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Abstract 

There is evidence that different subtypes of orofacial cleft have distinct aetiologies, 
although the precise molecular mechanisms underlying these are unknown. Given the key 
role of epigenetic processes such as DNA methylation in embryonic development, it is likely 
that aberrant DNA methylation may also play a part in the development of orofacial clefts.  
In this study, we explored whether blood samples from children with different cleft 
subtypes showed distinct DNA methylation profiles. 
In whole blood samples from 150 children from the Cleft Collective cohort study, we 
measured DNA methylation at over 450,000 sites on the genome. We then carried out 
epigenome-wide association studies (EWAS) to test the association between methylation at 
each site and cleft subtype (cleft lip only CLO n=50; cleft palate only CPO n=50; cleft lip and 
palate CLP n=50).  
We found four genomic regions differentially methylated in CLO compared to CLP, 17 in CPO 
compared to CLP and 294 in CPO compared to CLO. These regions included several mapping 
to genes that have previously been implicated in the development of orofacial clefts (for 
example, TBX1, COL11A2, HOXA2, PDGFRA) and over 250 novel associations.  
Our finding of distinct methylation profiles in different cleft subtypes might reflect 
differences in their aetiologies, with DNA methylation either playing a causal role in 
development of OFC subtypes or reflecting causal genetic or environmental factors. 
 

Introduction 

Orofacial clefts (OFCs) are a set of common birth defects that affect roughly 15 in every 
10,000 births in Europe [1]. A child born with an OFC may face difficulties with feeding, 
speech, dental development, hearing and social adjustment. At considerable health, 
emotional and financial costs, they undergo surgery in the first year of life and many need 
additional surgical procedures later in life. They may experience low self-esteem, 
psychosocial problems and poor educational attainment, and the condition can harm the 
emotional wellbeing of the whole family [2–4].  
Syndromic OFCs are often known to be caused by a specific genetic or chromosomal 
anomaly, whereas non-syndromic cases, which comprise around 70% of cases of cleft lip 
with or without cleft palate, have a complex aetiology involving both genetic and 
environmental factors [2]. Furthermore, there is increasing evidence that the three main 
subtypes of OFC, cleft palate only (CPO), cleft lip only (CLO) and cleft lip with cleft palate 
(CLP) (Figure 1), are aetiologically distinct. For example, there is a higher risk of familial 
recurrence of the same subtype compared with risk of recurrence of a different subtype [5]. 
CLO tends to be combined with CLP in research because it has traditionally been thought of 
as a less extreme manifestation of CLP. However, differences in sex ratios and rates of 
twinning and consanguinity between the two subtypes provide some evidence that CLO and 
CLP may be aetiologically distinct [6].  
If CPO, CLO and CLP have distinct aetiologies, the precise underlying molecular mechanisms 
are currently unknown. Given the key role of epigenetic processes such as DNA methylation 
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in embryonic development, we and others have hypothesised that aberrant epigenetic 
processes may also play a role in the development of OFCs [2,7,8]. This hypothesis has been 
supported by data suggesting an important role for DNA methylation and other epigenetic 
processes in regulating normal orofacial development and OFCs in mice [9–14], but 
published epigenetic data for OFCs in humans is lacking. 
A clearer understanding of the aetiologies of OFCs will help to inform better strategies for 
screening, diagnosis, counselling and prevention. Therefore, we carried out this study to 
explore distinct aetiologies of OFC subtypes, by generating and examining DNA methylation 
profiles in whole blood samples from non-syndromic children with CLO, CPO and CLP. 
 

Methods 

Participants 
Participants were children from the United Kingdom enrolled in the Cleft Collective birth 
cohort study between 2013 and 2016. Families of a child with an OFC were invited to take 
part soon after the child was born. Demographic and lifestyle information for both parents 
was collected via questionnaire. Blood samples were collected at time of surgery to repair 
the OFC. Additional details on the surgery and OFC were collected on a surgical form. For 
the purposes of the current study, a sample of 150 believed-to-be non-syndromic children 
were randomly selected. The sample was stratified by OFC subtype (CLO, CPO, CLP) resulting 
in 50 children per group.  
 

Classification of OFC 
Details on the cleft phenotype were collected from surgical forms completed at the time of 
operation and from parental questionnaires. Surgeons recorded the phenotype using either 
the LAHSAL or LAHSHAL classification [15], which was condensed to CPO, CLP or CLO for the 
purposes of this study. Parents used this simplified classification of subtype (CPO, CLP or 
CLO).  Where data were available from both sources, we compared the reported subtype 
and found no discrepancies. 
 

