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ABSTRACT 11 

The drug discovery process can be significantly improved through understanding how the 12 
structure of chemical compounds relates to their function. A common paradigm that has been 13 
used to filter and prioritize compounds is ligand-based virtual screening, where large libraries of 14 
compounds are queried for high structural similarity to a target molecule, with the assumption 15 
that structural similarity is predictive of similar biological activity. Although the chemical 16 
informatics community has already proposed a wide range of structure descriptors and similarity 17 
coefficients, a major challenge has been the lack of systematic and unbiased benchmarks for 18 
biological activity that covers a broad range of targets to definitively assess the performance of 19 
the alternative approaches. 20 

We leveraged a large set of chemical-genetic interaction data from the yeast Saccharomyces 21 
cerevisiae that our labs have recently generated, covering more than 13,000 compounds from the 22 
RIKEN NPDepo and several NCI, NIH, and GlaxoSmithKline (GSK) compound collections. 23 
Supportive of the idea that chemical-genetic interaction data provide an unbiased proxy for 24 
biological functions, we found that many commonly used structural similarity measures were 25 
able to predict the compounds that exhibited similar chemical-genetic interaction profiles, 26 
although these measures did exhibit significant differences in performance. Using the chemical-27 
genetic interaction profiles as a basis for our evaluation, we performed a systematic 28 
benchmarking of 10 different structure descriptors, each combined with 12 different similarity 29 
coefficients. We found that the All-Shortest Path (ASP) structure descriptor paired with the 30 
Braun-Blanquet similarity coefficient provided superior performance that was robust across 31 
several different compound collections. 32 

We further describe a machine learning approach that improves the ability of the ASP metric to 33 
capture biological activity. We used the ASP fingerprints as input for several supervised machine 34 
learning models and the chemical-genetic interaction profiles as the standard for learning. We 35 
found that the predictive power of the ASP fingerprints (as well as several other descriptors) 36 
could be substantially improved by using support vector machines. For example, on held-out 37 
data, we measured a 5-fold improvement in the recall of biologically similar compounds at a 38 
precision of 50% based upon the ASP fingerprints. Our results generally suggest that using high-39 
dimensional chemical-genetic data as a basis for refining chemical structure descriptors can be a 40 
powerful approach to improving prediction of biological function from structure.  41 

Keywords: chemical-genetic network, chemical structure, molecular descriptor, structural 42 
similarity, virtual screening, and machine learning  43 
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INTRODUCTION 44 

Discovery, design, and development of new drugs that reveal desired and reproducible 45 
biochemical behavior against a particular biomolecular target with minimal side effects are 46 
challenging. Despite the scientific and technological advances in drug discovery during the past 47 
60 years, the number of drugs approved per billion US dollars that were spent for the 48 
development of novel drugs has halved roughly every 9 years since 1950 (Eroom’s Law in 49 
contrast to Moore’s Law) [1]. Following the similar property principle (SPP) [2], Ligand-based 50 
virtual screening (LBVS) has been commonly used as an a priori step to high-throughput 51 
screening (HTS) [3,4,5] to rank compounds of a large database in the decreasing order of their 52 
similarity to a reference or target molecule with known biological activity (Fig. 1). According to 53 
the similar property principle, structurally similar molecules are more likely to represent similar 54 
biological activities and physicochemical properties. Although there are limitations to the similar 55 
property principle [6], such as the case of activity cliffs where a very small modification in the 56 
structure of a molecule may drastically alter its biological properties [7], this structure-activity 57 
relationship is broadly consistent throughout the larger flat regions of activity landscapes [8,9]. 58 
Hence, the need for high performance structural similarity that extracts structurally analogous 59 
compounds from a database is inevitable. 60 

To accelerate the retrieval of the compounds of a desired class that are active against a 61 
protein target, the chemical informatics community has suggested a wide range of structure 62 
descriptors and similarity coefficients that are able to extract candidates with similar biological 63 
activity from structural compound libraries. The most widely used representation of molecular 64 
graphs in these expanding databases of two- and three-dimensional molecular structures is based 65 
upon chemical fingerprints [10,11,12], where a molecular graph is represented by a fixed-length 66 
bit-vector that enumerates all the bounded-length paths in the graph and encodes the presence or 67 
absence of substructural fragments. The degree of similarity of two structural vectors describing 68 
two different compounds is usually measured by similarity coefficients, among which the well-69 
known Tanimoto coefficient has still remained the coefficient of choice to capture the highest 70 
level of intermolecular similarity and thus biological activity [11,13]. The Tanimoto coefficient, 71 
which is formulated as the number of features shared between two molecules divided by the total 72 
number of features presented in both molecules, offers a suitable degree of chemical similarity 73 
between compounds, although this coefficient suffers from an intrinsic bias towards selection of 74 
smaller compounds [14,15]. However, the research community has lacked a systematic 75 
benchmark that assesses the performance of these structure descriptors and similarity coefficients 76 
over a broad range of protein targets in an unbiased manner. 77 

