask whether genetic heterogeneity120

within individual circulating tumor cell clusters121

can be informative about solid tumor progres-122

sion. Because CTC clusters are thought to orig-123

inate from neighboring cells in the tumor (Aceto124

et al. 2014), heterogeneity within CTC clusters125

is closely related to cellular-scale genetic hetero-126

geneity within tumors. We therefore interpret127

our simulation results as informative about both128

micro-biopsies and circulating tumor cell clus-129

ters.130

We used an extension1 of the simulator de-131

scribed in Waclaw et al. (Waclaw et al. 2015)132

to study the interplay of tumor dynamics, CTC133

cluster diversity, and metastatic outlook. We134

1https://github.com/zafarali/tumorheterogeneity

show that fine-scale tumor heterogeneity, and 135

therefore CTC cluster composition, depend sen- 136

sitively on the tumor growth dynamics and sam- 137

pling location. Simulated data is consistent with 138

recent sequencing experiments, but slightly finer 139

sampling will provide stringent tests that dis- 140

tinguish between state-of-the-art models. These 141

findings further reinforce the utility of fine-scale 142

tumor profiling and CTC clusters as clinical tools 143

to elucidate tumor information and clinical out- 144

look (Mateo et al. 2014; Ignatiadis, Lee, and Jef- 145

frey 2015). 146

Simulation Model 147

To simulate the growth of solid tumors, we use 148

TumorSimulator2 (Waclaw et al. 2015). The 149

software is able to simulate a tumor containing 150

108 − 109 cells, or roughly 2 cubic centimeters, 151

in 24 core-hours. The tumor consists of cells 152

that occupy points in a 3D lattice. Cells do not 153

move in this model: The tumor evolves through 154

cell division and death. Empty lattice sites are 155

assumed to contain normal cells which are not 156

modelled in TumorSimulator. 157

Each cell has an associated list of genetic al- 158

terations which represent single nucleotide poly- 159

morphisms (SNPs) that can be either passenger 160

or driver. Driver mutations increase the growth 161

rate by a factor 1 + s, where s ≥ 0 is the average 162

selective advantage of a driver mutation. 163

The simulation begins with a single cell that 164

already has an unlimited growth potential. Tu- 165

mor growth then proceeds by selecting a mother 166

cell randomly. It then divides with a probabil- 167

ity b0(1 + s)k where b0 is the initial birth rate 168

and k is the number of driver mutations. New 169

cells are given new passenger and driver muta- 170

tions according to two independent Poisson dis- 171

tributions parameterized by two mutation rates. 172

The mother cell dies with a probability propor- 173

tional to the death rate, d. Further details of the 174

algorithm are described in Supplemental Meth- 175

ods. Values of b0, s are selected as in Waclaw et 176

al. 2015. The mutation rates are selected as in 177

Waclaw et al. 2015 to facilitate comparisons be- 178

2http://www2.ph.ed.ac.uk/ bwaclaw/cancer-code/
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tween simulations and Ling et al. 2015 to match179