Other variables 
The child’s age at biological sample collection was calculated from the child’s date of birth 
and date of surgery. We also predicted child’s ‘epigenetic age’ using the method developed 
by Horvath [16] (discussed in more detail in supplementary File S1). ‘Age acceleration’ was 
calculated as the residuals from a linear regression of epigenetic age on actual age at 
sample collection. A positive value corresponds to an individual whose epigenetic age is 
ahead of their actual age, and vice-versa. Sex was initially assumed by staff at the Cleft 
Collective using the child’s name and later confirmed by parental questionnaires, where 
available, and NHS Digital data if explicit consent was held. Mothers self-reported how 
much they smoked around the time of conception, and this was classified for the purposes 
of this study as any or no smoking around conception. Additionally, a score to predict in 
utero/early-life smoke exposure was calculated from the child’s blood DNA methylation 
data. The score was calculated as previously described [17] using a weighted sum of 
methylation beta values at 26 maternal-smoking-associated methylation sites identified in 
cord blood [18]. The efficacy of this score for predicting maternal smoking is discussed in 
supplementary File S1. Information on the mother’s occupation was dichotomised as either 
non-manual skilled work, or manual/unskilled/no work. Information on mother’s education 
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was dichotomised as achieving a university degree/above, or not achieving a university 
degree. Information on parity was dichotomised for this study as no previous children or 
one or more previous children. Maternal and paternal age in years were reported by the 
mother and treated as continuous variables. Maternal and paternal ethnicity were reported 
by the mother and used to deduct child ethnicity as white or other. For each model, 
surrogate variables were generated using the sva package [19,20] in R [21] to capture 
residual variation associated with technical batch and cellular heterogeneity. The number of 
surrogate variables (10) was estimated by the sva algorithm using the methylation data and 
the model matrices. Blood cell type proportions were also estimated using the Houseman 
method [22,23] for use in a sensitivity analysis. 
 

DNA methylation 
Upon arrival at the Bristol Bioresource Laboratories (BBL), whole blood samples were 
immediately separated by centrifugation into white blood cell and plasma aliquots before 
storage at -80˚C. DNA from the white blood cells was extracted and genome-wide DNA 
methylation was measured using the Illumina Infinium HumanMethylation450 BeadChip 
platform. Data were pre-processed in R version 3.3.2 with the meffil package [24]. 
Functional normalisation [25] was performed in an attempt to reduce the non-biological 
differences between probes. Of the original 150 samples, three failed quality control due to 
a mismatch between reported and methylation-predicted sex (and additional data from 
NHS Digital or parental questionnaire was not available to cross check). In addition, we 
removed 944 probes that failed quality control in meffil and a further 1,058 probes that had 
a detection P-value >0.05 for >5% of samples. Finally, we removed 11,648 probes mapping 
to the X or Y chromosomes and 65 SNP probes included on the array for quality control 
purposes. This left 472,792 probes in the dataset for further analysis. Extreme outliers in the 
methylation data were identified using the Tukey method (<1st quartile-3*IQR; >3rd 
quartile+3*IQR) and set as missing. The median number of samples removed per probe was 
0 (IQR: 0 to 1; range 0 to 72).  

 

Statistical analysis 
We assessed the association between parental and child characteristics and cleft subtype 
using chi-squared or t-tests. We also used linear regression to explore whether ‘epigenetic 
age’ (age predicted using the methylation data) differed from true age at sampling and 
whether any deviation (age acceleration) was associated with OFC subtype or any parental 
characteristics.  
Epigenome-wide association studies (EWAS) were conducted in R version 3.3.2 [21]. For our 
main EWAS analyses, we used linear regression to model cleft subtype as the exposure and 
untransformed methylation beta values as the outcome. To identify blood methylation 
profiles specific to each subtype, we made three pairwise comparisons: CPO compared to 
CLP (CPOvsCLP), CLO compared to CLP (CLOvsCLP), CPO compared to CLO (CPOvsCLO). All 
models were adjusted for sex because previous studies have found different sex ratios for 
OFC subtypes. In order to adjust for technical batch effects and cellular heterogeneity, we 
calculated surrogate variables and included these in all models. For results from the 
CPOvsCLO and the CPOvsCLP EWAS analyses we removed age-related CpGs as described 
below. P-values were corrected for multiple testing using the Bonferroni method and a 
threshold of 0.05, i.e. an uncorrected P-value threshold of 1*10-7. Regression coefficients 
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are interpreted as the difference in mean methylation beta value in children with one 
subtype compared to children with another subtype. 
In addition to the EWAS analyses at individual CpGs, we also used Comb-P [26] to detect 
differential methylation across larger regions of the genome. This approach is statistically 
more powerful and has been associated with a lower rate of false positive findings 
compared to EWAS at individual CpGs [27]. Using genomic location and P-values from our 
individual CpG EWAS results, Comb-P identifies regions that are enriched for low P-values. It 
then calculates and adjusts for auto-correlation between those P-values using the Stouffer-
Liptak-Kechris correction and performs Sidak correction for multiple-testing. Differentially 
methylated regions (DMRs) were defined as regions fulfilling these criteria:  1) contains at 
least two probes, 2) all probes within the region are within 1000 base pairs of at least one 
other probe in the region, 3) the Sidak-corrected P-value for the region is <0.05.  
 