Chemical genomic approaches, which focus on the systematic mapping of chemical-78 
genetic interactions, offer a valuable new source of data to connect structure to function. These 79 
chemical-genetic maps take advantage of the massive wealth of chemical-genetic interaction 80 
profiles. The yeast Saccharomyces cerevisiae is a well-characterized eukaryotic system for which 81 
the genome-wide gene deletion project has identified ~5000 viable deletion mutants [16]. 82 
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Testing each one of these viable mutants for hypersensitivity to a bioactive compound generates 83 
a chemical-genetic interaction profile in which the relative fitness of a selected group of mutant 84 
strains with defined genetic perturbations in response to the bioactive compound is quantified 85 
[17,18]. These chemical-genetic interaction profiles provide functional information for a 86 
compound that can be interpreted through the global genetic interaction network mapped for the 87 
yeast [19]. If a bioactive compound inhibits a target protein, the loss-of-function mutations in a 88 
gene that encodes the protein models the primary effects of the compound, and the genetic 89 
interaction profile of the target gene resembles the chemical-genetic interaction profile of the 90 
compound that inhibits the target pathway. Consequently, the chemical-genetic interaction 91 
profiles of bioactive compounds can link those compounds to their cellular target pathways in an 92 
unbiased manner. These profiles can be annotated to specific biological processes to predict the 93 
general mechanisms of action for the bioactive compounds and can serve as an unbiased 94 
genome-wide measure for their biological activity [20]. 95 

We generated a systematic benchmark based upon the similar property principle to assess 96 
the performance of several structure descriptors and similarity coefficients in prediction of the 97 
chemical-genetic interaction profiles of hundreds of compounds, with the assumption that these 98 
profiles provided an unbiased genome-wide measure of biological activity. We generated and 99 
annotated the yeast chemical-genetic interaction profiles for more than 13,000 compounds from 100 
the RIKEN NPDepo as well as several NCI/NIH/GSK compound collections [20]. We 101 
systematically benchmarked 10 different structure descriptors, each combined with 12 different 102 
similarity coefficients, to identify the pair with the superior prediction of biological activity by 103 
using the chemical-genetic interaction profiles as a basis for the biological activity of our 104 
compounds. We further developed several supervised machine learning models to improve our 105 
prediction of the biological activity of compounds from chemical structures, gaining higher 106 
predictive power that was not in the ability of similarity coefficients. We found that support 107 
vector machines (SVMs) [21] can significantly enhance the power of our chemical fingerprints 108 
for predicting the biological activity of compounds. 109 

 110 
RESULTS AND DISCUSSION 111 
 112 

To evaluate the performance of the commonly used structure descriptors and similarity 113 
coefficients in predicting the biological activity of compounds, we exhaustively searched for all 114 
the pairwise candidates (i.e., one structure descriptor and one similarity coefficient) that provided 115 
high predictive power over a wide range of protein targets using our chemical-genetic interaction 116 
data. We generated, in our labs, the chemical-genetic interaction profiles for 13,524 compounds 117 
from several diverse compound collections [20]. We used a subset of these screened compounds 118 
that exhibited high confidence predictions for the annotated processes and biological pathways 119 
based upon our chemical-genetic interaction profiles [20,22]. We included in our benchmarking 120 
system two compound sets independently: (1) 826 compounds from the RIKEN Natural Product 121 
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Depository (NPDepo) compound collection, which we called RIKEN high confidence collection. 122 
(2) 659 compounds from several NCI/NIH/GSK collections, which we called the NCI/NIH/GSK 123 
high confidence collection (see Material). 124 

Establishing a systematic benchmark for chemical similarity measures 125 
 126 

We aimed at predicting the compound pairs that exhibited the most similar function 127 
based upon our chemical-genetic interaction profiles, which served as an unbiased genome-wide 128 
measure of biological activity. We labeled only 10% of the compound pairs with the highest 129 
(cosine) profile similarity as our gold standard for true positives, which were highly prioritized in 130 
our systematic benchmark. Following the similar property principle, a large number of these true 131 
positives should be identified from the structural similarity of our compounds. 132 

Our benchmarking system consisted of two main components: structure descriptors and 133 
similarity coefficients. We evaluated both components through our systematic benchmark to find 134 
the best performer of each component for prediction of the biological activity of our compounds. 135 
We used jCompoundMapper [23] to describe all our compounds in 10 different structure spaces 136 
(Table 1), where a compound was described with a fixed-length bit-vector that indicated the 137 
presence or absence of a certain number of fingerprints. The number of features required for the 138 
description of the compounds in a structure space varied based upon the space definition and 139 
collection properties (e.g., only 9 of the predefined features in the MACCS keys were found in 140 
the RIKEN high confidence collection, while RAD2D fingerprints generated 91082 features to 141 
describe this compound collection). We used 12 widely used similarity coefficients (Table 2) to 142 
measure the degree of similarity of two compounds described by a given structure descriptor. 143 