empirical observations.180

We consider three turnover scenarios corre-181

sponding to three models for the death rate d:182

(i) No turnover (d = 0), corresponding to simple183

clonal growth (Hallatschek et al. 2007); (ii) Sur-184

face Turnover (d(x, y, z) > 0 only if x, y, z is on185

the surface), corresponding to a quiescent core186

model (Shweiki et al. 1995) (iii) Turnover (d > 0187

everywhere), a model favored in Waclaw et al.188

2015 to explore ITH.189

Results190

Global composition191

To determine the effect of the growth dynam-192

ics on global intratumor heterogeneity, we first193

consider the allele frequency spectra for different194

turnover models (Fig 1, S1). In all cases, a ma-195

jority of driver and passenger genetic variants are196

at frequency less than 1%, as expected from the-197

oretical and empirical observations (Wang et al.198

2014). Passenger mutations represent the bulk of199

ITH, consistent with the theoretical and exper-200

imental evidence that neutral evolution drives201

most ITH (Williams et al. 2016). For simu-202

lations with low to moderate death rate, d ∈203

{0.05, 0.1, 0.2}, we find that the frequency spec-204

tra are very similar across the three turnover205

models (Fig 1, S1): A low death rate has little206

impact on the global composition of a tumor.207

When the death rate is increased to d = 0.65,208

as in Waclaw et al. 2015, the different models209

produce distinct frequency spectra (Fig 1b). As210

in Waclaw et al. 2015, we find that the number of211

high-frequency drivers is higher in the turnover212

model than in the no turnover model. Whereas213

Waclaw et al. interpreted this observation as214

an indication that turnover reduces diversity, we215

find that diversity is in fact increased for all types216

of variants and at all frequencies. The number of217

somatic mutations in the turnover model is 3.4218

times higher than in the surface turnover model219

and 6.2 times higher than in the no turnover220

model. This is primarily due to a higher number221

of cell divisions required to reach a given tumor222

size when cell death occurs throughout the tu-223

mor (Table S1). The Waclaw et al. model uses 224

a death rate of d = 0.65, which is a staggering 225

95% of the birth rate. The turnover model there- 226

fore has 8.3 times more cell divisions to reach a 227

given size, and the surface turnover has 4 times 228

more cell divisions than the no turnover model 229

(Table S1). 230

We find a large excess of rare variants com- 231

pared to most previous analytical models of tu- 232

mor evolution. The Wright-Fisher model for a 233

constant-sized population (the “standard neutral 234

model”) predicts that the distribution φ(f) of 235

mutations with frequency f decays as f−1. Re- 236

cently published tumor models that account for 237

exponential population growth in a coalescent or 238

branching process framework (Ohtsuki and In- 239

nan 2017) predict φ(f) ∼ f−1 to φ(f) ∼ f−2, 240

depending on model parameters 241

Here we observe that, for variants above 1% 242

in frequency, φ(f) ' f−2.5. The tumor model 243

studied here departs from these previous mod- 244

els in three ways: the rate of population growth, 245

the presence of selection, and differential growth 246

in the core and edge of the tumor. Selection 247

itself has a weak effect on the scaling behavior 248

(Fig S2), and the different turnover models ex- 249

hibit similar scaling, suggesting that the overall 250

growth rate is not the culprit. We find that dif- 251

ferential growth across the tumor explains most 252

of the discrepancy. In fact, a simple determinis- 253

tic and neutral geometric model with differential 254

growth accurately predicts the observed decay 255

φ(f) ∼ f−2.5 (Figs 1 and S2). 256

A geometric model 257

Here we model the tumor as a continuously grow-
ing sphere where only surface cells divide. If a
mutation appears in a cell at the surface of the
tumor at a time when the tumor has radius r,
we suppose that this mutation occupies a cross-
section area a2 of the tumor surface. It therefore
occupies a fraction a2

4πr2
of the surface of the tu-

mor at that point. If the tumor grows radially
outwards, the descendants of this cell occupy a
fraction a2

4πr2
of the space yet to be occupied, and
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Figure 1: Frequency Spectra for the Primary Tumor at (a) low death rate and (b) high death rate. A
histogram of the allele frequencies of all mutations (circles) and driver mutations (triangles) in the tumor. (a) At
low death rate, the frequency spectra are indistinguishable, whereas for (b) higher death rate, the turnover model
produces elevated diversity across the frequency spectrum for both driver and neutral mutations. (a) At low death
rate, the frequency spectra are indistinguishable, whereas for (b) higher death rate, the turnover model produces
elevated diversity across the frequency spectrum for both driver and neutral mutations. The total number of somatic
mutations, S, and the total number of driver mutations, Sd, in the tumor is shown in the legend (average of 11
simulations). The gray dotted line shows the minimum frequency mutations returned by the tumor simulator. The
blue dotted line shows the asymptotic result of a geometric model with a scaling of α = 42. Fig S1 and S2 show
simulations with intermediate values of d and s = 0 respectively.

the mutation itself will occupy a fraction

f(r) =
a2

4πr2

(
1− r3

R3

)
of the final tumor, which is the volume of a spher-258

ical cone with its tip removed. We can then in-259

tegrate over all possible radii r where mutations260

occur. The density ρ(r) of mutations occurring261

at radius r is proportional to the density of cells262

at that locus263

ρ(r) ' µ4πr2

a3
,

with µ the mutation rate per cell. The frequency
spectrum is therefore

φ(f) =

∫ R

0
drρ(r)δ(f − f(r)).

If we focus on common mutations, which oc-
curred at r � R, we can approximate f(r) '
a2

4πr2
, leading to

φ(f) ' µ

4
√
πf

5
2

.