Special consideration of age at sampling 
Blood samples were collected at first surgery, which is typically around 3-6 months after 
birth for lip repair and 6-18 months after birth for palate repair. Therefore, we anticipated 
that the children with CLO and CLP would be younger than the children with CPO. Previous 
studies have shown that age, particularly during this early developmental period, is strongly 
associated with methylation [28–30]. We refrained from adjusting for age at sampling 
because it is not a true confounder (it cannot plausibly cause OFC subtype). Instead, we 
considered it a nuisance variable and dealt with it by ‘filtering out’ any age at sampling-
related CpGs from our main analysis. To do this, using all the participants in our sample, we 
ran an EWAS of age at blood sampling, and for any age-associated CpGs (uncorrected P-
value <0.05), we set the EWAS P-values from the CPOvsCLP and the CPOvsCLO analyses to 1. 
This meant that we were filtering out age-related CpGs from our main EWAS results while 
maintaining the same multiple testing burden and array structure for the region-based 
analysis. In the age at sampling EWAS, child’s age in months was modelled as the exposure 
with methylation as the outcome. The model was adjusted for 10 surrogate variables for 
technical batch and cellular heterogeneity. We confirmed that our age-at-sampling EWAS 
was effectively identifying age-related CpGs (independent of OFC subtype) by inspecting 
heterogeneity statistics from a meta-analysis of three separate age-at-sampling EWASs run 
within each OFC group (more details in supplementary File S1). 
 

Functional analysis 
To explore the function of any OFC-associated DMRs, we used the missMethyl[31] R 
package to test for enrichment of any gene ontology (GO) classification terms or Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) pathways. This method corrects for biases in 
the genomic coverage of the Illumina Infinium HumanMethylation450 BeadChip array. We 
also looked up gene annotations from our DMRs in recently curated lists of OFC-related 
genes from 1) the DisGeNET database of diseases and related genes from human, rat and 
mouse studies [32] and 2) a bioinformatics study of OFC-related genes in human and animal 
studies published by Funato et al. [33]. 
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Results 

Characteristics of participants 
From 150 participants selected for the study, 147 passed quality control for methylation 
data and 146 had information on all variables in the main model (subtype, age at sampling, 
sex). Participant characteristics are summarised in Table 1. As we expected, children with 
CPO were on average seven months older than children with CLO (t-test P=1.3*10-19) and six 
months older than children with CLP (t-test P=35.8*10-14) because of the timing of surgery 
for lip and palate repair (Figure 2). Accordingly, the same pattern was seen for epigenetic 
age, despite weak correlation with actual age (Spearman’s rho for all participants 0.7; CPO 
0.5, CLO 0.3, CLP 0.3). Participants with CLP tended to have a higher epigenetic age than 
their actual age (mean residual 0.8 months) whereas participants with CLO or CPO tended to 
have a lower epigenetic age than their actual age (mean residual -0.3 and -0.5, respectively). 
However, the confidence intervals crossed the null and t-test P-values for differences 
between subtypes were large (ranging 0.1 to 0.9). Age acceleration was also not associated 
with any measured confounder (supplementary File S1). Participants with CLP were more 
likely to be male than participants with CLO (chi-squared P=0.02) or CPO (chi-squared 
P=0.002), but there was no difference in the sex ratio between participants with CLO and 
CPO (chi-squared P=0.60). According to maternal self-report of smoking behaviour, 
participants with CPO were more likely to have mothers who smoked around the time of 
conception compared to participants with CLP and CLO (chi-squared p-value=0.07). It should 
be noted that there was a particularly high level of missing data for this variable (70%). A 
tobacco exposure score calculated from the blood DNA methylation data was not associated 
with cleft subtype (chi-squared P=0.361).  
 

Individual CpG epigenome-wide study 
After Bonferroni correction for multiple testing, there were no CpGs where DNA 
methylation in blood was associated with either CLO (n=48) compared to CLP (n=49), or CPO 
(n=49) compared to CLP (P>1*10-7). In contrast, 335 CpGs were associated with CPO 
compared to CLO (File S2, Table S1). We considered that some of these associations might 
be better explained by differences in age than OFC subtype, so we compared results to 
those of our EWAS of age at sampling (described above). There were 29,984 CpGs 
associated with age at sampling with an uncorrected P-value<0.05 (N participants in analysis 
139; Supplementary Table 2). Confidence that these CpGs are truly associated with age 
(independently of OFC subtype) comes from our observation of low heterogeneity when we 
meta-analysed three separate age-at-sampling EWASs run within each OFC group (more 
details in supplementary File S1), and the fact that many of these CpGs have previously 
been shown to be differentially methylated with age in infancy [29]. Of the 29,984 age-
associated CpGs, 214 were also associated with CPO compared to CLO with P<1*10-7. When 
we ‘filtered out’ the 29,984 age-related CpGs by setting the P-values to 1 in the CPOvsCLP 
and CPOvsCLO results, 121 CpGs were associated with CPO compared to CLO (P-value<1*10-