Evaluating the performance of chemical similarity measures 144 
 145 

We exhaustively searched for the best-performing chemical similarity measure (i.e., one 146 
structure descriptor and one similarity coefficient) in predicting the biological activity of our 147 
compounds. We described all our compounds in 10 different structure spaces and measured the 148 
structural similarity of two compounds described in a given structure space by using a coefficient 149 
of structural similarity, generating compound similarities for all the combinations of structure 150 
descriptors and similarity coefficients. We ranked all these scores of structural similarity for the 151 
prediction of the chemical-genetic profile similarity of our compounds and measured precision at 152 
many recalls to evaluate the performance of alternative models (Suppl. Table 1). To isolate the 153 
winning structure descriptor, we looked at the precision of all the prediction models at several 154 
(lower) recalls for our RIKEN high confidence collection, which distinguished ASP, LSTAR, 155 
and RAD2D fingerprints as the structure descriptors with superior predictive power (Fig. 2a). 156 
The wide range of precision values achieved by different structure descriptors, assuming that a 157 
single similarity coefficient was used, showed that our chemical-genetic interaction profiles 158 
could highly separate structure descriptors in terms of their efficiency for the prediction of the 159 
biological activity of compounds. We compared the relative performance of our distinguished 160 
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models with the predictive power of extended-connectivity fingerprints (ECFP) [24], which has 161 
recently been one of the most common descriptors to represent molecular graphs. However, 162 
ECFP did not generally outperform ASP, LSTAR, and RAD2D fingerprints, except at very few 163 
recalls (Fig. 2b). Because this finding might simply be a result of our collection property, we 164 
used our NCI/NIH/GSK high confidence collection to validate the predictive performance of the 165 
ASP, LSTAR, and RAD2D fingerprints, which strongly confirmed the superiority of these 166 
descriptors over ECFP at many recalls (Fig. 3). 167 

ASP fingerprints encoded a graph traversal over all atoms in a molecular graph but stored 168 
only the shortest paths between atoms, whereas LSTAR and RAD2D fingerprints described the 169 
radial environment of all atoms in the molecular graph [23]. As a result, the ASP encoding that 170 
described our compound collections needed fewer features than LSTAR and RAD2D encodings 171 
(Table 1) although the predictive performance of the ASP fingerprints was higher or comparable 172 
with that of LSTAR and RAD2D fingerprints at several recalls. Moreover, LSTAR fingerprints 173 
generally exhibited higher performance than RAD2D fingerprints at several recalls (Figs. 2-3), 174 
which could be justified by additional information that LSTAR fingerprints collected from the 175 
radial environment of the atoms by definition. Therefore, we determined ASP and LSTAR 176 
fingerprints as the winning structure descriptors to describe compounds and predict the ones with 177 
the highest biological similarity to a target molecule using a similarity coefficient. 178 

We systematically benchmarked 12 similarity coefficients (Table 2) by using our RIKEN 179 
high confidence collection and measured the predictive performance of every coefficient over all 180 
structure descriptors to find the winning similarity coefficient. We found that several (8 out of 181 
12) coefficients were able to exhibit consistent high performance across all structure descriptors, 182 
although 4 similarity coefficients (Asymmetric, Russel/Rao, Euclidean, and Dot-product) failed 183 
in some structure descriptor spaces because their precision significantly dropped at lower recalls. 184 
In other words, precision of several models (each corresponding to one structure descriptor) was 185 
substantially low for each of these 4 similarity coefficients at many lower recalls (Suppl. Table 186 
1), which indicated that these 4 coefficients were unable to predict the biological similarity of 187 
our compounds across different structure descriptors consistently. We, as a result, removed these 188 
4 coefficients from our analysis and focused only on 8 remaining similarity coefficients. We 189 
found that the Braun-Blanquet similarity coefficient [25] resulted in the higher precision at many 190 
recalls compared to all other coefficients, including Tanimoto and cosine coefficients (Fig. 2a), 191 
which have been widely used by the chemical informatics community. For the Braun-Blanquet 192 
similarity coefficient, the average precision and the average area under the receiver operating 193 
characteristic (ROC) curves across all structure descriptors were slightly higher at many recalls 194 
compared to those of the Tanimoto and cosine coefficients (Fig. 2a; columnar green values), 195 
suggesting that this simple coefficient of structural similarity could confidently be used in place 196 
of the traditional Tanimoto coefficient for the ranking of database compounds in the decreasing 197 
order of biological similarity to a target molecule. The Braun-Blanquet coefficient, which was 198 
simply formulated as the number of features common between two molecules divided by the 199 
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total number of features presented by the larger molecule, determined the degree of contribution 200 
of the smaller molecular graph to the larger one. We further measured the performance of our 201 
predictive models using our NCI/NIH/GSK high confidence collection to validate the superiority 202 
of the Braun-Blanquet coefficient over other similarity coefficients (Fig. 3a and Suppl. Table 2). 203 
We, therefore, paired the Braun-Blanquet similarity coefficient with the ASP and LSTAR 204 
structure descriptors as our predictive models for ligand-based virtual screening. 205 

Optimizing the depth of structure descriptors 206 
 207 

One major parameter involved in the structural description of compound collections was 208 
the describing depth; a high depth generated numerous features to cover the global environment 209 
of each atom, whereas a low depth only focused on describing the local neighborhood of atoms 210 
in the molecular graph. We assessed the impact of the depth of 5 structure descriptors (ASP, DFS, 211 
ECFP, LSTAR, and RAD2D) in predicting the biological activity of our compounds using the 212 
Braun-Blanquet similarity coefficient (Fig. 4). Describing our RIEKN high confidence collection 213 
at a high depth generally resulted in strong predictions at lower recalls but moderate outcome at 214 
higher recalls because a high depth was able to predict the compound pairs that were structurally 215 
and therefore functionally very similar according to the similar property principle (SPP) but also 216 
pushed undesired pairs such as activity cliffs to the top of our predictions. On the other hand, a 217 
low describing depth was able to capture the similarity of two compounds in the local chunks of 218 
the two molecular graphs that were essential for functional similarity, which eventually resulted 219 
in drawing reasonable predictions at lower recalls. We, furthermore, evaluated these results using 220 
our NCI/NIH/GSK high confidence collection (Suppl. Fig. 1), which confirmed similar general 221 
trends that impacted our predictions at several recalls using 10 different describing depths. 222 
Therefore, the structural description of a compound collection at high depths not only was 223 
unnecessary and inefficient but also increased the computation time and space complexity. We 224 
selected depth 8 for our evaluations although other neighboring depths were also justifiable. 225 

