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Abstract 33 

Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical 34 

libraries. Mutations can alter the response of cells to a compound, revealing chemical-genetic 35 

interactions that can elucidate a compound’s mode of action. We developed a highly parallel and 36 

unbiased yeast chemical-genetic screening system involving three key components. First, in a 37 

drug-sensitive genetic background, we constructed an optimized, diagnostic mutant collection that 38 

is predictive all major yeast biological processes. Second, we implemented a multiplexed (768-39 

plex) barcode sequencing protocol, enabling assembly of thousands of chemical-genetic profiles. 40 

Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-41 

wide genetic interaction profiles, we predicted compound functionality. Applying this high-42 

throughput approach, we screened 7 different compound libraries and annotated their functional 43 

diversity. We further validated biological process predictions, prioritized a diverse set of 44 

compounds, and identified compounds that appear to have dual modes of action. 45 

 46 

Key words: Chemical-genetics, high-throughput screening, genetic networks, 47 
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INTRODUCTION 50 

 Discovery and development of novel compound libraries has outpaced the functional 51 

characterization of these compounds, leading to a growing knowledge gap1,2. Chemical probes that 52 

target specific cellular functions are valuable entities because they can provide insight into 53 

fundamental cellular functions and represent putative leads for new drug development. Despite a 54 

massive wealth of whole-genome sequence data that has identified hundreds of potential new 55 

druggable targets, in both humans and pathogens, we lack the chemical probes to take advantage 56 

of these insights3. Therefore, a major demand exists for large-scale functional annotation of 57 

bioactive compounds. 58 

 59 

 Whole-cell screening approaches are advantageous because they identify bioavailable 60 

molecules and provide readouts based on general bioactivity4, a particular phenotypic response5, 61 

or a specific reporter system6 while maintaining biological context. Chemical-genetics expands 62 

traditional whole cell screening because it has the potential to monitor all cellular pathways in an 63 

unbiased manner7,8. A typical chemical-genetic screen involves testing a collection of mutant 64 

strains with defined genetic perturbations for fitness defects or advantages when grown in the 65 

presence of a specific compound9–11. Quantifying the relative fitness of a collection of mutant 66 

strains in response to compound treatment generates a chemical-genetic interaction profile, which 67 

provides diagnostic functional information about a compound’s general mode-of-action10,12.  68 

 69 

 Saccharomyces cerevisiae represents a powerful eukaryotic model system for chemical-70 

genetic analysis, due to its facile genetics and availability of functional genomic reagents and tools. 71 

For example, genome-wide gene deletion analysis13, identified ~1000 essential genes and enabled 72 

the generation of a set of ~5000 viable haploid deletion mutants. The essential genes can be 73 

exploited for chemical genetic studies as heterozygous diploid mutants, whereas the nonessential 74 

genes can be studied as viable haploid deletion mutants, such that each mutant is examined for 75 

hypersensitivity or resistance to a compound10,11.  Each strain is uniquely barcoded allowing the 76 

responses of hundreds of pooled mutants to be measured simultaneously to generate a chemical-77 

genetic interaction profile9,10. 78 

 79 

A comprehensive genetic interaction network, in which the majority of all possible double 80 

mutants are scored for genetic interactions quantitatively, has been mapped for yeast14. A genetic 81 

interaction occurs when mutations in two or more genes combine to generate an unexpected 82 

phenotype. Given the single mutant phenotypes, a negative genetic interaction occurs when two 83 

mutations combine to produce a double mutant fitness defect that is more severe than expected, 84 

whereas a positive genetic interaction reflects a double mutant fitness defect that is less severe than 85 

expected. The set of negative and positive genetic interactions for a particular query gene 86 

represents a genetic interaction profile, which provides a quantitative description of gene function. 87 

