
Genetic Analysis of a Metazoan Pathway using Transcriptomic 1

Phenotypes 2

David Angeles-Albores1, 2,† Carmie Puckett Robinson1, 2, 3,† Brian A. Williams1
3

Barbara J. Wold1 Paul W. Sternberg1, 2, *
4

March 2, 2017 5

† These authors contributed equally to this work 6

1 Division of Biology and Biological Engineering, Caltech, Pasadena, CA, 91125, USA 7

2 Howard Hughes Medical Institute, Caltech, Pasadena, CA, 91125, USA 8

3 Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, Cali- 9

fornia, 90033, USA 10

* Corresponding author. Contact: pws@caltech.edu 11

Abstract 12

RNA-seq is commonly used to identify genetic modules that respond to a perturbation. Al- 13

though transcriptomes have been mainly used for target gene discovery, their quantitative 14

nature makes them attractive structures with which to study genetic interactions. To under- 15

stand whether whole-organism RNA-seq is suitable for genetic pathway reconstruction, we 16

sequenced the transcriptome of four single mutants and two double mutants of the hypoxia 17

pathway in C. elegans. By comparing the expression levels of double mutants with their cor- 18

responding single mutants, we were able to determine, on a genome-wide level, that EGL-9 19

acts along VHL-1-dependent and independent branches to inhibit HIF-1. We were also able 20

to observe transcriptome-wide suppression of the egl-9(lf) phenotype in an egl-9(lf) hif-1(lf) 21

double mutant. As a by-product of our analysis, we identified a core hypoxic response con- 22

sisting of 355 genes, and 45 genes that have hif-1 -independent, vhl-1 -dependent expression. 23

Finally, we are able to identify 31 genes that exhibit non-canonical epistasis: for these genes, 24

vhl-1(lf) mutants show opposing effects to egl-9(lf) mutants, but the egl-9(lf);vhl-1(lf) exhibits 25

the egl-9(lf) phenotype. We suggest that this non-canonical epistasis reflects unexplored as- 26

pects of the hypoxia pathway. We discuss the implications, benefits and advantages of using 27

transcriptomic phenotypes to perform pathway analysis. 28

Introduction 29

Genetic analysis of molecular pathways has traditionally been performed through epistatis analysis. General- 30

ized epistasis indicates that two genes interact functionally; such interaction can involve the direct interaction 31

of their products or the interaction of any consequence of their function (small molecules, physiological or 32

behavioral effects)1. If two genes interact, and the mutants of these genes have a quantifiable phenotype, 33

the double mutant of interacting genes will have a phenotype that is not the sum of the phenotypes of the 34

single mutants that make up its genotype. Epistasis analysis remains a cornerstone of genetics today2. 35

Recently, biological studies have shifted in focus from studying single genes to studying all genes in 36

parallel. In particular, RNA-seq3 enables biologists to identify genes that change expression in response to 37

a perturbation. Gene expression profiling using RNA-seq has become much more sensitive thanks to deeper 38
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and more frequent sequencing due to lower sequencing costs4, better and faster abundance quantification5,6,7, 39

and improved differential expression analysis methods8,9. RNA-seq has been successfully used to identify 40

genetic modules involved in a variety of processes, including T-cell regulation10,11, the Caenorhabditis elegans 41

(C. elegans) linker cell migration12, and planarian stem cell maintenance13,14. For the most part, the role 42

of transcriptional profiling has been restricted to target gene identification. 43

Although transcriptional profiling has been primarily used for descriptive purposes, transcriptomic phe- 44

notypes have previously been used to make genetic inferences. Microarray analyses in S. cerevisiae and 45

D. discoideum were used to show that transcriptomes can be interpreted to infer genetic relationships in 46

simple eukaryotes15,16. eQTL studies in many organisms, from yeast to humans, have established the use- 47

fulness of transcriptomic phenotypes for population genetics studies17,18,19,20. In cell culture, single-cell 48

RNA-seq has seen significant progress towards using transcriptomes as phenotypes with which to test ge- 49

netic interactions21,22. More recently, we have identified a new developmental state of C. elegans using 50

whole-organism transcriptome profiling23. To investigate the ability of whole-organism transcriptomes to 51

serve as quantitative phenotypes for epistasis analysis in metazoans, we sequenced the transcriptomes of of 52

four well-characterized loss of function mutants in the C. elegans hypoxia pathway24,25,26,27. 53

Metazoans depend on the presence of oxygen in sufficient concentrations to support aerobic metabolism. 54

Genetic pathways evolved to rapidly respond to any acute or chronic changes in oxygen levels at the cellular 55

or organismal level. Biochemical and genetic approaches identified the Hypoxia Inducible Factors (HIFs) as 56

an important group of oxygen-responsive genes that are involved in a broad range of human pathologies28. 57

Hypoxia Inducible Factors are highly conserved in metazoans29. A common mechanism for hypoxia- 58

response induction is heterodimerization between a HIFα and a HIFβ subunit; the heterodimer then initiates 59

transcription of target genes30. The number and complexity of HIFs varies throughout metazoans, with 60

humans having three HIFα subunits and two HIFβ subunits, whereas in the roundworm C. elegans there 61

is a single HIFα gene, hif-1 27 and a single HIFβ gene, ahr-1 31. HIF target genes have been implicated in 62

a wide variety of cellular and extracellular processes including glycolysis, extracellular matrix modification, 63

autophagy and immunity32,33,34,35,28. 64

Levels of HIFα proteins tend to be tightly regulated. Under conditions of normoxia, HIF-1α exists in the 65

cytoplasm and partakes in a futile cycle of continuous protein production and rapid degradation36. HIF-1α 66

is hydroxylated by three proline hydroxylases in humans (PHD1, PHD2 and PHD3) but is only hydroxylated 67

by one proline hydroxylase (EGL-9) in C. elegans 37. HIF-1 hydroxylation increases its binding affinity to Von 68

Hippel Lindau Tumor Suppressor 1 (VHL-1), which allows ubiquitination of HIF-1 leading to its subsequent 69

degradation. In C. elegans, EGL-9 activity is inhibited by binding of CYSL-1, and CYSL-1 activity is in 70

turn inhibited at the protein level by RHY-1, possibly by post-translational modifications to CYSL-138 (see 71

Fig. 1). 72

Here, we show that transcriptomes contain robust signals that can be used to infer relationships between 73

genes in complex metazoans by reconstructing the hypoxia pathway in C. elegans using RNA-seq. Further- 74

more, we show that the phenomenon of phenotypic epistasis, a hallmark of genetic interaction, holds at the 75

molecular systems level. We also demonstrate that transcriptomes contain sufficient information, under cer- 76

tain circumstances, to order genes in a pathway using only single mutants. Finally, we were able to identify 77

genes that appear to be downstream of egl-9 and vhl-1, but do not appear to be targets of hif-1. Using 78

a single set of genome-wide measurements, we were able to observe and quantitatively assess significant 79

fraction of the known transcriptional effects of hif-1 in C. elegans. A complete version of the analysis, with 80

ample documentation, is available at https://wormlabcaltech.github.io/mprsq. 81

Results 82

The hypoxia pathway controls thousands of genes in C. elegans 83

We selected four single mutants within the hypoxia pathway for expression profiling: egl-9(lf) (sa307 ), 84

rhy-1(lf) (ok1402 ), vhl-1(lf) (ok161 ), hif-1(lf) (ia4 ). We also sequenced the transcriptomes of two double 85

mutants, egl-9(lf);vhl-1(lf) (sa307, ok161 ) and egl-9(lf) hif-1(lf) (sa307, ia4 ) as well as wild-type N2 as a 86

control sample. Each genotype was sequenced in triplicate at a depth of 15 million reads. We performed 87

whole-organism RNA-seq of these mutants at a moderate sequencing depth (∼ 7 million mapped reads 88

for each individual replicate) under normoxic conditions. For single samples, we identified around 22,000 89
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Figure 1. Genetic and biochemical representation of the hypoxia pathway in C. elegans. Red arrows are
arrows that lead to inhibition of HIF-1, and blue arrows are arrows that increase HIF-1 activity or are the
result of HIF-1 activity. EGL-9 is known to exert vhl-1 -dependent and independent repression on HIF-1 as
shown in the genetic diagram. The vhl-1 -independent repression of HIF-1 by EGL-9 is denoted by a dashed
line and is not dependent on the hydroxylating activity of EGL-9. Technically, RHY-1 inhibits CYSL-1,
which in turn inhibits EGL-9, but this interaction was abbreviated in the genetic diagram for clarity.