7; Supplementary Table 1). All subsequent analyses were performed on these results, that is, 
CLOvsCLP without filtering age-associated CpGs, and CPOvsCLP and CPOvsCLO with age-
associated CpGs filtered. Full EWAS results for all three OFC subtype comparisons are 
available as a supplementary R data file and summarised in Figure 3. 
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Differentially methylated region analysis 
When we interrogated differential methylation over larger regions of the genome, we found 
four DMRs in CLO compared to CLP, 17 in CPO compared to CLP and 294 in CPO compared 
to CLO (Sidak-corrected P-value<0.05; Table 2). The top DMRs with Sidak P-values<0.05 and 
the largest effect sizes are presented in Table 2. Boxplots of methylation levels averaged 
over the top DMRs for each subtype comparison are shown in Figure 4. 
 
None of the 25 CpGs in the four CLOvsCLP DMRs overlapped with CpGs in DMRs from the 
other two comparisons. Of the 82 CpGs in the 17 CPOvsCLP DMRs, 39 (48%) were also in the 
list of 1,063 CpGs in the 294 CPOvsCLO DMRs (Figure 5). CPO was associated with higher 
methylation relative to CLP or CLO at 18 of these 39 CpGs and lower methylation relative to 
CLP or CLO at the remaining 21/39 CpGs. 
 

Functional analysis of DMRs 
There was no enrichment (FDR-adjusted P-value<0.05) for any functional categories defined 
using GO terms or KEGG pathways in CpGs within CLOvsCLP DMRs or CPOvsCLP DMRs. CpGs 
in CPOvsCLO DMRs were also not enriched for any GO terms, but were enriched for 66 
KEGG pathways. However, these were mostly broad (for example, pathways in cancer, 
MicroRNAs in cancer, fatty acid metabolism). Results are presented in detail in the 
Supplementary Material. 
 
We identified 286 genes associated with OFCs in the DisGeNET database, and of which 93 
were also identified in a recent bioinformatics study [33] that found 357 unique OFC-related 
genes (total number of OFC-related genes from the literature: 643; Supplementary 
material). Of these, eight mapped to regions that were differentially methylated in CPO 
compared to CLO in our study, and two mapped to regions that were differentially 
methylated in CPO compared to CLP. These genes are detailed in Table 4. 
 

Discussion 

In this, the first study of the epigenetic epidemiology of OFCs, we found multiple genomic 
regions differentially methylated in blood samples from non-syndromic children with CLO, 
CLP and CPO. Many more regions were differentially methylated between CPO and CLO 
than between CPO and CLP, and more regions were differentially methylated between CPO 
and CLP than between CLO and CLP. This suggests that the DNA methylation profiles of CLO 
and CLP are more similar to each other than the DNA methylation profile of CPO, which 
supports previous suggestions of distinct aetiologies for CPO and CL/P [5,34]. Additionally, 
the DMRs we found between CLO and CLP support previous evidence that these subtypes 
are also aetiologically distinct. Our findings therefore have important implications for OFC 
research, suggesting that CLO, CLP and CPO should be analysed separately and not 
combined into a single entity or CL/P for analysis, at least in epigenetic studies.  
 
There are three main possible explanations for why children with different OFC subtypes 
have different blood DNA methylation profiles:  
Firstly, the subtypes might have distinct aetiologies in which DNA methylation plays a 
mechanistic role, i.e. the subtypes are caused, in part, by differences in DNA methylation. 
Arguably, for this to be the case, blood DNA methylation at the time of sampling (up to 20 
months after birth) would have to closely reflect DNA methylation in the developing 
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orofacial tissues during embryogenesis. For obvious ethical reasons, it is not possible to 
study these tissues in humans, however it is plausible that DNA methylation from postnatal 
blood might correlate with that from the developing embryo at some CpGs, particularly at 
metastable epi alleles where variable DNA methylation is established early in development 
before cellular differentiation.  
Secondly, the subtypes might have distinct aetiologies explained by genetic and/or 
environmental factors that also influence blood DNA methylation. That is, the association 
between OFC subtype and DNA methylation is confounded by genotype or prenatal 
environmental factors such as maternal smoking or obesity. In this case, our finding of 
distinct blood DNA methylation profiles between subtypes would still support distinct 
aetiologies, but not a mechanistic role for blood DNA methylation.  
Thirdly, since the OFC forms early in embryonic development and blood DNA methylation 
was measured in infancy, it is possible that the OFC subtype could indirectly influence blood 
DNA methylation, that is, any association between OFC subtype and DNA methylation could 
be explained by reverse causation. For (hypothetical) example, children with CPO or CLP 
might have more difficulty feeding compared to children with CLO and the subsequent 
different nutritional exposure may cause differences in DNA methylation between children 
with these subtypes. The Cleft Collective is currently collecting cord blood samples, which 
are unaffected by post-natal environmental factors, and will therefore help overcome this 
issue. 
 