A global network of genetic interaction profile similarities groups genes with similar roles into 88 

dense gene clusters that represent major biological processes and thus highlights the functional 89 
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organization of a cell14,15. Importantly, a global compendium of genetic interaction profiles can be 90 

used to functionally interpret chemical-genetic interaction profiles12,15. If a bioactive compound 91 

inhibits a specific target protein, then loss-of-function mutations in the corresponding target gene 92 

should mimic the bioactivity of the compound12,15. Moreover, the genetic interaction profile of the 93 

target gene should resemble the chemical-genetic interaction profile of the inhibitory compound 94 

that modulates the target pathway12,15. For example, the genetic interaction profile associated with 95 

a partial loss-of-function mutation in ERG11, which encodes the target of fluconazole, closely 96 

resembles the chemical-genetic interaction profile of fluconazole12. Thus, the global genetic 97 

interaction network provides a general key for interpreting the target pathways of bioactive 98 

compounds, enabling compounds to be annotated to specific biological processes and possibly 99 

specific pathways.   100 

 101 

 We developed a high-throughput chemical-genetic screening platform to functionally 102 

annotate large compound collections in a rapid and systematic manner. To do so, we constructed 103 

a diagnostic set of viable yeast gene deletion mutants, each carrying a unique DNA barcode 104 

identifier, which span all major biological processes, within a drug-sensitized, genetic background. 105 

We also developed a highly multiplexed (768-plex) barcode sequencing protocol, allowing us to 106 

decipher rich chemical-genetic profiles for hundreds of compounds simultaneously. Finally, we 107 

assembled a computational platform for functionally annotating compounds to specific biological 108 

processes and pathways. Ultimately, we applied this chemical-genetic pipeline to annotate seven 109 

diverse libraries containing 13,524 compounds in an unbiased and systematic manner.  110 

 111 

RESULTS 112 

 To design a pipeline for high-throughput chemical-genetic profiling and functional 113 

annotation of chemical libraries (Fig. 1a), we first selected an optimal set of diagnostic genes and 114 

constructed a mutant strain collection in which each diagnostic gene was individually deleted in a 115 

drug-hypersensitive genetic background. Second, we developed a highly multiplexed barcode 116 

sequencing16 system for chemical-genetic profiling with optimized signal detection. Third, we 117 

implemented computational approaches to integrate chemical-genetic profiles with the global 118 

yeast genetic interaction network to predict biological processes targeted by specific compounds. 119 

Finally, we assembled a database of chemical structures, chemical-genetic profiles, and functional 120 

predictions for each library investigated in this study.  121 

 122 

Developing a diagnostic gene set for chemical-genetic profiling 123 

 To increase the potential for detecting bioactive compounds, we constructed a drug-124 

sensitized yeast genetic background by combining deletions of PDR1 and PDR3, both of which 125 

encode transcription factors known to regulate the yeast pleiotropic drug response17,18, with a 126 

deletion of SNQ2, which encodes a multidrug transporter (Supplementary Results, 127 

Supplementary Fig. 1). We tested growth of the resultant pdr1∆ pdr3∆ snq2∆ (3∆) drug-128 

sensitized strain in the presence of 440 different control compounds (see Methods, 129 
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Supplementary Table 1) and observed a ~5-fold increase in the number of compounds that 130 

inhibited growth of the drug-sensitized strain compared to wild-type cells via a halo assay, 131 

indicating that these deletion mutations sensitized yeast to diverse classes of compounds (Fig. 132 

1b)19. When considering the complete set of 13,524 compounds tested in this study, the average 133 

“hit rate”, corresponding to the fraction of bioactive compounds within a collection that causes at 134 

least 20% growth inhibition in the drug-sensitized strain in liquid medium, was ~35% across all 135 

compounds tested, which is ~5X greater than the hit rate found using the equivalent wild-type 136 

strain background in previous studies11 (Supplementary Table 1). Specific chemical-genetic 137 

interactions were also detected more readily in the drug-sensitized background. For example, at a 138 

concentration of 34.4 µM, the microtubule-binding compound benomyl showed a specific 139 

chemical-genetic interaction with TUB3, which encodes -tubulin, only in our drug-sensitized 140 

background (Fig. 1c). Similarly, we analyzed the response to a cell wall glucan synthase inhibitor, 141 

micafungin, at 25 nM, and we detected a specific chemical-genetic interaction with BCK1, which 142 

encodes a component of the PKC cell wall integrity-signaling pathway (Fig. 1d). In both cases, 143 

only the known sensitive mutant showed an exaggerated chemical-genetic interaction, suggesting 144 

that, like wild-type cells, the drug-sensitive background identifies functionally relevant signals 145 