We show in Supplemental Methods that a
model accounting for stochastic fluctuations in
the early reproductive success of a mutation pre-
serves this scaling behavior, but with an over-
all scale factor α that depends on details of the
growth model, i.e.

φ(f) ' αµ

4
√
πf

5
2

.

Fig 1 shows the agreement of simulation results 264

to the geometric model with α = 42. Variants 265

at less than 1% frequency follow a distinct power 266

law that is closer to the φ(f) = f−2 described in 267

(Ohtsuki and Innan 2017). 268

Cluster diversity depends on sampling 269

position and turnover rate 270

To study the effect of cluster size, position of 271

origin, and evolutionary model on CTC cluster 272

composition, we sampled groups of cells across 273

tumors (More details in CTC cluster synthesis). 274

To assess genetic heterogeneity within clusters, 275
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we consider the number of distinct somatic mu-276

tations, S(n), among cells in clusters of size n.277

As expected, we find that larger CTC clus-278

ters have more somatic mutations (Fig 2, S3).279

By contrast with global diversity patterns, we280

find that moderate turnover has a profound im-281

pact: Clusters from models with low turnover282

have many more somatic mutations than in the283

no turnover model (Fig 2a,b). Surface turnover284

has little effect on cluster diversity (Fig S3).285

Fig 2 also shows the relationship between a286

CTC cluster’s shedding location (i.e. its distance287

to the tumor center-of-mass when it was sam-288

pled) and its genetic content. No turnover and289

surface turnover models show similar trends of290

increasing diversity with distance (Fig S3). Full291

turnover models show an opposite trend of de-292

creasing diversity with distance in clusters of in-293

termediate size (Fig 2b-d and S4 for d = 0.1, 0.2,294

and 0.65, respectively). However, these trends295

revert again when considering large clusters with296

thousands of cells (Fig 3).297

Comparison with multi-region sequenc-298

ing data299

We did not have access to large-scale sequencing300

data for micro-biopsies. To validate predictions301

of our model, we therefore used multi-region se-302

quencing data from a Hepatocellular Carcinoma303

(HCC) patient presented in (Ling et al. 2015)304

(Fig 3a). The HCC data contained 23 sequenced305

samples from a single tumor each with ≈ 20, 000306

cells, therefore we used our sampling scheme to307

produce 23 biopsies of comparable sizes (20, 000308

cells). The distance measurements were made309

using ImageJ (Schneider, Rasband, and Eliceiri310

2012) and Fig S1 from Ling et al. 2015. Since311

(Ling et al. 2015) could only reliably call vari-312

ants at more than 10% frequency, we used a313

similar frequency cutoff in our simulations. The314

HCC data does not show a clear spatial trend,315

(Fig 3a) similarly to the model without turnover,316

(Fig 3c), whereas the model with turnover pre-317

dicts a detectable trend at comparable sample318

size (Fig 3d). However, we have little statistical319

power to distinguish between the models.320

We therefore investigated the study design321

that would be needed to effectively distinguish 322

between the different models proposed here. 323

Based on our simulations, power depends on 324

cluster size, number of clusters sampled, and the 325

choice of frequency cutoff. Interestingly, even 326

though the spatial trends in diversity are unde- 327

tectable in large clusters across all frequencies 328

(Fig S5), they are restored if we impose a fre- 329

quency cutoff (Fig 3c, d): The large number of 330

rare, recent variants overwhelms the signal about 331

early tumor evolution that can be gathered from 332

older, common variants. 333

Overall, the trends observed in Fig 2 are 334

barely detectable with the current sample size 335

but could be detected with modest increases 336

(Fig 3b). For biopsies containing tens of thou- 337

sands of cells, the number of spatially distributed 338

samples needed is ≈ 40, roughly twice the size 339

of the HCC dataset. Alternatively, ≈ 30 small 340

cluster (23-30 cells) samples are necessary to 341

reliably detect spatial patterns. Furthermore, 342

intermediate-sized clusters show opposite trends 343

to both small and large clusters in the different 344

models (Fig 3b and S6). Thus small cluster se- 345

quencing may increase our power to discriminate 346

between leading models. 347

CTC clusters derived from turnover 348

models are more likely to contain viru- 349

lent mutations 350

Metastasis is an inefficient process (Massagué 351

and Obenauf 2016) in that most CTCs are elim- 352

inated from the circulatory system or fail to sur- 353