Improving the prediction performance via SVM models 226 
 227 

To increase the ability of chemical structures in predicting the biological activity of our 228 
compounds, we designed several supervised machine learning models and took advantage of the 229 
great wealth of chemical-genetic interaction maps for supervision. Moreover, we used supervised 230 
principal component analysis [26] via chemical-genetic interaction maps to extract a number of 231 
features from the more informative compound substructures that highly related structural data to 232 
the biological activity of our compounds. We found that support vector regression (SVR) models 233 
[21] were able to boost the prediction performance of the functional activity of our compounds 234 
from their chemical structures by weighting supervised principal components, where chemical-235 
genetic interaction profiles were also input to the learning models for supervision.    236 

 237 
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We designed a learning pipeline (Fig. 5a) to predict chemical-genetic profile similarities 238 
by creating bootstraps [27] and pairwise structural encodings (see Methods). We implemented 239 
support vector regression models in LibSVM [28], a popular open source support vector machine 240 
learning library developed at National Taiwan University, and used Radial Basis Function (RBF) 241 
kernels for building our epsilon support vector regression models. We developed precision-recall 242 
(PR) curves to evaluate the performance of our models for different structure descriptors, where 243 
only 10% of the compound pairs from our RIKEN high confidence collection with the highest 244 
chemical-genetic profile similarity were labeled as the gold standard for true positives. We found 245 
that a subset of our structure descriptors (SD1-SD6 and SD10) were able to achieve significantly 246 
higher performance in the prediction of the functional similarity of our compounds than the best-247 
performing chemical similarity measures (i.e., ASP or LSTAR fingerprints along with the Braun-248 
Blanquet similarity coefficient). The learning curves for the ASP and LSTAR fingerprints (Fig. 249 
5b) exhibited that we were able to gain a 5-fold improvement in the recall of biologically similar 250 
compounds at a precision of 50%. However, the degree of improvement was dependent on the 251 
functional diversity of datasets, which could result in modestly higher performance for particular 252 
collections with higher diversity; for instance, we improved our predictions for the 253 
NCI/NIH/GSK high confidence collection by only about 2 folds in the recall of biologically 254 
similar compounds at a precision of 50% (Fig. 5d-e). This relatively poor improvement 255 
(compared to that of the RIKEN high confidence collection) was explained by the higher 256 
functional diversity of our NCI/NIH/GSK high confidence collection (score of ~25.3, against 257 
~14.6 for the RIKEN high confidence collection) although the two collections exhibited similar 258 
structural diversity (score of ~62) (see Methods). This high functional diversity of the 259 
NCI/NIH/GSK high confidence collection was due to the presence of 6 functionally different 260 
sub-collections, which consequently affected the ability of our models to learn chemical-genetic 261 
similarities at a high performance for this collection. Although model performance was disturbed 262 
by the higher diversity of our NCI/NIH/GSK high confidence collection, we still measured more 263 
distinct learning curves from the baseline while labeling 20% of functionally most similar 264 
compound pairs as true positives (Fig. 5e), indicating that functionally similar pairs were 265 
eventually pushed up to the top of the ranked lists by our learning models. Furthermore, we 266 
combined the two collections, which added not only more diversity but also more compounds to 267 
the RIKEN high confidence collection, and made predictions for the combined dataset, resulting 268 
in about a 4.5-fold improvement in the recall of biologically similar compounds at the precision 269 
of 50% (Fig. 5c). To accomplish higher prediction performance, we, therefore, would need a 270 
larger training set (compounds with known chemical-genetic interaction profiles) to compensate 271 
for the high functional diversity of compound collections and facilitate the learning process. 272 