different isoforms per sample, which allowed us to measure differential expression of 18,344 isoforms across 90

all replicates and genotypes (this constitutes ∼70% of the protein coding isoforms in C. elegans). We also 91

included in our analysis a fog-2(lf) (q71 ) mutant which we have previously studied23, because fog-2 is not 92

reported to interact with the hypoxia pathway. We analyzed our data using a general linear model on 93

logarithm-transformed counts. Changes in gene expression are reflected in the regression coefficient, β which 94

is specific to each isoform within a genotype. Statistical significance is achieved when the q-values for each β 95

(p-values adjusted for multiple testing) are less than 0.1. Genes that are significantly altered between wild- 96

type and a given mutant have β values that are statistically significantly different from 0. These coefficients 97

are not equal to the average log-fold change per gene, although they are loosely related to this quantity. 98

Larger magnitudes of β correspond to larger perturbations. These coefficients can be used to study the 99

RNA-seq data in question. 100

In spite of the moderate sequencing depth, transcriptome profiling of the hypoxia pathway revealed that 101

this pathway controls thousands of genes in C. elegans. The egl-9(lf) transcriptome showed differential 102

expression of 1,806 genes. Similarly, 2,103 genes were differentially expressed in rhy-1(lf) mutants. The 103

vhl-1(lf) transcriptome showed considerably fewer differentially expressed genes (689), possibly because it is 104

a weaker controller of hif-1(lf) than egl-9(lf)26. The egl-9(lf);vhl-1(lf) double mutant transcriptome showed 105

2,376 differentially expressed genes. The hif-1(lf) mutant also showed a transcriptomic phenotype involving 106

546 genes. The egl-9(lf) hif-1(lf) double mutant showed a similar number of genes with altered expression 107

(404 genes, see Table 1). 108

Genotype Differentially Expressed Genes
egl-9(lf) 1,806

rhy-1(lf) 2,103
vhl-1(lf) 689
egl-9(lf);vhl-1(lf) 2,376
egl-9(lf) hif-1(lf) 404
fog-2(lf) 2090

Table 1. Number of differentially expressed genes in each mutant.

3/24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2017. ; https://doi.org/10.1101/112920doi: bioRxiv preprint 

https://doi.org/10.1101/112920
http://creativecommons.org/licenses/by/4.0/


Principal Component Analysis visualizes epistatic relationships between geno- 109

types 110

Principal Component Analysis (PCA) is a well-known technique in bioinformatics that is used to identify 111

relationships between high dimensional data points39 We performed PCA on our data to examine whether 112

each genotype clustered in a biologically relevant manner. PCA identifies the vector that can explain most 113

of the variation in the data;this is called the first PCA dimension. Using PCA, one can identify the first 114

n dimensions that can explain more than 95% of the variation in the data. Sample clustering in these n 115

dimensions often indicates biological relationships between the data, although interpreting PCA dimensions 116

can be difficult. 117

After applying PCA, we expected hif-1(lf) to cluster near egl-9(lf) hif-1(lf), because hif-1(lf) exhibits no 118

phenotypic defects under normoxic conditions, in contrast to egl-9(lf), which exhibits an egg-laying (Egl) 119

phenotype in the same environment. In egl-9(lf) hif-1(lf) mutants the Egl phenotype of egl-9(lf) mutants 120

is suppressed and instead the grossly wild-type phenotype of hif-1(lf) is observed. On the other hand, we 121

expected egl-9(lf), rhy-1(lf), vhl-1(lf) and egl-9(lf);vhl-1(lf) to form a separate cluster since each of these 122

genotypes is Egl and has a constitutive hypoxic response. Finally, we included as a negative control a 123

fog-2(lf) mutant we have analyzed previously23. This data was obtained at a different time from the other 124

genotypes, so we included a batch-normalization term in our equations to account for this. Since fog-2 has 125

not been described to interact with the hypoxia pathway, we expected that it should appear far away from 126

either cluster. 127

The first dimension of the PCA analysis was able to discriminate between mutants that have constitutive 128

high levels of HIF-1 and mutants that have no HIF-1, whereas the second dimension was able to discriminate 129

between mutants within the hypoxia pathway and outside the hypoxia pathway (see Fig. 2). Therefore 130

expression profiling measures enough signal to cluster genes in a meaningful manner in complex metazoans. 131

Figure 2. Principal component analysis of various C. elegans mutants. Genotypes that have an activated
hypoxia response (i.e, egl-9(lf), vhl-1(lf), and rhy-1(lf)) cluster far from hif-1(lf). hif-1(lf) clusters with the
suppressed egl-9(lf) hif-1(lf) double mutant. The fog-2(lf) transcriptome, used as an outgroup, is far away
from either cluster.

Reconstruction of the hypoxia pathway from first genetic principles 132

Having shown that the signal in the mutants we selected was sufficient to cluster mutants using the values 133

of the regression coefficients β, we set out to reconstruct the hypoxia pathway from genetic first principles. 134

In general, to reconstruct a pathway, we must first assess whether two genes act on the same phenotype. 135

If they do not act on the same phenotype (the set of commonly differentially regulated genes between two 136

mutants is empty), these mutants are independent. If they are not independent, then two mutants have a 137

shared transcriptomic phenotype (STP)—a set of genes or isoforms that are differentially expressed in both 138

mutants, without taking into account what direction they change in. In this case, we must measure whether 139

these genes act additively or epistatically on the measured phenotype; if there is epistasis we must measure 140
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whether it is positive or negative, in order to assess whether the epistatic relationship is a genetic suppression 141

or a synthetic interaction. 142

Genes in the hypoxia mutant act on the same transcriptional phenotype 143

We observed that all the hypoxia mutants had significant shared transcriptomic phenotypes (fraction of the 144

transcriptomes that was shared between mutants ranged from a minimum of 6.8% shared between hif-1(lf) 145

and egl-9(lf);vhl-1(lf) to a maximum of 31% shared genes between egl-9(lf) and egl-9(lf);vhl-1(lf)). For 146

comparison, we also analyzed a previously published fog-2(lf) transcriptome23. The fog-2 gene is involved 147

in masculinization of the C. elegans germline, which enables sperm formation, and is not known to be 148

involved in the hypoxia pathway. The hypoxia pathway mutants and the fog-2(lf) mutant also showed 149

shared transcriptomic phenotypes (3.6%–12% genes), but correlations between expression level changes were 150

considerably weaker (see below), suggesting that there is minor cross-talk between these pathways. 151
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Figure 3. Strong transcriptional correlations can be identified between genes that share a positive regulatory
connection. We took the egl-9(lf) and the rhy-1(lf) transcriptomes, identified differentially expressed genes
common to both transcriptomes and ranked each gene according to its differential expression coefficient β.
We plotted the rank of each gene in rhy-1(lf) versus the rank of the same gene in the egl-9(lf) transcriptome.
The result is an almost perfect correlation. Green, transparent large points mark inliers to the primary
regressions (blue lines); red squares mark outliers to the primary regressions.

We wanted to know whether it was informative to look at quantitative agreement within STPs. For 152

each mutant pair, we rank-transformed the regression coefficients β of each isoform within the STP, and 153

calculated lines of best fit using Bayesian regression with a Student-T distribution to mitigate noise from 154

outliers and plotted the results in a rank plot (see Fig 3). For transcriptomes associated with the hypoxia 155

pathway, we found that these correlations tended to have values higher than 0.9 with a tight distribution 156

around the line of best fit. The correlations for mutants from the hypoxia pathway with the fog-2(lf) mutant 157

were considerably weaker, with magnitudes between 0.6–0.85 and greater variance around the line of best 158

fit. Although hif-1 is known to be genetically repressed by egl-9, rhy-1 and vhl-1 24,25, all the correlations 159

between mutants of these genes and hif-1(lf) were positive. 160

After we calculated the pairwise correlation within each STP, we weighted the result of each regression by 161

the number of isoforms within the STP and divided by the total number of differentially expressed isoforms 162

present in the two mutant transcriptomes that contributed to that specific STP, Noverlap/Ng1∪g2. The 163

weighted regressions recapitulated a module network (see Fig. 4). We identified a strong positive interaction 164

between egl-9(lf) and rhy-1(lf). The magnitude of this weighted correlation derives from the magnitude 165

of the transcriptomes for these mutants (1,806 and 2,103 differentially expressed genes respectively) and 166

the overlap between both genes was extensive, which makes the weighting factor considerably larger than 167

other pairs. The weak correlation between hif-1(lf) and egl-9(lf) results from the small size of the hif-1(lf) 168

transcriptome and the small overlap between the transcriptomes. 169
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The fine-grained nature of transcriptional phenotypes means that these weighted correlations between 170

transcriptomes of single mutants are predictive of genetic interaction. 171

A B

 -0.30

 -0.15

0

0.15

0.30

 -0.30

 -0.15

0

0.15

0.30

egl-9

vhl-1

rhy-1 hif-1

fog-2

Figure 4. A. Heatmap showing pairwise regression values between all single mutants. B. Correlation
network drawn from A. Edge width is proportional to the logarithm of the magnitude of the weighted corre-
lation between two nodes divided by absolute value of the weighted correlation value of smallest magnitude.
Edges are also colored according to the heatmap in A. Inhibitors of hif-1 are tightly correlated and form a
control module; hif-1 is positively correlated to its inhibitors, albeit weakly; and fog-2, a gene that is not
reported to interact with the hypoxia pathway, has the smallest, negative correlation to any gene.