vive in the new microenvironment. We hypoth- 354

esize that the genetic composition of CTC clus- 355

ters influences the likelihood of implantation into 356

a new microenvironment. More specifically, ge- 357

netic heterogeneity within a cluster may con- 358

tribute to implantation by increasing the like- 359

lihood that a metastasis progression mutation is 360

present. If a cluster has S somatic mutations, 361

and each mutation has a small probability p� 1 362

of being a metastasis progression or virulence 363

gene, the probability of having at least one such 364

metastasis virulence gene is 1− (1− p)S ≈ Sp. 365

Diverse CTC clusters do not carry more vir- 366

ulent mutations, on average, than homogeneous 367
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Figure 2: Number of somatic mutations per cluster as a function of cluster size and position for a model with
(a) no turnover, (b) turnover with d = 0.05, (c) turnover with d = 0.1 and (d) turnover with d = 0.2. A higher
number of somatic mutations increases the likelihood that a metastatic progression mutation is present. The number
of mutations in single CTCs increases at the edge, reflecting the larger number of cell divisions. The trend is reversed
for larger clusters with at higher death rate. The shaded gray area represents the density of tumor cells at each
position. The smoothed curves were obtained by a Gaussian weighted average using weight wi(x) = exp(−(x−xi)2),
with xi is the distance from the centre of the tumor. See Fig S3 and S4 for the surface turnover model and turnover
model with d = 0.65 respectively.

ones, but they are more likely to carry some vir-368

ulent mutations because of the increased diver-369

sity. Unless implantation probability is exactly370

proportional to the number of cells carrying viru-371

lent mutations in a cluster, which seems unlikely,372

diversity will impact implantation rate.373

To compare the increased likelihood that CTC374

clusters possess metastatic progression genes375

compared to single CTCs, we determine the rel-376

ative increase in the number of distinct somatic377

mutations in a CTC cluster versus a single CTC378

termed cluster advantage, A(n). To disentan-379

gle the contributions from the microscopic and380

macroscopic diversity, as well as cluster size ef-381

fects, we compute the cluster advantage for clus-382

ters composed of neighboring cells, as well as for383

random sets of cells sampled across the tumor384

(Fig 4).385

Whereas randomly sampled sets of cells show386

similar and almost linear increase of the cluster387

advantage with sample size, cell clusters show388

more variability. Turnover models have the389

highest cluster advantage, followed by the sur-390

face turnover model, and the no turnover model391

(Fig 4). Higher turnover increases the cluster392

advantage (Fig S7). Even low turnover with a393

death rate of d = 0.05 doubles the cluster ad-394

vantage compared to the no turnover and surface395

turnover model (Fig S7).396

Discussion 397

Even though the results of our simulations are 398

consistent with Waclaw et al. at the tumor- 399

wide level (Waclaw et al. 2015), we reach oppo- 400

site conclusions about the effect of cell turnover 401

on genetic diversity. Waclaw et al. argued that 402

turnover reduces diversity based on the obser- 403

vation that more high-frequency variants were 404

observed in the tumor with turnover: A small 405

number of clones make up a larger proportion of 406

the tumor. Even though we can reproduce the 407

observation, we find that turnover models in fact 408

vastly increase diversity according to more con- 409

ventional metrics, for example by increasing the 410

number of somatic mutations (by ≈ 5.9×) across 411

the frequency spectrum. Both the increase in 412

dominant clone frequency and increased overall 413

diversity have the same simple origin: A tumor 414

model with turnover requires more cell divisions 415

to reach a given size. An early driver mutation 416

has more time to realize a selective advantage 417

and occupy a high fraction of the tumor, but car- 418

rier cells are also more likely to accumulate new 419

mutations along the way leading to increased di- 420

versity (Fig 1 and Table S1). 421

The impact of turnover on cellular heterogene- 422

ity is particularly pronounced when considering 423

small cell clusters. These fine-scale patterns, 424

observed in Figs 2 and S3, can be interpreted 425

by considering the expansion dynamics of each 426
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(c) Simulation: No Turnover (>10% frequency)
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(d) Simulation: Turnover (>10% frequency)