Further work is warranted to explore our findings in a causal analysis framework. However, 
several of our DMRs map to genes that have previously been associated with OFCs, which 
provides some support that DNA methylation either plays a causal role in development of 
OFC subtypes or reflects different genetic or environmental factors that do. For example, we 
identified six CpGs in a region on the gene body of TBX1 that were 3 to 8% percent more 
highly methylated in blood DNA from children with CPO compared to CLO. TBX1 encodes 
the T-box transcription factor 1 and deletion of this region causes chromosome 22q11.2 
deletion syndrome, characterised by, amongst other malformations, cleft palate [35]. 
Genetic variants at TBX1 have also been associated with non-syndromic CL/P [36]. Tbx1 is 
expressed on the palatal shelves in mice and deletion results in abnormal epithelial fusion 
[37]. We also identified a region of 15 CpGs on the gene body of COL11A2 that were around 
2% more highly methylated in CPO than CLO. COL11A2 is one of three distinct genes that 
encodes collagen XI, which is expressed in the developing jaw in rats [38]. Genetic variants 
in COL11A2 can cause syndromic and non-syndromic palatal defects [39,40].  
 
Amongst our identified DMRs, there were some additional gene-OFC relations that have 
previously been reported in the literature, but that weren’t included in either the DisGeNET 
database or the recent review of OFC genes by Funato et al. [33]. For example, rare and/or 
common variants have been associated with non-syndromic CL/P at regions that were 
differentially methylated in CPOvsCLO: FZD1 (hypermethylated) [41], VAX2 
(hypermethylated) [42] and FGF12 (hypomethylated) [43]. We also found that children with 
CPO had lower methylation than children with CLO at a region of 5 CpGs near MKNK2, which 
has very recently been associated with non-syndromic CL/P in central Europeans [44]. 
However this DMR did not survive correction for multiple testing (Sidak-corrected 
P=0.2).Our finding of DMRs near OFC-implicated genes is consistent with the hypothesis 
that these loci play an important part in OFC aetiology, with two possible explanations for 
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the observed associations: 1) they are explained by the underlying genetic architecture (and 
some of the children in our study may have undiagnosed syndromes caused by these 
genes); 2) they are explained by non-genetic variation in DNA methylation. Either way, these 
observations corroborate that perturbation of gene function at these loci is important in 
causing OFCs.  
 
We also found over 250 novel genomic regions associated with different OFC subtypes, 
including four regions differentially methylated in CLO compared to CLP mapping to 
PNLDC1, FAM83A, TAPBP and an intergenic region with the nearest gene KIAA0415. Few 
genes have previously been implicated in CLO, because most studies have not considered it 
as molecularly distinct from CLP. Of the novel genes associated with CPOvsCLO or 
CPOvsCLP, we have selected a few that could be related to OFCs via a biologically plausible 
mechanism. For example, we found a region of six CpGs near MIRLET7A3 that was 8% more 
highly methylated in CPO compared to CLO and 5% more highly methylated in CPO 
compared to CLP. MIRLET7A3 encodes a microRNA precursor, and although the mechanistic 
role of microRNAs in human OFCs has not been fully explored, there is some evidence from 
mouse studies that they could be important [45]. Furthermore, a recent microarray study 
found that has-let-7a-5p, which is the mature sequence of the MIRLET7A3-encoded 
precursor, was over expressed in plasma samples from non-syndromic children with CPO 
and CLP relative to unaffected controls [46]. In our CPOvsCLO comparison, we also found 
several novel DMRs mapping to genes that have previously been linked to neural tube 
closure and/or defects (NTDs), for example RGMA [47], ARHGEF1 [48] and NODAL [49], as 
well as two genes that have been linked to both OFCs and NTDs, CCL2 [50] and PDGFRA [51]. 
This is particularly interesting, because NTDs and OFCs appear to share some aetiological 
features: They both occur when tissues in the midline fail to fuse completely during 
embryonic development [52]; they co-occur in the same individuals and in related 
individuals more than would be expected by chance [53]; they share several environmental 
risk factors [2,3,54,55]. Our findings further support recent evidence of an overlap in the 
molecular networks associated with OFCs and NTDs [56]. 
 
Finally, two of the DMRs we identified have previously been found in association with 
maternal risk factors for OFCs. A region of four CpGs at HIF3A was between 3 and 15% more 
highly methylated in children with CPO than in children with CLO. Methylation in this region 
has previously been associated with measures of adiposity, most commonly body mass 
index (BMI) [57]. A previous study found a positive association between maternal BMI and 
offspring cord blood DNA methylation at the four CpGs in our HIF3A DMR [58]. Additionally, 
a region of two CpGs at PRPH was 5% more highly methylated in children with CPO than in 
children with CLO. Methylation at three (different) CpGs at PRPH has previously been 
negatively associated with maternal plasma folate levels [59]. These findings might indicate 
distinct aetiologies with different risk factors, suggesting that CPO and CLO are differentially 
influenced by maternal adiposity and/or maternal folate levels.  
 