 273 
Predictive power of structural similarity and SVM models 274 
 275 

To investigate the compounds driving our prediction models and the underlying function, 276 
we clustered our compound collections into 10 functional as well as 10 structural clusters using 277 
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K-means and K-medoids, respectively, and mapped only the true positives at the top of our PR 278 
curves to their corresponding functional and structural clusters (Fig. 6). We found that a large 279 
group of compounds generating high prediction scores at the top of our learning curves belonged 280 
to the same functional clusters (Fig. 6b), whereas the baseline curve for the ASP fingerprints and 281 
Braun-Blanquet similarity coefficient included several functional clusters even at lower recalls 282 
(Fig. 6c). Therefore, our learning models placed more emphasis on the learning of a few certain 283 
functional clusters and boosted our prediction performance for those clusters. The first functional 284 
cluster that appeared on the learning curve of ASP fingerprints for the RIKEN high confidence 285 
collection (blue bar in Fig. 6b) was enriched for cell cycle processes based upon the predictions 286 
at the MOSAIC database [29] (Suppl. Tables 3-4 for enrichment of functional clusters). Despite 287 
this functional tendency that the learning models showed, several structural clusters contributed 288 
to the predicted pairs with high scores for the learning models (Fig. 6e), which could lead us to 289 
discovering structurally diverse compounds that would exhibit similar biological activities. The 290 
discovery of such compounds was of crucial importance since exploring functional analogs with 291 
dissimilar structures was entirely out of the capacity of the similar property principle. Hence, our 292 
learning models were able to extract compounds with similar function but distinct structures for a 293 
target drug/compound, which was far beyond the scope of structural similarity coefficients. For 294 
instance, our learning model for the RIKEN high confidence collection assigned a high score to 295 
the biologically similar compounds NPD2186 and NPD3120 (chemical-genetic profile similarity 296 
of 0.862), while the Braun-Blanquet similarity coefficient for this pair was as low as 0.027 (Fig. 297 
8c; Suppl. Table 5). This property of our learning models was achieved by design, where we 298 
extracted only a subset of the supervised principal components that were significantly related to 299 
the biological activity of compounds, and we then weighted this subset of supervised principal 300 
components using support vector regression models. This model property existed in our learning 301 
models for the NCI/NIH/GSK high confidence collection as well but in a weaker manner due to 302 
the high functional diversity of this collection (Fig. 7 and Fig. 8d). 303 

 304 
  Furthermore, we assessed the predictive power of structural similarity (using the Braun-305 

Blanquet coefficient) against that of chemical-genetic profile similarity for our collections. For 306 
the former, we predicted the chemical-genetic profile similarity of our compounds from chemical 307 
structures, whereas, for the latter, we used the chemical-genetic profile similarity of compounds 308 
to predict their structural similarity. The PR curves revealed that the structural similarity of our 309 
compounds had higher predictive power of the chemical-genetic similarity than the latter of the 310 
former (Fig. 8a-b) since compounds with similar biological activity could represent completely 311 
different chemical structures. On the other hand, compounds with similar structures were highly 312 
expected to exhibit similar biological activity; therefore, our results were a strong confirmation 313 
for the similar property principle. Moreover, the degree of superiority of the predictive power of 314 
structural similarity over functional similarity was an indicator of the amount of substructures 315 
(i.e., compounds with similar biological activity but distinct structures) that existed in the 316 
collection. The wide gap between the curves for the RIKEN high confidence collection (Fig. 8a), 317 
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therefore, represented a large number of substructures in this collection (see Fig. 6), while the 318 
narrow gap between the curves for the NCI/NIH/GSK high confidence collection (Fig. 8b) 319 
served as a signal that this collection, which was composed of several sub-collections, included 320 
more of one-to-one correspondence between structural and functional profiles. Since the high 321 
power of our learning models was to discover compounds of various structures (in addition to 322 
compounds with similar structures) that exhibited similar biological activity to a target 323 
drug/compound, our learning method showed enormous superiority over the baseline approach 324 
(ASP fingerprints paired with the Braun-Blanquet similarity coefficient) for our RIKEN high 325 
confidence collection. Although our learning method improved predictions for the functionally 326 
diverse collections (such as our NCI/NIH/GSK high confidence collection) moderately, this 327 
method exhibited strong predictions for the larger collections representing certain biological 328 
functions with structurally diverse compounds.    329 

 330 
CONCLUSION 331 

 332 
The chemical informatics community has adopted a broad range of structure descriptors 333 

and similarity coefficients for ligand-based virtual screening where the similar property principle 334 
has been the basis for ranking of compounds with similar biological activity to a target molecule 335 
from chemical structures. However, the research community has lacked a systematic, unbiased 336 
benchmark for biological activity that would cover a wide range of targets to definitively assess 337 
the performance of alternatives. We generated chemical-genetic interaction profiles from yeast in 338 
our labs, covering 13,431 compounds from the RIKEN NPDepo and several NCI/NIH/GSK 339 
compound collections, and used these profiles as an unbiased standard for the biological activity 340 
of our compounds. Using these chemical-genetic interaction profiles as the basis for the function 341 
of our compounds, we systematically benchmarked 10 different structure descriptors and 12 342 
different similarity coefficients. We found that the ASP (and LSTAR) fingerprints paired with 343 
the Braun-Blanquet similarity coefficient revealed as the superior choice for ranking of 344 
compounds with similar biological activity to a target molecule. The ASP fingerprints encoded 345 
all shortest paths between atoms obtained through an exhaustive depth-first search of the 346 
molecular graph (up to a predefined depth), and the Braun-Blanquet coefficient represented the 347 
number of features shared between two molecules divided by the number of features presented in 348 
the larger one. Moreover, we devised a machine learning model that boosted the predictive 349 
power of several fingerprints, although the degree of improvement was correlated to the 350 
functional diversity of our compound collections. We found that structural similarity had a 351 
higher predictive power in prediction of functional similarity than the latter of the former 352 
because several substructures contributed to the similar biological activity. Although similarity 353 
coefficients predicted the compounds that had both similar function and similar structure, our 354 
learning models assigned higher predictive scores to most compounds with similar function by 355 
weighting the supervised principal components that were strongly correlated to the chemical-356 
genetic profiles. Therefore, our learning models were able to predict compounds from a library 357 
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with similar biological activity but diverse structures to a target molecule, which significantly 358 
improved performance relative to simple similarity coefficients applied to structure descriptors. 359 
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 370 
MATERIAL AND METHODS 371 
 372 
Data Collections 373 
 374 