Regression (p=0.03)
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(b) Simulation: Power Analysis 
 (p<0.01)

size=1
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Figure 3: Comparison of simulated multi-region NGS with empirical hepatocellular carcinoma. (a) Spa-
tial distribution and regression of the number of somatic mutations of 23 samples (20,000 cells each) in hepatocellular
carcinoma patient. (b) Power to identify spatial trends in diversity as a function of cluster size and sample size.
The signed proportion of significant regressions counts the number of regressions that were significant (p < 0.01) for
positive and negative slopes (See Power Analysis). (c) and (d) Spatial trends in simulated tumors with sampling
schemes as in (a), without turnover (c) and with turnover (d). The shaded gray area of (a) represents the tumor
purity of the samples at each position. The shaded gray area of (c) and (d) represents the density of tumor cells at
each position. See also Fig S5 and S6 for power analyses with different frequency cutoff and turnover model.

model and their impact on cell division and mix-427

ing. In all turnover models, the number of so-428

matic mutations in a given cell is ≈ 2.75× higher429

at the edges than at the center of the tumor, re-430

flecting the higher number of divisions to reach431

the edge: The center of the tumor is occupied432

early, which slows down cell division.433

In the no turnover and surface turnover mod-434

els, cell clusters show the same overall pattern435

of additional diversity at tumor edge. In the436

turnover model, however, we observe the oppo-437

site pattern: Even though edge cells still carry438

the most mutations, core clusters are now more439

diverse than edge clusters. 440

Turnover increases the number of somatic mu- 441

tations by increasing the number of cell divisions 442

required to reach a given size, especially in the 443

core. For example, core cells in the model with 444

d = 0.2 have ≈ 3.99 somatic mutations, com- 445

pared to ≈ 1.83 for the no turnover model. This 446

effect is somewhat weaker for edge cells, leading 447

to a modest spatial trend: Without turnover, the 448

number of somatic mutations per cell is 3.5 times 449

higher at the edge than in the core, and the ra- 450

tio is reduced to 2.2 when turnover is present 451

(d = 0.2). 452
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Figure 4: ‘Cluster advantage’ A(n), or the increase
in number of distinct somatic mutations in a CTC
cluster relative to single CTC, as a function of cluster
size for a random subset of 500 clusters drawn uniformly
across the tumor. A law of diminishing returns applies
to all models because of redundancy of mutations. The
turnover model shows a 2-fold increase in the cluster ad-
vantage over the no turnover model. See also Fig S7 for
death rates ≤ 0.1.

(a) No Turnover (b) Surface Turnover (c) Turnover

Direction of tumor 
front expansion

Cell mixing on 
the surface

Cell mixing within 
tumor mass

Figure 5: Migration and Quiescent Core Explains
Spatial Patterns (a) In the no turnover model, the tu-
mor front expands in the outward direction with no cell
dying. There is little to no mixing and no divisions in
the core: The number of somatic mutations increases
with distance from the tumor center. (b) In the surface
turnover model, the cells dying on the surface permit a
small amount of mixing. This accounts for the higher
number of somatic mutations per cluster. We still find
increased diversity at the edge of the tumor because of
the quiescent core. (c) In the turnover model, cells that
die within the tumor can be replaced by cells from the
surface as well as cells from the center.