A quality check of the transcriptomic data reveals excellent agreement with the literature 172

One way to establish whether genes are acting additively or epistatically to each other is to perform qPCR of a 173

reporter gene in the single and double mutants. This approach was used to successfully map the relationships 174

within the hypoxia pathway (see, for example26,25). A commonly used hypoxia reporter gene is nhr-57, which 175

is known to exhibit a several-fold increase in mRNA expression when HIF-1 accumulates25,34,40. Likewise, 176

increased HIF-1 fucntion is known to cause increased of rhy-1 and egl-9 41. 177

We can selectively look at the expression of a few genes at a time. Therefore, we queried the changes in 178

expression of rhy-1, egl-9, and nhr-57. We included the nuclear laminin gene lam-3 as a representative nega- 179

tive control not believed to be responsive to alterations in the hypoxia pathway. nhr-57 was upregulated in 180

egl-9(lf), rhy-1(lf) and vhl-1(lf), but remains unchanged in hif-1(lf). egl-9(lf);vhl-1(lf) had an expression level 181

similar to egl-9(lf); whereas the egl-9(lf) hif-1(lf) mutant showed wild-type levels of the reporter expression, 182

as reported previously25 (see Fig. 5). 183

We observed changes in rhy-1(lf) expression consistent with previous literature25 when HIF-1 accumu- 184

lates. We also observed increases in egl-9 expression in egl-9(lf). egl-9 is known as a hypoxia responsive 185

gene41. Although changes in egl-9 expression were not statistically significantly different from the wild- 186

type in rhy-1(lf) and vhl-1(lf) mutants, the mRNA levels of egl-9 still trended towards increased expression 187

in these genotypes. As with nhr-57, egl-9 and rhy-1 expression were wild-type in egl-9(lf) hif-1(lf) and 188

egl-9(lf);vhl-1(lf) mutant showed expression phenotypes identical to egl-9(lf). This dataset also showed that 189

knockout of hif-1 resulted in a modest increase in the levels of rhy-1. This suggests that hif-1, in addition 190

to being a positive regulator of rhy-1, also inhibits it, which constitutes a novel observation. Using a single 191

reporter we would have been able to reconstruct an important fraction of the genetic relationships between 192

the genes in the hypoxia pathway—-but would likely fail to observe yet other genetic interactions, such as 193

the evidence for hif-1 negatively regulating rhy-1 transcript levels. 194

Transcriptome-wide epistasis 195

Ideally, any measurement of transcriptome-wide epistasis should conform to certain expectations. First, it 196

should make use of the regression coefficients of as many genes as possible. Second, it should be summarizable 197
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Figure 5. Top: Observed β values of select genes. We selected four genes (rhy-1, egl-9, nhr-57 and lam-3,
shown on the x-axis) and plotted their regression coefficients, β, as measured for every genotype (represented
by one of six colors) to study the epistatic relationships between each gene. Asterisks above a bar represent
a regression coefficient statistically significantly different from 0, meaning that expression is altered relative
to a wild-type control. Error bars show standard error of the mean value of β. nhr-57 is an expression
reporter that has been used previously to identify hif-1 regulators25,26. lam-3 is shown here as a negative
control that should not be altered by mutations in this pathway. We measured modest increases in the levels
of rhy-1 mRNA when hif-1(lf) is knocked out.

in a single, well-defined number. Third, it should have an intuitive behavior, such that special values of the 198

statistic should each have an unambiguous interpretation. 199

One way of displaying transcriptome-wide epistasis is to plot transcriptome data onto an epistasis plot 200

(see Fig 6). In an epistasis plot, the X-axis represents the expected expression of a double mutant a−b− 201

if a and b interact additively. In other words, each individual isoform’s x-coordinate is the sum of the 202

regression coefficients from the single mutants a− and b−. The Y-axis represents the deviations from the 203

additive (null) model, and can be calculated as the difference between the observed regression coefficient and 204

the predicted regression coefficient. Only genes that are differentially expressed in all three genotypes are 205

plotted. Assuming that the two genes interact via a simple phenotype (for example, if both genes affect a 206

transcription factor that generates the entire transcriptome), these plots will generate specific patterns that 207

can be described through linear regressions. The slope of these lines, sa,b, is the transcriptome-wide epistasis 208

coefficient. 209

Epistasis plots can be understood intuitively for simple cases of genetic interactions. If two genes act 210

additively on the same set of differentially expressed isoforms then all the plotted points will fall along the line 211

y = 0. If two genes interact in an unbranched pathway, then a− and b− should have identical phenotypes for 212

a−, b− and a−b−, if all the genotypes are homozygous for genetic null alleles1. It follows that the data points 213

should fall along a line with slope equal to − 1
2 . On the other hand, in the limit of complete inhibition of a 214

by b, the plots should show a line of best fit with slope equal to −11. Genes that interact synthetically (i.e., 215

through an OR-gate) will fall along lines with slopes > 0. When there is epistasis of one gene over another, 216

the points will fall along a line of best fit with slope sab=b or sab=a. This slope must be determined from the 217

single-mutant data. From this information, we can use the single mutant data to predict the distribution 218

of slopes that results for each case stated above, as well as for each epistatic combination (a−b− = a− or 219

a−b− = b−). The transcriptome-wide epistasis coefficient (sa,b), emerges as a powerful way to quantify 220

epistasis because it integrates information from many different genes or isoforms into a single number (see 221

Fig. 6). 222

In our experiment, we studied two double mutants, egl-9(lf) hif-1(lf) and egl-9(lf);vhl-1(lf). We wanted to 223

understand how well an epistasis analysis based on transcriptome-wide coefficients agreed with the epistasis 224

results reported in the literature, which were based on qPCR of single genes. Therefore, we performed 225

orthogonal distance regression on the two gene combinations we studied (egl-9 and vhl-1 ; and egl-9 and hif- 226

1 ) to determine the epistasis coefficient for each gene pair. We also generated models for the special cases 227

1Specifically, this follows from assuming that b− is wild-type under the conditions assayed; and a−b− = b− = wild-type
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mentioned above (additivity, a−b− = a−, strong suppression, etc. . . ) using the single mutant data. For 228

every simulation, as well as for the observed data, we used bootstraps to generate probability distributions 229

of the epistasis coefficients. 230

When we compared the predictions for the transcriptome-wide epistasis coefficient, segl−9,vhl−1 under 231

different assumptions with the observed slope (−0.42). We observed that the predicted slope matched the 232

simulated slope for the case where egl-9 is epistatic over vhl-1 (egl-9(lf) = egl-9(lf);vhl-1(lf), see Fig. 6) 233

and did not overlap with any other prediction. Next, we predicted the distribution of segl−9,hif−1 for 234

different pathways and contrasted with the observed slope. In this case, we saw that the uncertainty in 235

the observed coefficient overlapped significantly with the strong suppression model, where EGL-9 strongly 236

suppresses HIF-1, and also with the model where hif-1(lf) = egl-9(lf) hif-1(lf). In this case, both models 237

are reasonable—HIF-1 is strongly suppressed by EGL-9, and we know from previous literature that the 238

epistatic relationship, hif-1(lf) = egl-9(lf) hif-1(lf), is true for these mutants. In fact, as the repression of 239

HIF-1 by EGL-9 becomes stronger, the epistatic model should converge on the limit of strong repression (see 240

Epistasis). 241

Another way to test which model best explains the epistatic relationship between egl-9 and vhl-1 is to use 242

Bayesian model selection to calculate an odds ratio between two models to explain the observed data. Models 243

can be placed into two categories: parameter-free and fit. Parameter free models are ‘simpler’ because their 244

parameter space is smaller (0 parameters) than the fit models (n parameters). By Occam’s razor, simpler 245

models should be preferred to more complicated models. However, simple models suffer from the drawback 246

that systematic deviations from them cannot be explained or accomodated, whereas more complicated models 247

can alter the fit values to maximize their explanatory power. In this sense, more complicated models should 248

be preferred when the data shows systematic deviations from the simple model. Odds-ratio selection gives 249

us a way to quantify the trade-off between simplicity and explanatory power. 250

We reasoned that comparing a fit model (y = α · x, where α is the slope of best fit) against a parameter- 251

free model (y = γ ·x, where γ is a single number) constituted a conservative approach towards selecting which 252

theoretical model (if any) best explained the data. In particular, this approach will tend to strongly favor the 253

line of best fit over simpler model for all but very small, non-systematic deviations. We decided that we would 254

reject the theoretical models only if the line of best-fit was 103 times more likely than the theoretical models 255