We used two different compound collections independenty: Our RIKEN high confidence 375 
collection, as a subset of the RIKEN NPDepo, was composed largely of purified natural products 376 
or natural product derivatives, whereas our NCI/NIH/GSK high confidence collection was a 377 
diverse set of several sub-collections: 4 collections from the National Cancer Institute’s Open 378 
Chemical Repository (natural products, approved oncology drugs, and structural and mechanistic 379 
diversity sets), a library of compounds from the National Institutes of Health Small Molecule 380 
Repository with a history of use in human clinical trials (NIH Clinical Collection), and the 381 
Glaxo-Smith-Kline kinase inhibitor collection (GSK). 382 
 383 
Designing the support vector machine learning pipeline 384 
 385 

We proposed support vector regression (SVR) models for the prediction of the functional 386 
activity of our compounds based upon their chemical structures. We used LibSVM [28] for the 387 
implementation of our models and bootstrapping [27] for generating our training and test sets. To 388 
generate these training and test sets, we drew N (the total number of compounds in a collection) 389 
samples uniformly random from the collection but with replacement, assigning ~0.632N unique 390 
compounds to the training and the rest to the test set. We used supervised principal component 391 
analysis [26] with adaption of chemical-genetic interaction profiles, assuming that these profiles 392 
were known for the training set but unknown for the test set, to lower the dimension of structure 393 
spaces. We normalized each structural vector that described a compound in the low-dimensional 394 
space by its Euclidean length and multiplied each pair of the normalized vectors (both from the 395 
training set or both from the test set) in the element-wise manner to create a new structure space, 396 
called “pairwise structural encodings”, for the representation of compound pairs (Suppl. Fig. 397 
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2a). We devised a pipeline (Fig. 5a) to predict our chemical-genetic profile similarities by using 398 

pairwise structural encodings, feeding our regression models with  pairwise structural 399 
vectors and chemical-genetic profile similarities, where m was the number of compounds in the 400 

training set, to predict the chemical-genetic profile similarities for the  compound 401 
pairs that were corresponding to the test set. We used Radial Basis Function (RBF) kernels to 402 
build up epsilon support vector regression models and input a number of bootstraps to the 403 
models to evaluate the average performance of our models across all bootstraps (Suppl. Fig. 2b). 404 
To measure the prediction of our pipeline for a newly seen input, we needed to take the average 405 
over all the model outputs resulted from different bootstraps, where the new input was treated as 406 
a test data in the test sets; the higher the number of bootstraps the more accurate the prediction 407 
value. We generated a large number of bootstraps (200 bootstraps for the RIKEN and 408 
NCI/NIH/GSK high confidence collections as well as 100 bootstraps for the combined 409 
collection) for our evaluations although the performance of our learning models was constant 410 
after meeting a certain number of bootstraps. 411 
 412 
Estimating the diversity of compound collections 413 
 414 