More importantly for diversity, turnover al-453

lows for mixing of cells from nearby clones454

(Fig 5c). This mixing has a smaller effect at the455

edge of the tumor, where the range expansion456

produces serial bottlenecks which reduce the ef-457

fective population size relative to the tumor core.458

For moderate cluster sizes, this differential mix- 459

ing effect overwhelms the “number of divisions” 460

effect, and core clusters are much more diverse 461

than edge clusters, producing distinctive gradi- 462

ents of diversity. Fig 463

The difference in somatic diversity between 464

single CTCs and CTC clusters, measured 465

through the cluster advantage, follows the ex- 466

pected law of diminishing returns: the more cells 467

in the cluster, the fewer the number of unique 468

mutations per cell. However, the trends vary by 469

growth model and cluster origin. Cell mixing af- 470

forded by turnover reduces neighboring cell sim- 471

ilarity and increases cluster advantage. 472

Under the assumption that the presence or ab- 473

sence of a metastatic progression allele modu- 474

lates metastatic potential of tumor cell clusters, 475

the proportion of metastatic lesions that derive 476

from circulating tumor cell clusters is highest in 477

the turnover model. We can think of this as in- 478

terference occurring between cells within a clus- 479

ter. Alternately, this is an illustration of the ad- 480

vantage of not putting all one’s egg in the same 481

basket, applied to tumor metastasis: Assuming 482

that there is a chance component to cluster im- 483

plantation, mixing increases the likelihood that 484

at least one virulence cell makes it to a hospitable 485

site. Such an effect should be robust to details 486

of the growth model. 487

In experiments, CTC clusters derived from 488

primary breast and prostate tumors produced 489

more aggressive metastatic tumors (Aceto et al. 490

2014) compared to single CTCs. This is likely 491

due to differences in mechanical properties of the 492

cluster or the creation of a locally favorable en- 493

vironment by the cluster, rather than by genetic 494

differences. However, the present analysis sug- 495

gests that this advantage can be enhanced by 496

diversity within the cluster. 497

Both fine-scale mixtures of cell phenotypes 498

and clonally constrained mutations have been 499

observed experimentally in tumors (Yates et al. 500

2015; Navin et al. 2010). Similarly, multi-region 501

sequencing revealed high tumor heterogeneity in 502

clear cell renal carcinoma (ccRCC) (Gerlinger, 503

Horswell, et al. 2014), but low levels in lung 504

adenocarcinomas (J. Zhang et al. 2014). This 505
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strongly suggests that the amount of migration506

and mixing varies substantially across tumors,507

with ccRCC data being better described by a508

model with turnover, whereas lung adenocarci-509

noma data more closely resembles a model with510

low or no turnover.511

Distinguishing between migration effects,512

turnover effects, and tumor growth idiosyn-513

crasies is extremely challenging. Among lim-514

itations of our model, we note the assump-515

tion of spherical tumor shape and the absence516

of complex physical contraints (which HCC tu-517

mors may experience). Another limitation of the518

present model is the rigid computational grid519

which prevents cells from pushing each other out520

of the way, which constrains growth in the cen-521

ter of the tumor. This constraint plays a role522

in reducing diversity at the center of the tumor,523

but it may not be realistic in the earlier stages524

of tumor growth.525

The importance of such effects is largely un-526

known, and it is likely to vary between tumors527

and tumor types. Fortunately, we have shown528

that we are at the cusp of being able to test529

such models quantitatively. A sampling experi-530

ment with twice as many samples than were col-531

lected in the HCC patient studied above would532

enable us to either validate or reject the current533

state-of-the-art models (Fig 3b), and sequencing534

of small clusters would further allow us to dis-535

criminate between the different models studied536

here.537

Data collection schemes including the lung538

TRACERx study (Jamal-Hanjani, Hackshaw, et539

al. 2014; Jamal-Hanjani, Wilson, et al. 2017)540

will help us put the state-of-the-art models to541

the test and identify such important parameters542

of tumor growth. Given our power analysis, we543

find that sequencing small contiguous cell clus-544

ters provides a richer picture of tumor dynamics545

compared to larger biopsies, with little to no loss546

in power, assuming that few-cell sequencing can547

be performed accurately.548

This work set out to answer two simple ques-549

tions: First, should we expect substantial hetero-550

geneity at the cellular scale within tumors and551

within circulating tumor cell clusters? The an-552

swer to the first question is most likely yes, as 553

even the models with no turnover exhibit mea- 554

surable cluster heterogeneity. 555

The second question was whether this het- 556

erogeneity, sampled through liquid biopsies or 557

multi-region sequencing, is informative about tu- 558

mor dynamics. Given that state-of-the-art mod- 559

els produce very different predictions about the 560

level of cluster heterogeneity, the answer is also 561

positive. This work identified some of the key 562

factors that determine cluster diversity, espe- 563

cially the interaction between range expansion, 564

cell turnover, and mixing. Even if no diversity 565

were observed at all in CTC clusters, it would 566

enable us to reject the present models in favor 567

of models including additional biological factors 568

that favor the clustering of genetically similar 569

cells. Measuring diversity, or the lack of di- 570

versity, within circulating tumor cell clusters or 571

fine-scale multi-region sequencing is therefore a 572

promising tool for both fundamental and medi- 573

cal oncology. 574
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Supplemental Information

Supplemental Methods

Tumor growth model

The tumor consists of cells that occupy points
in a 3D lattice. Empty lattice sites are assumed
to contain normal cells which are not modelled
explicitly in TumorSimulator.