(odds ratio, OR > 103). Comparing the odds-ratio between the line of best fit and the different pathway 256

models for egl-9 and vhl-1 showed similar results to the simulation. Only the theoretical model egl-9(lf) = 257

egl-9(lf);vhl-1(lf) could not be rejected (OR = 0.46), whereas all other models were significantly less likely 258

than the line of best fit (OR > 1044). Therefore, egl-9 is epistatic to vhl-1. Moreover, since segl−9,vhl−1 is 259

strictly between and not equal to 0 and −0.5, we conclude that egl-9 acts on its transcriptomic phenotype 260

in vhl-1 -dependent and independent manners. A branched pathway that can lead to epistasis coefficients 261

in this range is a pathway where egl-9 interacts with its transcriptomic phenotype via branches that have 262

the same valence (both positive or both negative)26. When we performed a similar analysis to establish the 263

epistatic relationship between egl-9 and hif-1, we observed that the best alternative to a free-fit model was 264

a model where hif-1 is epistatic over egl-9 (OR= 2551), but the free-fit model was still preferred. All other 265

models were strongly rejected (OR > 1025). 266

Epistasis can be predicted 267

Given our success in measuring epistasis coefficients, we wanted to know whether we could predict the 268

epistasis coefficient between egl-9 and vhl-1 in the absence of the egl-9(lf) genotype. Since RHY-1 indirectly 269

activates EGL-9, the rhy-1(lf) transcriptome should contain more or less equivalent information to the 270

egl-9(lf) transcriptome. Therefore, we generated predictions of the epistasis coefficient between egl-9 and 271

vhl-1 by substituting in the rhy-1(lf) data. We predicted srhy−1,vhl−1 = −0.45. Similarly, we used the 272

egl-9(lf);vhl-1(lf) double mutant to measure the epistasis coefficient while replacing the egl-9(lf) dataset 273

with the rhy-1(lf) dataset. We found that the epistasis coefficient using this substitution was −0.40. This 274

coefficient was different from −0.50 (OR > 1062), reflecting the same qualitative conclusion that the hypoxia 275

pathway is branched. In conclusion, we were able to obtain a quantitatively close prediction of the epistasis 276

coefficient for two mutants using the transcriptome of a related, upstream mutant. Finally, we showed that 277

in the absence of a single mutant, an upstream locus can under some circumstances be used to estimate 278

epistasis between two genes. 279
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Figure 6. (A) Schematic diagram of an epistasis plot. The X-axis on an epistasis plot is the expected
coefficient for a double mutant under an additive model (null model). The Y-axis plots deviations from this
model. Double mutants that deviate in a systematic manner from the null model exhibit transcriptome-wide
epistasis (s). To measure s, we perform a linear regression on the data. The slope of the line of best fit
is s. This coefficient is related to genetic architectures. Genes that act additively on a phenotype (Ph)
will have s = 0 (orange line); whereas genes that act along an unbranched pathway will have s = −1/2
(blue line). Strong repression is reflected by s = −1 (red line). Cases where s > 0 correspond to synthetic
interactions (purple line), and in the limit as s→∞, the synthetic interaction must be an OR-gate. Cases
where 0 < s < −1/2 correspond to circuits that have multiple positive branches; whereas cases where
−1/2 < s < −1 correspond to cases where the branches have different valence. Cases where s < −1
represent inhibitory branches. (B) Epistasis plot showing that the egl-9(lf);vhl-1(lf) transcriptome deviates
significantly from a null additive. Points are colored qualitatively according to density (purple—low, yellow—
high) and size is inversely proportional to the standard error (S.E.) of the y-axis (larger points, higher
accuracy). The purple line is the line of best fit from an orthogonal distance regression. (C) Comparison
of simulated epistatic coefficients against the observed coefficient. Green curve shows the bootstrapped
observed transcriptome-wide epistasis coefficient for egl-9 and vhl-1. Dashed green line shows the mean
value of the data. Using the single mutants, we simulated coefficient distributions for a linear model (light
blue, centered at −0.5); an additive model (orange, centered at 0); a model where either egl-9 or vhl-1 masks
the other phenotype (dark blue and black, respectively) and a complete suppression model (red, centered at
−1). The observed coefficient overlaps the predicted epistasis curve for egl-9(lf);vhl-1(lf) = egl-9(lf) (green
and dark blue).
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Transcriptomic decorrelation can be used to infer functional distance 280

So far, we have shown that RNA-seq can accurately measure genetic interactions. However, genetic interac- 281

tions are far removed from biochemical interactions: Genetic interactions do not require two gene products 282

to interact physically, nor even to be physically close to each other. RNA-seq cannot measure physical 283

interactions between genes, but we wondered whether expression profiling contains sufficient information to 284

order genes along a pathway. 285

Single genes are often regulated by multiple independent sources. The connection between two nodes 286

can in theory be characterized by the strength of the edges connecting them (the thickness of the edge); 287

the sources that regulate both nodes (the fraction of inputs common to both nodes); and the genes that 288

are regulated by both nodes (the fraction of outputs that are common to both nodes). In other words, we 289

expected that expression profiles associated with a pathway would respond quantitatively to quantitative 290

changes in activity of the pathway. Targeting a pathway at multiple points would lead to expression pro- 291

file divergence as we compare nodes that are separated by more degrees of freedom, reflecting the flux in 292

information between them. 293

Downstream Branched Pathway

EGL-9RHY-1 HIF-1

B

Upstream and Downstream
Branched Pathway

EGL-9RHY-1 HIF-1

C

EGL-9RHY-1 HIF-1

Unbranched PathwayA

Transcriptom
e Space

D

Figure 7. Theoretically, transcriptomes can be used to order genes in a pathway under certain assumptions.
Arrows in the diagrams above are intended to show the direction of flow, and do not indicate valence. A.
A linear pathway in which rhy-1 is the only gene controlling egl-9, which in turn controls hif-1 does not
contain information to infer the order between genes. B. If rhy-1 and egl-9 have transcriptomic effects that
are separable from hif-1, then the rhy-1 transcriptome should contain contributions from egl-9, hif-1 and
egl-9 - and hif-1 -independent pathways. This pathway contains enough information to infer order. C. If a
pathway is branched both upstream and downstream, transcriptomes will show even faster decorrelation.
Nodes that are separated by many edges may begin to behave almost independently of each other with
marginal transcriptomic overlap or correlation. D. The hypoxia pathway can be ordered. We hypothesize
the rapid decay in correlation is due to a mixture of upstream and downstream branching that happens
along this pathway. Bars show the standard error of the weighted coefficient from the Monte Carlo Markov
Chain computations.

We investigated the possibility that transcriptomic signals do in fact contain relevant information about 294

the degrees of separation by weighting the robust Bayesian regression between each pair of genotypes by the 295

size of the shared transcriptomic phenotype of each pair divided by the total number of isoforms differentially 296

expressed in either mutant (NIntersection/NUnion). We plotted the weighted correlation of each gene pair, 297

ordered by increasing functional distance (see Fig. 7). In every case, we see that the weighted correlation 298
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decreases monotonically due mainly, but not exclusively, to a smaller STP. We believe that this result is 299

not due to random noise or insufficiently deep sequencing. Instead, we propose a framework in which every 300

gene is regulated by multiple different molecular species, which induces progressive decorrelation. This 301

decorrelation in turn has two consequences. First, decorrelation within a pathway implies that two nodes 302

may be almost independent of each other if the functional distance between them is large. Second, it may 303

be possible to use decorrelation dynamics to infer gene order in a branching pathway, as we have done with 304

the hypoxia pathway. 305

The circuit topology of the hypoxia pathway explains patterns in the data 306

We noticed that while some of the rank plots contained a clear positive correlation (see Fig. 3), other 307

rank plots showed a discernible cross-pattern (see Fig. 8). In particular, this cross-pattern emerged between 308

vhl-1(lf) and rhy-1(lf) or between vhl-1(lf) and egl-9(lf), even though genetically vhl-1, rhy-1 and egl-9 are all 309

inhibitors of hif-1(lf). Such cross-patterns could be indicative of feedback loops or other complex interaction 310

patterns. 311
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Figure 8. A feedback loop can generate transcriptomes that are both correlated and anti-correlated.
The vhl-1(lf)/rhy-1(lf) STP shows a cross-pattern. Green large points are inliers to the first regression.
Red squares are outliers to the first regression. Only the red small points were used for the secondary
regression. Blue lines are representative samples of the primary bootstrapped regression lines. Orange lines
are representative samples of the secondary bootstrapped regression lines.