 We assigned all the compounds in a collection to a single cluster and split up the cluster 415 
recursively to form clusters of more similar compounds. At any step of recursion, we determined 416 
the cluster with the lowest average within-cluster chemical-genetic profile similarity (to compute 417 
the functional diversity) or structural similarity (to compute the structural diversity) and divided 418 
the cluster into two new clusters using K-means or K-medoids clustering. We stopped generating 419 
new clusters right before our algorithm would generate at least two individual clusters exceeding 420 
our predefined hard limit for the maximum average between-cluster chemical-genetic similarity 421 
(cosine similarity of 0.3) or structural similarity (Braun-Blanquet similarity of 0.3). We repeated 422 
the algorithm many times (1000 times for the functional diversity and 100 times for the structural 423 
diversity) and computed the mean diversity score as the average exponentiation of the Shannon 424 
entropy indices over all the instances: 425 
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Figure/Table legends: 433 
 434 
Figure 1. Ligand-based virtual screening of a target (e.g., NPD2186 from RIKEN NPDepo). 435 
All the compounds of the MOSAIC database (http://mosaic.cs.umn.edu) [29] were ranked in the 436 
decreasing order of structural similarity to the target molecule based upon the similar property 437 
principle (SPP). In this ranked list, NPD4974 had a very distinct chemical-genetic profile from 438 
NPD2186, appearing as a false positive generated by SPP. Here, we described all the compounds 439 
using ASP fingerprints (depth 8) and measured the structural similarity using the Braun-Blanquet 440 
similarity coefficient. 441 
 442 
Figure 2. Model precision for all structure descriptors paired with the Cosine, Tanimoto, or 443 
Braun-Blanquet similarity coefficient using our RIKEN high confidence data collection. (a) 444 
Precision at several recalls and the area under the ROC curve for each model. The red and green 445 
values represented the highest precision achieved at a given recall and the average precision over 446 
all the structure descriptors for a given similarity coefficient at a recall, respectively. (b) Relative 447 
performance of ASP (teal), LSTAR (gold), and RAD2D (magenta) fingerprints to ECFP. For all 448 
the structure descriptors that required a depth of description, precision was measured at depth 8. 449 
 450 
Figure 3. Model precision for all structure descriptors paired with the Cosine, Tanimoto, or 451 
Braun-Blanquet similarity coefficient using our NCI/NIH/GSK high confidence data 452 
collection. (a) Precision at several recalls and the area under the ROC curve for each model. The 453 
red and green values represented the highest precision achieved at a given recall and the average 454 
precision over all the structure descriptors for a given similarity coefficient at a recall, 455 
respectively. (b) Relative performance of ASP (teal), LSTAR (gold), and RAD2D (magenta) 456 
fingerprints to ECFP. For all the structure descriptors that required a depth of description, 457 
precision was measured at depth 8. 458 
 459 
Figure 4. Depth impact of structure descriptors on the performance of our prediction 460 
models. We measured the precision of our prediction models at 10 consequent molecular depths 461 
for 5 different structure descriptors, each paired with the Braun-Blanquet similarity coefficient, 462 
using our RIKEN high confidence collection.  463 
 464 
Figure 5. Prediction performance of learning models. (a) Learning pipeline for one bootstrap 465 
using pairwise structural encodings (see Methods). (b) Model performance for our RIKEN high 466 
confidence collection. The blue curve was the prediction performance of ASP fingerprints paired 467 
with the Braun-Blanquet similarity coefficient, whereas the teal and gold curves represented the 468 
performance of ASP and LSTAR fingerprints using our learning models, respectively. (c) Model 469 
performance for the combined RIKEN and NCI/NIH/GSK high confidence collections. (d) 470 
Performance of the learning models for the NCI/NIH/GSK high confidence collection, where 471 
true positives were only 10% (default for this paper) or (e) 20% of the compound pairs with the 472 
highest chemical-genetic profile similarity.  473 
 474 
Figure 6. Functional and structural clustering for our RIKEN high confidence collection. 475 
(a) Distribution of 10 functional clusters generated by k-means using chemical-genetic profiles. 476 
Contribution of these functional clusters to the top TP pairs extracted by (b) our learning model 477 
and (c) the Braun-Blanquet similarity coefficient using the ASP fingerprints. (d) Distribution of 478 
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10 structural clusters generated by k-medoids using the ASP fingerprints. Contribution of these 479 
structural clusters to the top TP pairs that were introduced by (e) our learning model and (f) the 480 
Braun-Blanquet similarity coefficient. 481 
 482 
Figure 7. Functional and structural clustering for our NCI/NIH/GSK high confidence 483 
collection. (a) Distribution of 10 functional clusters generated by k-means using chemical-484 
genetic profiles. Contribution of these functional clusters to the top TP pairs extracted by (b) our 485 
learning model and (c) the Braun-Blanquet similarity coefficient using the ASP fingerprints. (d) 486 
Distribution of 10 structural clusters generated by k-medoids using the ASP fingerprints. 487 
Contribution of these structural clusters to the top TP pairs that were introduced by (e) our 488 
learning model and (f) the Braun-Blanquet similarity coefficient. 489 
 490 
Figure 8. Predictive power of structural similarity as a result of chemical substructures. By 491 
using the (a) RIKEN and (b) NCI/NIH/GSK high confidence collections, we measured that 492 
structural similarity showed higher predictive power of chemical-genetic profile similarity than 493 
the latter of the former largely because of substructures. Our learning models extracted 494 
biologically similar but structurally very dissimilar compounds for (c) NPD2186 from our 495 
RIKEN high confidence collection and for (d) NSC745750 from our NCI/NIH/GSK high 496 
confidence collection. 497 
 498 
Suppl. Figure 1. Depth impact of structure descriptors on the performance of prediction 499 
models. We measured the precision of our prediction models at 10 consequent molecular depths 500 
for 5 different structure descriptors, each paired with the Braun-Blanquet similarity coefficient, 501 
using our NCI/NIH/GSK high confidence collection. 502 
 503 
Suppl. Figure 2. Pairwise structural encodings and bootstrapping. (a) Pairwise structural 504 
features created by the element-wise multiplication of the normalized, low-dimensional 505 
structural vectors. We reduced dimension of descriptors using a supervised principal component 506 
analysis method. (b) Smoothing average over bootstraps. At each bootstrap, the chemical-genetic 507 
profile similarity of the test pairs (represented by “X”) was predicted, and all the predicted values 508 
for a test pair at different bootstraps were averaged to smoothen the prediction. For example, the 509 
compound pair 1 was a test pair in bootstraps 1, 2, and 4 (In bootstrap 3, it might be a training 510 
pair or an invalid pair where one compound belonged to the training set and the other to the test 511 
set). 512 
 513 
Table 1. Structure descriptors. 10 different topological, fingerprint-based structure descriptors 514 
generated by jCompoundMapper for the description of each compound in our datasets. The right 515 
column represented the total number of features needed to describe our high confidence RIKEN 516 
collection (826 compounds). 517 
 518 
Table 2. Similarity coefficients. 12 different similarity coefficients (several of these coefficients 519 
were collected by Raymond and Willett [12]) for measurement of the degree of similarity of two 520 
compounds described by a given fingerprint-based structure descriptor. Here, x = number of bits 521 
set in both fingerprints, y = number of bits set in the first fingerprint, z = number of bits set in the 522 
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second fingerprint, and w = number of bits in the bit string. For the Tullos similarity coefficient, 523 
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 525 
Suppl. Table 1. Precision at several recalls for all combinations of structure descriptors and 526 
similarity coefficients using our RIKEN high confidence collection. 527 
 528 
Suppl. Table 2. Precision at several recalls for all combinations of structure descriptors and 529 
similarity coefficients using our NCI/NIH/GSK high confidence collection. 530 
 531 
Suppl. Table 3. Functional enrichment of clusters for the 1000 top TP pairs of our learning 532 
model using our RIKEN high confidence collection.  533 
 534 
Suppl. Table 4. Functional enrichment of clusters for the 1000 top TP pairs of our learning 535 
model using our NCI/NIH/GSK high confidence collection. 536 
 537 
Suppl. Table 5. The list of compounds with similar chemical-genetic interaction profiles but 538 
dissimilar chemical structures for the largest functional cluster of 1000 top TP pairs (blue 539 
bars in Figs. 6b-7b). 540 
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ID Name Description # Features
SD1 AP2D Topological atom pairs 1210
SD2 ASP All-shortest path encodings 26114
SD3 AT2D Topological atom triplets 56900
SD4 DFS All-path encodings 48267
SD5 ECFP Extended connectivity fingerprints 42131
SD6 LSTAR Local path environments 84450
SD7 MACCS Predefined pharmacophores 9
SD8 PHAP2POINT2D Topological pharmacophore pair encodings 17
SD9 PHAP3POINT2D Topological pharmacophore triplet encodings 302
SD10 RAD2D Topological molprint-like fingerprints 91082