Recall that each cell has an associated list
of genetic alterations which represent single nu-
cleotide polymorphisms (SNPs) that can be ei-
ther passenger or driver. Driver mutations in-
crease the growth rate by a factor 1 + s, where
s ≥ 0 is the average selective advantage of a
driver mutation.

At t = 0, the simulation begins with a single
cell that already has an unlimited growth poten-
tial. The TumorSimulator algorithm then pro-
ceeds to grow the tumor through the following
steps:

1. Select a random cell to be the mother cell.

2. Set the cell birth rate to b′ = b(1+s)k, where
b is the initial tumor birth rate, s is the av-
erage selective advantage of a driver muta-
tion, and k is the number of driver muta-
tions present in the mother cell.

3. Randomly select a lattice point adjacent to
the mother cell. If empty, create a geneti-
cally identical daughter cell at that position
with a probability proportional to the birth
rate, b′. If no cell created, or no empty sites
are found proceed to 5.

4. Independently give mother and daughter
cells additional passenger and driver muta-
tion. The number of passenger and driver
mutations are drawn according to Poisson
distributions with mean λp and λd, respec-
tively, and are drawn independently for the
mother and daughter cell. Each mutation
is unique and there is no back-mutations or
recurrent mutations.

5. Kill (i.e., remove) the mother cell with prob-
ability proportional to the death rate d.

6. Update time by a small increment dt =
1/(bmaxN), where N is the total number of
cancer cells in the tumor and bmax is the
maximum birth rate in the population of
cells.

In our analysis, we consider three turnover sce-
narios corresponding to three values of the death
rate d: (i) No turnover (d = 0), corresponding
to simple clonal growth (Hallatschek et al. 2007);
(ii) Surface Turnover (d(x, y, z) > 0 only if x, y, z
is on the surface), corresponding to a quiescent
core model (Shweiki et al. 1995) (iii) Turnover
(d > 0 everywhere), a model favored in Waclaw
et al. 2015 to explore ITH.

The birth rate (b = ln(2)), and selective ad-
vantage (s = 1%) were kept consistent with
Waclaw et al. 2015. In addition to varying
the turnover model (full, surface, or none), we
vary its intensity by controlling the death rate,
d ∈ {0.05, 0.1, 0.2, 0.65}. TumorSimulator also
has a parameter that controls migration of cells
to form new independent cancer lesions. We did
not allow such local migrations, as they would
have little effect on the very fine-scale diversity
in the primary tumor. We tried two values for
the passenger mutation rate: λp = 0.02 to facil-
itate comparison with simulations from Waclaw
et al. 2015, and λp = 0.0375 to match effective
experimental observations from Ling et al. 2015.

TumorSimulator (Waclaw
et al. 2015) is available at
http://www2.ph.ed.ac.uk/ bwaclaw/cancer-
code/.

CTC cluster synthesis

Experimental evidence suggests that CTC clus-
ters are formed from neighboring cells in the pri-
mary tumor and not by agglomeration or pro-
liferation of single CTCs in the blood (Hou et
al. 2012; Aceto et al. 2014). To represent circu-
lating tumor cell clusters, we therefore sampled
spherical clusters (with a large radius) of cells in
different areas of the tumor produced by the Wa-
claw et al. model. To get a fixed number of cells
in the cluster, n, we picked the n closest cells
to the center-of-mass of this sphere. We varied
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the number of cells in the cluster from n = 2 to
n = 30 to allow comparison to empirical findings
Marrinucci et al. 2012.

Power Analysis

To establish the effectiveness of sequencing CTC
clusters versus larger biopsies at detecting a
trend and distinguishing between models, we
conduct a power analysis. We do a linear re-
gression on the number of somatic mutations
per cluster (or biopsy) of size n as a function of
distance from the center-of-mass (i.e, S(n, r) =
mr + c where m and c are discovered by the in-
ference technique). We count the number of re-
gressions that were significant (p < 0.01): This
is denoted as the proportion of significant regres-
sions (out of 100). To capture the direction of
the slope, we calculate the sign of the coefficient
m and report the signed proportion of significant
regressions.