If the above is correct, then it should be possible to identify egl-9 -independent, rhy-1(lf)-dependent target 312

genes in a logically consistent way. One erroneous way to identify these targets is via subtractive logic. Using 313

subtractive logic, we would identify genes that are differentially expressed in rhy-1(lf) mutants but not in 314

egl-9(lf) mutants. Such a gene set would consist of almost 700 genes. One major drawback of subtractive 315

logic is that it cannot be applied when feedback loops exist between the genes in question. Another problem 316

is that the set of identified genes are statistically indistinguishable from false positive and false negative 317

hits because they have no distinguishing property beyond the condition that they should be differentially 318

expressed in one mutant but not the other. In fact, this is exactly the behavior expected of false-positive 319

or false-negative hits—presence in one, but not multiple, mutants. We need to consider the relationship 320

between two genes before we can begin to identify targets which expression is dependent on one gene and 321

independent of the other. 322

rhy-1 and egl-9 share a well-defined relationship. RHY-1 inhibits CYSL-1, which in turn inhibits EGL- 323

938. Therefore, loss of RHY-1 leads to inactivation of EGL-9, which leads to increase in the cellular levels 324

of HIF-1. HIF-1 in turn causes the mRNA levels of rhy-1 and egl-9 to increase, as they are involved in 325

the hif-1 -dependent hypoxia response. However, since rhy-1 has been mutated, the observed transcriptome 326

is RHY-1 ‘null’; EGL-9 ‘null’; HIF-1 ‘on’. The situation is similar for egl-9(lf), except that RHY-1 is not 327

inactive, and therefore the observed transcriptome is the result of RHY-1 ‘up’; EGL-9 ‘null’; and HIF-1 ‘on’. 328
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From this pattern, we conclude that the egl-9(lf) and rhy-1(lf) transcriptomes should exhibit a cross-pattern 329

when plotted against each other: The positive arm of the cross is the result of the EGL-9 ‘null’; HIF-1 ‘on’ 330

dynamics; and the negative arm reflects the different direction of RHY-1 activity between transcriptomes. 331

No negative arm is visible (with the exception of two outliers, which are annotated as pseudogenes in 332

WormBase). Therefore, in this dataset we do not find genes that have egl-9 independent, rhy-1 -dependent 333

expression patterns. 334

We also identified a main hypoxia response induced by disinhibiting hif-1 (355 genes) by identifying genes 335

that were commonly up-regulated amongst egl-9(lf), rhy-1(lf) and vhl-1(lf) mutants. Although the hypoxic 336

response is likely to involve between three and seven times more genes (assuming the rhy-1(lf) transcriptome 337

reflects the maximal hypoxic response), this is a conservative estimate that minimizes false positive results, 338

since these changes were identified in four different genotypes with three replicates each. This response 339

included five transcription factors (W02D7.6, nhr-57, ztf-18, nhr-135 and dmd-9 ). The full list of genes 340

associated with the hypoxia response can be found in the Supplementary Table 1. 341

hif-1 -independent effects of egl-9 have been reported previously40, which led us to question whether we 342

could identify similar effects in our dataset. We have observed that hif-1(lf) displays a modest increase in the 343

transcription of rhy-1, from which we speculated that EGL-9 would have increased activity in the hif-1(lf) 344

mutant compared to the wild-type. Therefore, we searched for genes that were regulated in an opposite 345

manner between hif-1(lf) and egl-9(lf) hif-1(lf), and that were regulated in the same direction between all 346

egl-9(lf) genotypes. We did not find any genes that met these conditions. 347

We also searched for genes with hif-1 independent, vhl-1 -dependent gene expression and found 45 genes, 348

which can be found in the Supplementary Table 2. Finally, we searched for candidates directly regulated 349

by hif-1. Initially, we searched for genes that had were significantly altered in hif-1(lf) genotypes in one 350

direction, but altered in the opposite direction in mutants that activate the HIF-1 response. Only two genes 351

(R08E5.3, and nit-1 ) met these conditions. This could reflect the fact that HIF-1 exists at very low levels in 352

C. elegans, so loss of function mutations in hif-1 might only have mild effects on its transcriptional targets. 353

We reasoned that genes that are overexpressed in mutants that induce the HIF-1 response would be enriched 354

for genes that are direct candidates. We found 195 genes which have consistently increased expression in 355

mutants with a constitutive hypoxic response. These genes can be found in the Supplementary Table 3. 356

Enrichment analysis of the hypoxia response 357

To validate that our transcriptomes were correct, and to understand how functionalities may vary be- 358

tween them, we subjected each decoupled response to enrichment analysis using the WormBase Enrichment 359

Suite42,43. 360

Figure 9. Gene ontology enrichment analysis of genes associated with the main hypoxia response. A
number of terms reflecting catabolism and bioenergetics are enriched.

We used gene ontology enrichment analysis (GEA) on the main hypoxia response program. This showed 361

that the terms ‘oxoacid metabolic process’ (q < 10−4, 3.0 fold-change, 24 genes), ‘iron ion binding’ (q < 362
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10−2, 3.8 fold-change, 10 genes), and ‘immune system process’ (q < 10−3, 2.9 fold-change, 20 genes) were 363

significantly enriched. GEA also showed enrichment of the term ‘mitochondrion’ (q < 10−3, 2.5 fold- 364

change, 29 genes) (see Fig. 9). Indeed, hif-1(lf) has been implicated in all of these biological and molecular 365

functions44,45,46,47. As benchmark on the quality of our data, we selected a set of 22 genes known to be 366

responsive to HIF-1 levels from the literature and asked whether these genes were present in our hypoxia 367

response list. We found 8/22 known genes, which constitutes a statistically significant result (p < 1010). 368

The small number of reporters found in this list probably reflects the conservative nature of our estimates. 369

We studied the hif-1 -independent, vhl-1 -dependent gene set using enrichment analysis but no terms were 370

significantly enriched. 371

Identification of non-classical epistatic interactions 372

hif-1(lf) has traditionally been viewed as existing in a genetic OFF state under normoxic conditions. However, 373

our dataset indicates that 546 genes show altered expression when hif-1 function is removed in normoxic 374

conditions. Moreover, we observed positive correlations between hif-1(lf) β coefficients and egl-9(lf), vhl-1(lf) 375

and rhy-1(lf) β coefficients in spite of the negative regulatory relationships between these genes and hif-1. 376

Such positive correlations could indicate a different relationship between these genes than has previously 377

been reported, so we attempted to substantiate them through epistasis analyses. 378

To perform epistasis analyses, we first identified genes that exhibited violations of the canonical genetic 379

model of the hypoxia pathway. To this end, we searched for genes that exhibited different behaviors between 380

egl-9(lf) and vhl-1(lf), or between rhy-1(lf) and vhl-1(lf) (we assume that all results from the rhy-1(lf) 381

transcriptome reflect a complete loss of egl-9 activity). We found 31 that satisfied this condition (see Fig. 10, 382

Supplemental Table 4). Additionally, many of these genes exhibited a new kind of epistasis. Namely, egl-9 383

was epistatic over vhl-1. Identification of a set of genes that have a consistent set of relationships between 384

themselves suggests that we have identified a new aspect of the hypoxia pathway. 385

A B

Figure 10. A. 27 genes in C. elegans exhibit non-classical epistasis in the hypoxia pathway, characterized
by opposite effects on gene expression, relative to the wild-type, of of the vhl-1(lf) compared to egl-9(lf)
(or rhy-1(lf)) mutants. Shown are a random selection of 15 the 27 genes for illustrative purposes. B.
Representative genes showing that non-canonical epistasis shows a consistent pattern. vhl-1(lf) mutants
have an opposite effect to egl-9(lf), but egl-9 remains epistatic to vhl-1 and loss-of-function mutations in
hif-1 suppress the egl-9(lf) phenotype.