Although OFCs are one of the most common birth defects, they are relatively rare, so 
collecting data on large numbers of affected individuals is challenging [60]. We used data 
and samples collected as part of the Cleft Collective cohort study, which is a unique and 
valuable resource for OFC research. The prospective nature of this cohort means that future 
work can assess whether the subtype-associated methylation we see in infancy persists to 
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later ages and is associated with longer term adverse outcomes of OFC such as poor 
educational attainment. Partly due to the novelty of these data and this resource, we were 
unable to find an independent cohort with similar data to replicate our findings. We hope to 
generate DNA methylation data for a larger sample of Cleft Collective children and test for 
replication in future studies. Another potential limitation of our study is that children with 
CPO were on average six to seven months older than children with CLO and CLP, which had 
a large influence on the results of the EWAS comparing these subtypes. Although we believe 
we were largely successful in our attempt to remove this influence by filtering out age-
related CpGs using a very liberal P-value threshold of uncorrected P<0.05, there may be 
some residual influence. For example, three of the top 25 CpGs where there is most 
evidence of differential methylation between CPO and CLO (Table 2) map to two genes that 
have previously been reported as associated with gestational age and/or age in infancy: 
NFIX [28,29,61] and SNED1 [29]. However, a previous microarray study of lip tissue found 
lower expression of NFIX in children with CLP compared to children with CLO even though 
both groups were sampled at 4-months-old, which provides some evidence that NFIX may 
be associated with OFCs independently of age [62]. Differences in the surgical protocol for 
lip and palate repair mean that this limitation (of age differences between children with CPO 
and CL/P) is likely to be present in other studies of OFCs where samples are collected at 
surgery, so techniques such as the one described in this paper should be developed to 
attempt to overcome this. We found no evidence of association between epigenetic age 
acceleration and OFC subtypes. Previous studies have postulated that epigenetic age 
acceleration is a measure of development in children [63,64], with a positive value 
indicating a child who is developmentally advanced for their actual age. Therefore our 
finding of no association suggests that children with different OFC subtypes have similar 
rates of development.  
 
The Cleft Collective cohort is still in the recruitment stage and genotype and gene 
expression data do not yet exist for the participants. This means that we were not able to 
infer causality between OFC subtypes and blood DNA methylation using Mendelian 
randomization[65,66], or explore functionality by calculating correlations between 
methylation and expression. This is something we hope to do in further studies. There was a 
high proportion of missing demographic data (for example, on maternal smoking, 
education, occupation, ethnicity and parity), which is also related to the Cleft Collective 
cohort being in its infancy. Participants selected for this study were recruited near the start 
of the recruitment phase when questionnaire return rates were lower.  Our return rates 
have increased recently and in future work, we hope to generate methylation data for a 
larger sample of the cohort with more complete questionnaire data. 
 
The Cleft Collective is a case-only cohort, so we were unable to make comparisons with 
unaffected children. We explored several options for controls from other cohorts, but did 
not identify any options that would not have introduced significant confounding/bias by 
batch effects, age or tissue. When genotype data are available, future studies using 
Mendelian randomization will be able to circumvent these issues with confounding. 
Additionally, the Cleft Collective is collecting data on unaffected siblings, who will act as a 
good control sample in future studies. 
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In conclusion, we found several genomic regions differentially methylated in blood samples 
from non-syndromic children with CLO, CLP and CPO. Confidence in our results comes from 
the fact that many of these genes have been previously linked to OFCs, but we have also 
highlighted some novel regions. Our findings provide further support that CLO, CLP and CPO 
may be aetiologically distinct, which has important implications for future studies of OFC 
aetiologies.  
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Figure 1. Orofacial clefts are traditionally categorised as either cleft lip only (CLO; A, B), cleft 
palate only (CPO; C-F) or cleft lip with cleft palate (CLP; G-J). Further subtyping can be made 
according to laterality and whether the soft and/or hard palate is affected. 
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Figure 2. Children with CPO were older on average than children with CLO or CLP because 
surgery for palate repair usually occurs later than surgery for lip repair. 
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Figure 3. Manhattan plots of the three pairwise epigenome-wide studies of DNA 
methylation in whole blood samples from children with CLO, CLP and CPO. P-values for age-
related CpGs have been set to 1 (i.e. -log10 P-value of 0) in the comparisons involving CPO. 
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Figure 4. DNA methylation levels at the top DMRs (selected based on largest effect size and 
a Sidak-corrected P-value<0.05) for each pairwise epigenome wide study.  
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Figure 5. A Venn diagram to show the crossover in CpGs within DMRs associated with each 
subtype comparison. 
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Table 1. Participant characteristics 
 CLO (n=49) CLP (n=49) CPO (n=49) P-value* 

Age in months at 

sample collection (95% 

CI) 