Standard Neutral Model for Cluster Ad-
vantage

The relative increase in the number of distinct
somatic mutations in a CTC cluster versus a sin-
gle CTC is given by the cluster advantage, i.e.,
A(n) = S(n)−S(1)

S(1) = S(n)
S(1) − 1, where S(n) is the

number of somatic mutations in a cluster of size
n and S(1) is the number of somatic mutations
in the cell closest to the center-of-mass of the
cluster (as described in Section ). A higher clus-
ter advantage indicates that a CTC cluster is
more potent relative to a single CTC from the
same tumor. In other words, a higher cluster
advantage means less genetic redundancy within
a cluster. To compare how clusters would be-
have under a model with no selection, we con-
sider the Standard Neutral Model. We make the
infinite sites assumptions, and therefore the ex-
pected number of somatic mutations in a sample
of size n, S(n), is proportional to the expected
number of segregating sites, S′(n). This is given
by E(S′(n)) = µH(n− 1) (Durrett 2008), where
H(n) is the n-th harmonic number,

∑n
i=1

1
i .

Allele frequency distribution under a
stochastic spherical growth model

The deterministic model presented in the main
text for the distribution of allele frequencies does
not take into account the stochastic variation in
the fate of cells, which is especially important
in the first few generations after a mutation ap-
pears. To account for this, we can imagine that
the initial frequency of each new mutation gets
multiplied by a random factor i to account for
the random differences in success in the origi-
nal cells over the first few generations. In other
words, i is the number of descendants produced
by the original cell divided by the expected num-
ber of descendants for other cells at the same ra-
dius. If we only consider mutations with given i,
we find

fi(r) =
ia2

4πr2

and

φi(f) ' µi
3
2

4
√
πf

5
2

.

If we assume that multipliers are drawn from a
probability distribution P (i) that is independent
of r, we get an expected frequency spectrum

φ(f) '
∑
i

P (i)φi(f) =
µE
[
i
3
2

]
4
√
πf

5
2

.

Even though the 5/2 scaling behavior is main-

tained, the expectation E
[
i
3
2

]
can be much

larger than 1, as there is an early settler ad-
vantage in this model. However, the value of
this scaling factor depends on the details of the
growth model (Fig 1 and S2).

More generally, the f−
5
2 asymptotic result is

derived under an extremely simple model: it
does not take into account selection, turnover,
and the fact that P (i) likely varies with r. By
focusing on high-frequency variants, the model
also effectively ignores the contribution of vari-
ants that are ultimately unsuccessful and remain
buried under the surface. Obtaining a general
analytical approximation to the general allele
frequency distribution appears extremely chal-
lenging.
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Code Availability

The code to reproduce simulations,
analysis and figures can be found at
https://github.com/zafarali/tumorheterogeneity.
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Table 1: Average number of generations for a cell in each model (estimated from the number of
somatic mutations per cell divided by the mutation rate).

Average Number of Divisions in Model
(mutation rate = 0.02, birth rate = 0.69)

Death Rate (d) No Turnover Surface Turnover Turnover

0.05 218.23± 13.99 216.51± 13.99 224± 11.00

0.1 218.23± 13.99 219.73± 7.11 239.38± 8.06

0.2 218.23± 13.99 227.27± 6.24 279.80± 13.00

0.65 218.23± 13.99 439.90± 18.21 1799.05± 55.81
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Supplemental Figure 1: Allele frequency spectra for low death rates, d ∈ {0.1, 0.2} are indistin-
guishable.
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Supplemental Figure 2: Comparison of the allele frequency specrtrum for simulations with and
without selection, and analytic solutions of a tumor (size 108) with no death.
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Supplemental Figure 3: The spatial distribution of the number of somatic mutations per cluster in
the surface turnover model with death rates (a) d = 0.05, (b) d = 0.1, (c) d = 0.2 and (d) d = 0.65.
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Supplemental Figure 4: The spatial distribution of the number of somatic mutation per cluster in
a turnover model with d = 0.65.
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Supplemental Figure 5: The power to detect spatial trends in diversity as a function of the frequency
cutoff. With no frequency cutoff, the number of rare variants in a large biopsy (n = 20, 000 cells)
overwhelms the detectable spatial pattern contributed by common variants.
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Supplemental Figure 6: The number of samples necessary to detect spatial trends from a regression
analysis for CTCs and biopsies in the no turnover model.
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Supplemental Figure 7: Cluster advantage for weak turnover models: even weak mixing (turnover
model with d = 0.05) can lead to substantial differences in the cluster advantage.
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