To illustrate this, we focused on three genes, nlp-31, ftn-1 and ftn-2, which epistasis patterns that we 386

felt reflected the population well. ftn-1 and ftn-2 are both described in the literature as genes that are 387

responsive to mutations in the hypoxia pathway. Moreover, these genes have been previously described to 388

have aberrant behaviors45,46, specifically the opposite effects of egl-9(lf) and vhl-1(lf). These studies showed 389

that loss of vhl-1(lf) decreases expression of ftn-1 and ftn-2 using both RNAi and alleles, which allays concerns 390

of strain-specific interference. Moreover, Ackerman and Gems (2012) showed that vhl-1 is epistatic to hif-1 391

for the ftn-1 expression phenotype, and that loss of HIF-1 is associated with increased expression of ftn-1 392

and ftn-2. We observed that hif-1 was epistatic to egl-9, and that egl-9 and hif-1 both promoted ftn-1 and 393

ftn-2 expression. 394
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Epistasis analysis of ftn-1 and ftn-2 expression reveals that egl-9 is epistatic to hif-1 ; that vhl-1 has 395

opposite effects to egl-9, and that vhl-1 is epistatic to egl-9. Analysis of nlp-31 reveals similar relationships. 396

nlp-31 expression is decreased in hif-1(lf), and increased in egl-9(lf). However, egl-9 is epistatic to hif-1. Like 397

ftn-1 and ftn-2, vhl-1 has the opposite effect to egl-9, yet is epistatic to egl-9. We propose in the Discussion 398

a model for how HIF-1 might regulate these targets. 399

HIF-1 in the cellular context 400

We identified the transcriptional changes associated with bioenergetic pathways in C. elegans by extracting 401

from WormBase all genes associated with the tricarboxylic acid (TCA) cycle, the electron transport chain 402

(ETC) and with the C. elegans GO term energy reserve. Previous research has described the effects of 403

mitochondrial dysfunction in eliciting the hypoxia response48, but transcriptional feedback from HIF-1 into 404

bioenergetic pathways has not been as extensively in C. elegans, as in vertebrates (see, for example32,28). 405

We also searched for the changes in ribosomal components and the proteasome, as well as for terms relating 406

to immune response (see Fig 11). 407
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Figure 11. A graphic summary of the genome-wide effects of HIF-1 from our RNA-seq data.

Bioenergetic pathways 408

Our data shows that most of the enzymes involved in the TCA cycle and in the ETC are down-regulated 409

when HIF-1 is induced in agreement with the previous literature28. However, the fumarase gene fum-1 and 410

the mitochondrial complex II stood out as notable exceptions to the trend, as they were up-regulated in 411

every single genotype that causes deployment of the hypoxia response. FUM-1 catalyzes the reaction of 412

fumarate into malate, and complex II catalyzes the reaction of succinate into fumarate. Complex II has 413

been identified as a source of reserve respiratory capacity in neonatal rat cardiomyocytes previously49. We 414

found two energy reserve genes that were down-regulated by HIF-1. aagr-1 and aagr-2, which are predicted 415

to function in glycogen catabolism50. Three distinct genes involved in energy reserve were up-regulated. 416

These genes were ogt-1, which encodes O-linked GlcNac Transferase gene; T04A8.7, encoding an ortholog 417

of human glucosidase, acid beta (GBA); and T22F3.3, encoding ortholog of human glycogen phosphorylase 418

isozyme in the muscle (PYGM). 419

Protein synthesis and degradation 420

hif-1(lf) is also known to inhibit protein synthesis and translation in varied ways.51. Most reported effects 421

of HIF-1 on the translation machinery are posttranslational, and no reports to date show transcriptional 422
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control of the ribosomal machinery in C. elegans by HIF-1. We used the WormBase Enrichment Suite 423

Gene Ontology dictionary43 to extract 143 protein-coding genes annotated as ‘structural constituents of 424

the ribosome’ and we queried whether they were differentially expressed in our mutants. egl-9(lf), vhl-1(lf), 425

rhy-1(lf) and egl-9(lf);vhl-1(lf) showed differential expression of 91 distinct ribosomal constituents (not all 426

constituents were detected in all genotypes). For every one of these genotypes, these genes were always 427

down-regulated. In contrast, hif-1(lf) showed up-regulation of a single ribosomal constituent. 428

Next, we asked whether HIF-1 has any transcriptional effects on the proteasomal constituents; no such 429

effects of HIF-1 on the proteasome have been reported in C. elegans. Out of 40 WormBase-annotated 430

proteasomal constituents, we found 31 constituents that were differentially expressed in at least one of the 431

four genotypes that induce a hypoxic response. Every gene we found was down-regulated in at least two out 432

of the four genotypes we studied. 433

Discussion 434

The C. elegans hypoxia pathway can be reconstructed entirely from RNA-seq 435

data 436

In this paper, we have shown that whole-organism transcriptomic phenotypes can be used to reconstruct 437

genetic pathways and to discern previously overlooked or uncharacterized genetic interactions. We success- 438

fully reconstructed the hypoxia pathway, and inferred order of action (rhy-1 activates egl-9, egl-9 and vhl-1 439

inhibit hif-1 ), and we were able to infer from transcriptome-wide epistasis measurements that egl-9 exerts 440

vhl-1 -dependent and independent inhibition on hif-1. 441

HIF-1 and the cellular environment 442

In addition to reconstructing the pathway, our dataset allowed us to observe a wide variety of physiologic 443

changes that occur as a result of the HIF-1-dependent hypoxia response. In particular, we observed down- 444

regulation of most components of the TCA cycle and the mitochondrial electron transport chain with the 445

exceptions of fum-1 and the mitochondrial complex II. The mitochondrial complex II catalyzes the reaction 446

of succinate into fumarate. In mouse embryonic fibroblasts, fumarate has been shown to antagonize HIF- 447

1 prolyl hydroxylase domain (PHD) enzymes, which are orthologs of EGL-952. If the inhibitory role of 448

fumarate on PHD enzymes is conserved in C. elegans, upregulation of complex II by HIF-1 during hypoxia 449

may increase intracellular levels of fumarate, which in turn could lead to artificially high levels of HIF-1 450

even after normoxia resumes. The increase in fumarate produced by the complex could be compensated by 451

increasing expression of fum-1. Increased fumarate degradation allows C. elegans to maintain plasticity in 452

the hypoxia pathway, keeping the pathway sensitive to oxygen levels. 453

Interpretation of the non-classical epistasis in the hypoxia pathway 454

The observation of almost 30 genes that exhibit a specific pattern of non-classical epistasis suggests the 455

existence of previously undescribed aspects of the hypoxia pathway. Some of these non-classical epistases 456

had been observed previously45,46,44, but no satisfactory mechanism has been proposed to explain this 457

biology.46 and45 suggest that HIF-1 integrates information on iron concentration in the cell to bind to the 458

ftn-1 promoter, but could not definitively establish a mechanism. It is unclear why deletion of hif-1 induces 459

ftn-1 expression, deletion of egl-9 also causes induction of ftn-1 expression, but deletion of vhl-1 removes this 460

inhibition. Moreover,44 have previously reported that certain genes important for the C. elegans immune 461

response against pathogens reflect similar expression patterns. Their interpretation was that swan-1, which 462

encodes a binding partner to EGL-953, is important for modulating HIF-1 activity in some manner. The 463

lack of a conclusive double mutant analysis in this work means the role of SWAN-1 in modulation of HIF- 464

1 activity remains to be demonstrated. Nevertheless, mechanisms that call for additional transcriptional 465

modulators become less likely given the number of genes with different biological functions that exhibit the 466

same pattern. 467

One way to resolve this problem without invoking additional genes is to consider HIF-1 as a protein with 468

both activating and inhibiting states. In fact, HIF-1 already exists in two states in C. elegans: unmodified 469
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Genotype

egl-9 HIF-1

HIF-1

HIF-1 activates/
HIF-1-OH represses

wild type HIF-1 HIF-1-OH

egl-9; vhl-1 HIF-1 activates/
HIF-1-OH represses

hif-1
Depends on specific activities/
concentrations at S.S.

egl-9; hif-1
Depends on specific activities/
concentrations at S.S.

vhl-1 HIF-1 HIF-1-OH HIF-1-OH represses

Interpretation

ftn-1

ftn-1

ftn-1

ftn-1

ftn-1

ftn-1

degradation

HIF-1

HIF-1-OH

RHY-1 EGL-9

VHL-1

ftn-1

A

B

Figure 12. A hypothetical model showing a mechanism where HIF-1-hydroxyl antagonises HIF-1. A.
Diagram showing that RHY-1 activates EGL-9. EGL-9 hydroxylates HIF-1 in an oxygen dependent fashion.
Under normoxia, HIF-1 is rapidly hydroxylated and only slowly does hydroxylated HIF-1 return to its
original state. EGL-9 can also inhibit HIF-1 in an oxygen-independent fashion. HIF-1 hydroxyl is rapidly
degraded in a VHL-1 dependent fashion. In our model, HIF-1 and HIF-1 hydroxyl have opposing effects on
transcription. The width of the arrows represents the rates under normoxic conditions. B. Table showing the
effects of loss-of-function mutations on HIF-1 and HIF-1 hydroxyl activity, showing how this can potentially
explain the behavior of ftn-1 in each case. S.S = Steady-state.