4.1 (3.8, 4.4) 5.5 (4.7, 6.3) 11.2 (10.3, 12.0) 3.9*10-27 

‘Epigenetic age’** in 

months at sample 

collection (95% CI) 

5.4 (4.2, 6.5) 8.7 (7.1, 10.3) 13.7 (11.9, 15.5) 5.0*10-11 

Age acceleration*** in 

months (95% CI) 
-0.3 (-1.5, 0.8) 0.8 (-0.1, 1.8) -0.5 (-2.0, 1.0) 0.23 

Female (%) 
19 (39%)  

(1 missing) 
8 (16%) 23 (47%) 0.004 

White ethnicity (%) 
25 (93%) 

(22 missing) 
27 (93%) 

(20 missing) 
23 (88%) 

(23 missing) 
0.80 

Maternal age at 

conception (95% CI) 

30.9 (29.4, 
32.4) 

29.4 (27.9, 30.9) 31.1 (29.8, 32.4) 0.21 

Paternal age at 

conception (95% CI) 

34.1 (32.2, 
35.9) 

32.7 (30.8, 34.7) 35.3 (33.4, 37.1) 0.23 

Methylation-predicted 

tobacco exposure score 

(95% CI) 

0.004 (-0.1, 0.1) -0.1 (-0.2, 0.1) 0.1 (-0.1, 0.2) 0.361 

Self-reported maternal 

smoking around 

conception (%) 

0 (0%) 
(33 missing) 

4 (36%)  
(38 missing) 

7 (44%) 
(33 missing) 

0.01 

Maternal education: 

university degree or 

higher (%) 

13 (48%) 
(22 missing) 

13 (48%) 
(22 missing) 

15 (58%) 
(23 missing) 

0.73 

Maternal occupation: 

non-manual work 

10 (38%) 
(23 missing) 

13 (50%) 
(23 missing) 

14 (61%) 
(26 missing) 

0.29 

Parity >=1 
12 (43%) 

(21 missing) 
19 (66%) 

(20 missing) 
11 (46%) 

(25 missing) 
0.18 

*P-values were calculated using either ANOVA or chi-squared/Fishers tests 
*Epigenetic age is age predicted using DNA methylation as described in Horvath et al. [16]   
*** Age acceleration refers to the residuals from a linear regression of epigenetic age on 
actual age as described in Horvath et al. [16]   
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Table 2. CpGs associated with CPO compared to CLO in the single site EWAS analysis. The 
top 25 CpGs with the largest effect sizes and P-values<1*10-7 are shown. For intergenic 
regions, the closest annotated gene is shown in square brackets. 

Chr CpG 
Regression 

coefficient 
P-value Gene 

Relation 

to CpG 

island 

Relation 

to gene 

19 cg01634146 0.19 9.80*10-13 NFIX S_Shelf Body 

22 cg12899065 0.16 3.98*10-8 GP1BB;SEPT5 Island 
TSS1500;

3'UTR 

6 cg14623715 0.14 2.46*10-10 PDE7B  Body 

10 cg02017450 -0.14 5.93*10-11 intergenic [SFTA1P]   

8 cg04364695 -0.13 4.27*10-8 ZMAT4  Body 

7 cg22114489 -0.13 4.60*10-8 intergenic [CUX2]   

1 cg12697139 -0.13 2.23*10-11 
intergenic 

[MIR205HG] 
  

2 cg19075787 -0.13 8.44*10-9 
intergenic 

[LOC284998] 
  

11 cg17696044 -0.13 8.61*10-8 SHANK2  Body 

20 cg19592472 -0.12 5.04*10-8 OXT Island 
1stExon;

5'UTR 

4 cg14348967 -0.12 5.12*10-9 
intergenic 

[DQ599898] 
  

6 cg00257775 -0.12 9.45*10-10 ZFAND3  Body 

3 cg25938530 -0.11 2.04*10-8 ITIH1  
TSS200;B

ody 

11 cg12155547 -0.11 9.96*10-12 intergenic [NEAT1] S_Shelf  

1 cg18147098 0.11 5.44*10-8 intergenic [ATF3] S_Shore  

8 cg19496364 0.10 1.16*10-8 
intergenic 

[LINC00535] 
  

7 cg27508620 0.10 3.67*10-8 intergenic [SP4]   

6 cg25426302 0.10 9.90*10-8 PPT2;PRRT1 N_Shore TSS1500 

10 cg20327845 -0.10 6.66*10-8 PFKP  Body 

3 cg05581878 -0.10 2.50*10-9 intergenic [AK097161]   

10 cg19220719 -0.10 7.02*10-9 intergenic [C10orf11]   

22 cg13251842 0.09 6.67*10-8 MIRLET7A3;MIRLET7B  
TSS200; 
TSS1500 

19 cg27392771 0.09 5.25*10-15 NFIX S_Shore Body 

6 cg23279756 -0.09 7.14*10-8 intergenic [ARMC2]   

2 cg07644939 0.09 3.12*10-10 SNED1 S_Shore Body 
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Table 3. Top 5 DMRs with the largest effect sizes and Sidak-corrected P-values <0.05. For 
intergenic regions, the closest annotated gene is shown in square brackets. 