!

Table 1
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ID Name Measurement Range

SC1 Cosine 0 to 1

SC2 Tanimoto 0 to 1

SC3 Kulczynski 0 to 1

SC4 Dice 0 to 1

SC5 Sokal/Sneath 0 to 1

SC6 Tullos 0 to 1

SC7 McConnaughey -1 to 1

SC8 Asymmetric 0 to 1

SC9 Braun-Blanquet 0 to 1
!

SC10 Russel/Rao 0 to 1

SC11 Euclidean 0 to 1

SC12 Dot-product 0 to 

Table 2
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Cos Tan BB Cos Tan BB Cos Tan BB
SD1 0.850 0.850 0.861 0.684 0.683 0.676 0.355 0.357 0.370
ASP 0.919 0.919 0.912 0.829 0.819 0.830 0.557 0.567 0.586
SD3 0.849 0.850 0.866 0.785 0.785 0.770 0.515 0.515 0.523
SD4 0.877 0.888 0.871 0.765 0.767 0.740 0.540 0.544 0.543
SD5 0.855 0.854 0.861 0.743 0.749 0.777 0.555 0.556 0.556

LSTAR 0.883 0.883 0.883 0.833 0.833 0.828 0.565 0.566 0.560
SD7 0.102 0.102 0.102 0.074 0.074 0.074 0.091 0.091 0.091
SD8 0.138 0.138 0.138 0.044 0.044 0.044 0.049 0.049 0.049
SD9 0.056 0.056 0.056 0.081 0.081 0.081 0.108 0.108 0.108

RAD2D 0.875 0.866 0.861 0.810 0.814 0.834 0.535 0.536 0.548
0.640 0.641 0.641 0.565 0.565 0.565 0.387 0.389 0.393

Cos Tan BB Cos Tan BB Cos Tan BB
SD1 0.221 0.222 0.230 0.154 0.154 0.156 0.590 0.592 0.593
ASP 0.288 0.287 0.294 0.154 0.156 0.158 0.575 0.579 0.584
SD3 0.254 0.259 0.256 0.152 0.153 0.152 0.581 0.583 0.584
SD4 0.267 0.270 0.279 0.154 0.156 0.158 0.572 0.576 0.580
SD5 0.263 0.268 0.277 0.146 0.149 0.153 0.574 0.578 0.584

LSTAR 0.288 0.290 0.294 0.168 0.170 0.171 0.587 0.590 0.596
SD7 0.100 0.100 0.100 0.116 0.116 0.116 0.526 0.526 0.526
SD8 0.062 0.062 0.062 0.091 0.091 0.091 0.499 0.499 0.501
SD9 0.109 0.109 0.109 0.098 0.098 0.101 0.486 0.488 0.492

RAD2D 0.289 0.291 0.294 0.161 0.162 0.164 0.579 0.582 0.588
0.214 0.216 0.219 0.139 0.140 0.142 0.557 0.559 0.563

	

Recall = 0.002 Recall = 0.005 Recall = 0.02

Recall = 0.05 Recall = 0.2 Area Under the Curve (AUC)
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Cos Tan BB Cos Tan BB Cos Tan BB
SD1 0.818 0.813 0.781 0.594 0.609 0.644 0.312 0.319 0.332
ASP 0.839 0.839 0.932 0.789 0.810 0.813 0.535 0.541 0.529
SD3 0.841 0.828 0.884 0.819 0.819 0.801 0.518 0.495 0.461
SD4 0.828 0.828 0.916 0.772 0.789 0.807 0.491 0.495 0.490
SD5 0.897 0.897 0.916 0.783 0.783 0.795 0.373 0.395 0.400

LSTAR 0.897 0.897 0.916 0.856 0.870 0.871 0.533 0.527 0.520
SD7 0.190 0.190 0.190 0.199 0.199 0.199 0.155 0.155 0.155
SD8 0.110 0.110 0.110 0.144 0.144 0.144 0.185 0.185 0.185
SD9 0.280 0.280 0.280 0.234 0.234 0.234 0.175 0.175 0.175
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