HIF-1 and HIF-1-hydroxyl (HIF-1-OH). Under this model, HIF-1-hydroxyl antagonizes the effects of HIF-1 470

for certain genes like ftn-1 or nlp-31. Loss of vhl-1 stabilizes HIF-1-hydroxyl. A subset of genes that are 471

sensitive to HIF-1-hydroxyl will be inhibited as a result of the increase in the amount of this species, in spite 472

of loss of vhl-1 function also increasing the level of non-hydroxylated HIF-1. On the other hand, egl-9(lf) 473

selectively removes all HIF-1-hydroxyl, stimulating accumulation of HIF-1 and promoting gene activity. 474

Whether deletion of hif-1(lf) is overall activating or inhibiting will depend on the relative activity of each 475

protein state under normoxia (see Fig. 12). 476

Multiple lines of circumstantial evidence that HIF-1-hydroxyl plays a role in the functionality of the 477

hypoxia pathway. First, HIF-1-hydroxyl is challenging to study genetically because no mimetic mutations 478

are available with which to study the pure hydroxylated HIF-1 species. Second, although mutations in the 479

Von-Hippel Landau gene stabilize the hydroxyl species, they also increase the quantity of non-hydroxylated 480

HIF-1 by mass action. Finally, since HIF-1 is detected low levels in cells under normoxic conditions54, total 481

HIF-1 protein (unmodified HIF-1 plus HIF-1-hydroxyl) is often tacitly assumed to be vanishingly rare and 482

therefore biologically inactive. 483

Our data show hundreds of genes that change expression in response to loss of hif-1 under normoxic 484

conditions. This establishes that there is sufficient total HIF-1 protein to be biologically active. Our analyses 485

also revealed that hif-1(lf) shares positive correlations with egl-9(lf), rhy-1(lf) and vhl-1(lf), and that each of 486

these genotypes also shows a secondary negative rank-ordered expression correlation with each other. These 487

cross-patterns between all loss of function of inhibitors of HIF-1 and hif-1(lf) can be most easily explained 488

if HIF-1-hydroxyl is biologically active. 489

A homeostatic argument can be made in favor of the activity of HIF-1-hydroxyl. At any point in time, 490

the cell must measure the levels of multiple metabolites at once. The hif-1 -dependent hypoxia response 491

integrates information from O2, α-ketoglutarate (2-oxoglutarate) and iron concentrations in the cell. One 492

way to integrate this information is by encoding it only in the effective hydroxylation rate of HIF-1 by 493

EGL-9. Then the dynamics in this system will evolve exclusively as a result of the total amount of HIF-1 in 494

the cell. Such a system can be sensitive to fluctuations in the absolute concentration of HIF-155. Since the 495

absolute levels of HIF-1 are low in normoxic conditions, small fluctuations in protein copy-number represent 496
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can represent a large fold-change in HIF-1 levels. These fluctuations would not be problematic for genes that 497

must be turned on only under conditions of severe hypoxia—presumably, these genes would be associated 498

with low affinity sites for HIF-1, so that they are only activated when HIF-1 levels are far above random 499

fluctuations. 500

For yet other sets of genes that must change expression in response to the hypoxia pathway, it may 501

not make as much sense to integrate metabolite information exclusively via EGL-9-dependent hydroxylation 502

of HIF-1. In particular, genes that may function to increase survival in mild hypoxia may benefit from 503

regulatory mechanisms that can sense minor changes in environmental conditions and which therefore benefit 504

from robustness to transient changes in protein copy number. Likewise, genes that are involved in iron or 505

α-ketoglutarate metabolism (such as ftn-1) may benefit from being able to sense, accurately, small and 506

consistent deviations from basal concentrations of these metabolites. For these genes, the information may 507

be better encoded by using HIF-1 and HIF-1-hydroxyl as an activator/repressor pair. Such circuits are known 508

to possess distinct advantages for controlling output in a manner that is robust to transient fluctuations in 509

the levels of their components56,57. 510

Our RNA-seq data suggests that one of these atypical targets of HIF-1 may be RHY-1. Although rhy-1 511

does not exhibit non-classical epistasis, hif-1(lf) and egl-9(lf) hif-1(lf) both had increased expression levels 512

of rhy-1. We speculate that if rhy-1 is controlled by both HIF-1 and HIF-1-hydroxyl, then this might imply 513

that HIF-1 regulates the expression of its pathway (and therefore itself) in a manner that is robust to total 514

HIF-1 levels. 515

Insights into genetic interactions from vectorial phenotypes 516

Here, we have described a set of straightforward methods that can be in theory applied to any vectorial 517

phenotype. Genome-wide methods afford a lot of information, but genome-wide interpretation of the results 518

is often extremely challenging. Each method has its own advantages and disadvantages. We briefly discuss 519

these methods, their uses and their drawbacks. 520

Principal component analysis is computationally tractable and clusters can often be visually detected 521

with ease. However, PCA can be misleading, especially when the dimensions represented do not explain a 522

very large fraction of the variance present in the data. In addition, principal dimensions are the product 523

of a linear combination of vectors, and therefore must be interpreted with extreme care. In this case, the 524

first principal dimension separated genotypes that increase HIF-1 protein levels from those that decrease it, 525

but this dimension is a mix of vectors of change in gene expression. Although PCA showed that there is 526

information hidden in these genotypes, it was not enough by itself to provide biological insight. 527

Whereas PCA operates on all genotypes simultaneously, correlation analysis is a pairwise procedure 528

that measures how predictable the gene expression changes are in a mutant given the vector of expression 529

changes in another. Like PCA, correlation analysis is easy and fast to perform. Unlike PCA, the product of 530

a correlation analysis is a single number with a straightforward interpretation. However, correlation analysis 531

is particularly sensitive to outliers. Although a common strategy is to rank-transform expression data to 532

mitigate outliers, rank-transformations do not remove the cross-patterns that appear when feedback loops 533

or other complex interactions are present between two genes. Such cross-patterns can still lead to vanishing 534

correlations if both patterns are equally strong. Therefore, correlation analyses must take into account the 535

possible existence of systematic outliers. Moreover, correlation values must be measured for both interactions 536

in cross-patterned rank plots. Weighted correlations could be informative for ordering genes along pathways. 537

A drawback of correlation analysis is that the number of pairwise comparisons that must be made increases 538

combinatorially, though strategies could be used to decrease the total number of effective comparisons. 539

Epistasis plots are a novel way to visualize epistasis in vectorial phenotypes. Here, we have shown how 540

an epistasis plot can be used to identify interactions between two single mutants and a double mutant. In 541

reality, epistasis plots can be generated for any set of measurements involving a set of N mutants and an 542

N -mutant genotype. Epistasis plots can accumulate an arbitrary number of points within them, possess a 543

rich structure that can be visualized and have straightforward interpretations for special slope values. 544

Another way to analyze epistasis is via general linear models (GLMs) that include interaction terms 545

between two or more genes. In this way, GLMs can quantify the epistatic effect of an interaction on single 546

genes. We and others22,23 have previously used GLMs to identify gene sets that are epistatically regulated by 547

two or more inputs. While powerful, GLMs suffer from the multiple comparison problem. Correcting for false 548
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positives using well-known multiple comparison corrections such as FDR58 tends to increase false negative 549

rates. Moreover, since GLMs attempt to estimate effect magnitudes for individual gene or isoform expression 550

levels, they effectively treat each gene as an independent quantity, which prevents better estimation of the 551

magnitude and direction of the epistasis between two genes. 552

Epistasis plots do not suffer from the multiple comparison problem because the number of tests performed 553

is orders of magnitudes smaller than the number of tests performed by GLMs. Ideally, in an epistasis plot we 554

need only perform 3 tests—rejection of additive, unbranched and suppressive null models—compared with 555

the tens of thousands of tests that are performed in GLMs. Moreover, the magnitude of epistasis between 556

two genes can be estimated using hundreds of genes, which greatly improves the statistical resolution of the 557

epistatic coefficient. This increased resolution is important because the size and magnitude of the epistasis 558

has specific consequences for the type of pathway that is expected. 559

Any quantitative use of genome-wide datasets requires a good experimental setup. Here, we have demon- 560

strated that whole-organism RNA-seq can be used to dissect molecular pathways in exquisite detail when 561

paired with experimental designs that are motivated by classical genetics. Much more research will be nec- 562

essary to understand whether epistasis has different consequences in the microscopic realm of transcriptional 563

phenotypes than in the macroscopic world that geneticists have explored previously. Our hope is that these 564

tools, coupled with the classic genetics experimental designs, will reveal hitherto unknown aspects of genetics 565

theory. 566

Methods 567

Nematode strains and culture 568

Strains used were N2 wild-type Bristol, CB5602 vhl-1 (ok161 ), CB6088 egl-9 (sa307 ) hif-1 (ia4 ), CB6116 egl- 569