EWAS DMR Gene 
N 

CpGs 

Sidak 

corrected 

P-value 

Range of 

regression 

coefficients 

CLOvsCLP 
Chr6:160241105-

160241557 
PNLDC1 4 4.8*10-4 0.053, 0.078 

CLOvsCLP 
Chr8:124194847-

124195193 
FAM83A 5 1.3*10-3 -0.072, -0.007 

CLOvsCLP 
Chr6:33280052-

33280437 
TAPBP 11 2.8*10-5 -0.049, -0.008 

CLOvsCLP 
Chr7:4832112-

4832536 
Intergenic 

[KIAA0415] 
5 8.6*10-4 0.023, 0.059 

CPOvsCLP 
Chr22:46508451-

46508605 
MIRLET7A3 6 8.07*10-7 0.028, 0.119 

CPOvsCLP 
Chr17:80541737-

80542119 
FOXK2 4 1.05*10-6 0.060, 0.079 

CPOvsCLP 
Chr10:101282726-

101283091 
Intergenic 

[DQ372722] 
5 7.23*10-7 0.026, 0.077 

CPOvsCLP 
Chr16:55866757-

55867073 
CES1 5 9.67*10-5 -0.093, -0.066 

CPOvsCLP 
Chr22:51016501-

51017152 
CPT1B 12 1.47*10-7 -0.063, -0.026 

CPOvsCLO 
Chr22:19709548-

19710164 
GP1BB 5 1.23*10-14 0.067, 0.162 

CPOvsCLO 
Chr22:46508451-

46508605 
MIRLET7A3 6 1.51*10-14 0.035, 0.142 

CPOvsCLO 
Chr7:101398152-

101398185 

Intergenic 

[CUX1] 
3 3.00*10-13 -0.131, -0.085 

CPOvsCLO 
Chr1:212688417-

212688998 
Intergenic 

[ATF3] 
6 1.23*10-16 0.018, 0.108 

CPOvsCLO 
Chr7:90895894-

90896702 
FZD1 4 1.07*10-9 0.114, 0.170 
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Table 4. DMRs where genetic variation has previously been associated with OFCs according to the DisGeNET database of disease-gene 

associations. 

Gene DMR 

Sidak-

corrected 

P-value 

Findings in this 

study 

N CpGs 

in DMR 
Example of previous findings 

TBX1
 c
 

Chr22:19750918-

19752870 

Chr22:19736256-

19736672 

1.61*10-10 

5.03*10
-4

 

� in CPO vs CLO 

� in CPO vs CLO 
6 

2 

Variants were associated with non-syndromic CL/P in a candidate 

gene study of a Brazilian population [36] 

COL11A2
 c
 

Chr6:33132086-

33132728 
2.13*10-9 � in CPO vs CLO 15 

Multiple haplotypes have been associated with non-syndromic CPO 

compared to unaffected individuals [39] 

HOXA2
 b

 

Chr7:27143046-

27143807 

Chr7:27143235-

27143586 

1.04*10-7 

3.9*10-2 

� in CPO vs CLO 

� in CPO vs CLP 

7 

7 
Hoxa-2 mutant mice have abnormal palatogenesis [67,68] 

CRB2
 a

 
Chr9:126130901-

126131310 
5.14*10-4 � in CPO vs CLO 2 

Several non-syndromic CL/P susceptibility genes have been identified 

in the 9q22.32–34.1 region that includes CRB2 [69] 

PDGFRA
 c
 

Chr4:55090812-

55091179 
2.71*10-2 � in CPO vs CLO 2 

Mutations in PDGFRA have been associated with non-syndromic CPO 

[70] 

CRISPLD2
 c
 

Chr16:84870066-

84870204 
3.41*10

-2
 � in CPO vs CLO 2 

Variants have been associated with non-syndromic CL/P, with some 

evidence for rs1546124 being associated with CPO in several 

populations [71] 

SMOC1
 c
 

Chr14:70316898-

70317240 
1.39*10-5 � in CPO vs CLP 5 

A significant proportion of Smoc1 homozygous mutant mice have 

cleft palate [72] 

PVRL1
 c
 

Chr11:119630144

-119630363 
1.52*10-5 � in CPO vs CLO 2 

Rare and common mutations within PVRL1 were associated with 

non-syndromic CLP in a family-based study of multiple populations 

[73] 

CCL2
 a
 

Chr17:32582128-

32582829 
3.00*10

-4
 � in CPO vs CLO 6 

Variants mapping to CCL2 were associated with non-syndromic CL/P 

in a candidate gene study [74] 
a
 Identified as OFC-related in DisGeNET 

b
 Identified as OFC-related in Funato et al. 

c
 Identified as OFC-related in both.
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