9 (sa307 );vhl-1 (ok161 ), JT307 egl-9 (sa307 ), ZG31 hif-1 (ia4 ), RB1297 rhy-1 (ok1402 ). All lines were grown 570

on standard nematode growth media (NGM) plates seeded with OP50 E. coli at 20◦C (Brenner 1974). 571

RNA Isolation 572

Unsynchronized lines were grown on NGM plates at 20C and eggs harvested by sodium hypochlorite treat- 573

ment. Eggs were plated on 6 to 9 6cm NGM plates with ample OP50 E. coli to avoid starvation and grown at 574

20◦C. Worms were staged and harvested based on the time after plating, vulva morphology and the absence 575

of eggs. Approximately 30–50 non-gravid young adults were picked and placed in 100µL of TE pH 8.0 at 4◦C 576

in 0.2mL PCR tubes. After settling and a brief spin in microcentrifuge approximately 80µL of TE (Ambion 577

AM 9849) was removed from the top of the sample and individual replicates were snap frozen in liquid N2. 578

These replicate samples were then digested with Proteinase K (Roche Lot No. 03115 838001 Recombinant 579

Proteinase K PCR Grade) for 15min at 60◦ in the presence of 1% SDS and 1.25µL RNA Secure (Ambion AM 580

7005). RNA samples were then taken up in 5 Volumes of Trizol (Tri Reagent Zymo Research) and processed 581

and treated with DNase I using Zymo MicroPrep RNA Kit (Zymo Research Quick-RNA MicroPrep R1050). 582

RNA was eluted in RNase-free water and divided into aliquots and stored at -80◦C. One aliquot of each 583

replicate was analyzed using a NanoDrop (Thermo Fisher) for impurities, Qubit for concentration and then 584

analyzed on an Agilent 2100 BioAnalyzer (Agilent Technologies). Replicates were selected that had RNA 585

integrity numbers (RIN) equal or greater than 9.0 and showed no evidence of bacterial ribosomal bands, 586

except for the ZG31 mutant where one of three replicates had a RIN of 8.3. 587

Library Preparation and Sequencing 588

10ng of quality checked total RNA from each sample was reverse-transcribed into cDNA using the Clontech 589

SMARTer Ultra Low Input RNA for Sequencing v3 kit (catalog #634848) in the SMARTSeq2 protocol 590
59. RNA was denatured at 70◦C for 3 minutes in the presence of dNTPs, oligo dT primer and spiked-in 591

quantitation standards (NIST/ERCC from Ambion, catalog #4456740). After chilling to 4◦C, the first- 592

strand reaction was assembled using the LNA TSO primer described in59, and run at 42◦C for 90 minutes, 593

followed by denaturation at 70◦C for 10 minutes. The entire first strand reaction was then used as template 594

for 13 cycles of PCR using the Clontech v3 kit. Reactions were cleaned up with 1.8X volume of Ampure 595
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XP SPRI beads (catalog #A63880) according to the manufacturer’s protocol. After quantification using the 596

Qubit High Sensitivity DNA assay, a 3ng aliquot of the amplified cDNA was run on the Agilent HS DNA 597

chip to confirm the length distribution of the amplified fragments. The median value for the average cDNA 598

lengths from all length distributions was 1076bp. Tagmentation of the full length cDNA for sequencing 599

was performed using the Illumina/Nextera DNA library prep kit (catalog #FC-121–1030). Following Qubit 600

quantitation and Agilent BioAnalyzer profiling, the tagmented libraries were sequenced. Libraries were 601

sequenced on Illumina HiSeq2500 in single read mode with the read length of 50nt to an average depth 602

of 15 million reads per sample following manufacturer’s instructions. Base calls were performed with RTA 603

1.13.48.0 followed by conversion to FASTQ with bcl2fastq 1.8.4. Spearman correlation of the transcripts per 604

million (TPM) for each genotype showed that every pairwise correlation within genotype was > 0.9. 605

Read Alignment and Differential Expression Analysis 606

We used Kallisto to perform read pseudo-alignment and performed differential analysis using Sleuth. We fit 607

a general linear model for a transcript t in sample i: 608

yt,i = βt,0 + βt,genotype ·Xt,i + βt,batch · Yt,i + εt,i (1)

where yt,i are the logarithm transformed counts; βt,genotype and βt,batch are parameters of the model, 609

and which can be interpreted as biased estimators of the log-fold change; Xt,i, Yt,i are indicator variables 610

describing the conditions of the sample; and εt,i is the noise associated with a particular measurement. 611

Genetic Analysis, Overview 612

Genetic analysis of the processed data was performed in Python 3.5. Our scripts made extensive 613

use of the Pandas, Matplotlib, Scipy, Seaborn, Sklearn, Networkx, Bokeh, PyMC3, and TEA li- 614

braries60,61,62,63,64,65,66,42,67. Our analysis is available in a Jupyter Notebook68. All code and required 615

data (except the raw reads) are available at https://github.com/WormLabCaltech/mprsq along with 616

version-control information. Our Jupyter Notebook and interactive graphs for this project can be found 617

at https://wormlabcaltech.github.io/mprsq/. Raw reads were deposited in the Short Read Archive 618

under the study accession number SRP100886. 619

Weighted Correlations 620

Pairwise correlations between transcriptomes where calculated by first identifying the set of differentially 621

expressed genes (DEGs) common to both transcriptomes under analysis. DEGs were then rank-ordered 622

according to their regression coefficient, β. Bayesian robust regressions were performed using a Student-T 623

distribution. Bayesian analysis was performed using the PyMC3 library64 (pm.glm.families.StudenT in 624

Python). If the correlation has an average value > 1, the correlation coefficient was set to 1. 625

Weights were calculated as the proportion of genes that were < 1.5 standard deviations away from the 626

primary regression out of the entire set of shared DEGs for each transcriptome. 627

Epistasis Analysis 628

For a double mutant X−Y −, we used the single mutants X− and Y − to find expected value of the coefficient
for a double mutant under an additive model for each isoform i. Specifically,

βAdd,i = βX,i + βY,i. (2)

Next, we find the difference, ∆i, between the observed double mutant expression coefficient, βXY,Obs,i, 629

and the predicted expression coefficient under an additive model for each isoform i. 630

To calculate the transcriptome-wide epistasis coefficient, we plotted (βAdd,i,∆i) and found the line of 631

best fit using orthogonal distance regression using the scipy.odr package in Python. We performed non- 632

parametric bootstrap sampling of the ordered tuples with replacement using 5,000 iterations to generate a 633

probability distribution of slopes of best fit. 634
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There are as many models as epistatic relationships. For quantitative phenotypes, epistatic relationships 635

(except synthetic interactions) can be generally expressed as: 636

βXY =
∑
g∈G

λgβg, (3)

where Pi is the quantitative phenotype belonging to the genotype i; G is the set of single mutants {X,Y } 637

that make up the double mutant, XY ; and λg is the contribution of the phenotype Pg to PXY . Additive 638

interactions between genes are the result of setting λg = 1. All other relationships correspond to setting 639

λX = 0, λY = 1 or λX = 1, λY = 0. 640

A given epistatic interaction can be simulated by predicting the double mutant phenotype under that 641

interaction and re-calculating the y-coordinates. The recalculated y-coordinates can then be used to predict 642

the possible epistasis coefficients for the cases where X is epistatic over Y , and Y is epistatic over X. 643

To select between theoretical models, we implemented an approximate Bayesian Odds Ratio. We defined 644

a free-fit model, M1, that found the line of best fit for the data: 645

P (α |M1, D) ∝
∏

(xi,yi,σi)∈D

exp (yi − α · xi)2

2σi
· (1 + α2)−3/2, (4)

where α is the slope of the model to be determined, xi, yi were the x- and y-coordinates of each point 646

respectively, and σi was the standard error associated with the y-value. We minimized the negative logarithm 647

of equation 4 to obtain the most likely slope given the data, D (scipy.optimize.minimize in Python). 648

Finally, we approximated the odds ratio as: 649

OR = P (D |α∗,M1) · (2π)1/2σα∗

P (D |Mi)
, (5)

where α∗ is the slope found after minimization, σ∗α is the standard deviation of the parameter at the 650

point α∗ and P (D |Mi) is the probability of the data given the parameter-free model, Mi. 651

Enrichment Analysis 652

Tissue, Phenotype and Gene Ontology Enrichment Analysis were carried out using the WormBase Enrich- 653

ment Suite for Python43,42. 654
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