(Fig. 1c-d). 146 

 147 

Because genes within the same pathway and the same biological process tend to share 148 

similar genetic interaction profiles12,15, only a subset of genes are required to capture functionally 149 

informative genetic interaction signatures for a given gene. Leveraging this property, we 150 

developed a computational approach for optimal selection of mutants for chemical-genetic screens, 151 

identifying a set of 157 functionally diagnostic strains (Fig. 1e) (see Methods). Independently, we 152 

also manually selected 236 strains mutated for genes that span major yeast biological processes 153 

that belong to highly-connected clusters in the global genetic interaction profile similarity 154 

network15, 83 of which overlapped with the computationally selected set. Thus, the final diagnostic 155 

pool consisted of 310 deletion mutant strains (~6% of all nonessential genes) that spans a similar 156 

functional space as the entire non-essential deletion mutant collection (Supplementary Fig. 2, 157 

Supplementary Table 2). While members of our diagnostic subset are not distributed 158 

proportionally across the 17 major bioprocesses, these were selected not only for bioprocess 159 

representation, but also their predictive power (see Methods). Even though we are using a subset 160 

of strains, this diagnostic collection has been optimized for gene similarity-based target prediction 161 

across the entire set of genetic interaction query strains (Fig. 1e). 162 

 163 

Furthermore, we compared the individual fitness of each sensitized deletion strain to the 164 

original deletion collection (Supplementary Table 2), and used this fitness score to select pool 165 

members with near-equivalent fitness. We observed that ~20% of the mutants in diagnostic pool 166 

version 2.0 could not be scored by our standard SGA scoring method because of irregularities in 167 

colony shape in the pdr1Δ pdr3Δ snq2Δ genetic background (Supplementary Table 2), and we 168 

verified that these mutants had appropriate fitness values based on barcode representation after 169 
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pooled liquid growth. Reducing the complexity of the ~5000 viable yeast deletion mutant 170 

collection to a smaller diagnostic set allowed us to maximize the dynamic range for detecting 171 

chemical-genetic interactions in a micro-culture and increased the degree of multiplexing for our 172 

barcode sequencing read-out.  173 

 174 

Optimizing signal detection and high-throughput screening 175 

Detecting drug-gene interactions requires a clear separation of sensitive/resistant mutants 176 

relative to the unaffected mutants in the pooled assay. To optimize signal detection, we tested the 177 

effects of three factors on detection of drug-gene interactions using the well-characterized 178 

compounds benomyl and micafungin. These included inoculum size, incubation time, and the 179 

number of PCR cycles used for barcode DNA amplification (see Methods). Incubation time had 180 

the most pronounced effect on the signal to noise ratio of the chemical-genetic profiles, with the 181 

optimal outcome observed after 48 h incubation (Fig. 1f, Supplementary Fig. 3a). For example, 182 

gene deletion mutants defective in microtubule functions, including CIN1, CIN4, GIM3 and TUB3, 183 

were depleted efficiently from the culture after 48 h growth in the presence of benomyl. The assay 184 

was relatively robust to inoculum density and number of PCR amplification cycles 185 

(Supplementary Fig. 3a). Ultimately, the screening conditions we selected included 200 µL 186 

micro-cultures, 48 h growth, at an inoculum of 250 cells/strain and 30 PCR cycles for barcode 187 

amplification. These parameters resulted in high correlation between biological replicates 188 

(Supplementary Fig. 3b). 189 

 190 

Multiplexing of chemical-genetic samples is critical for screening large chemical libraries 191 

composed of thousands of compounds. Employing a custom-designed set of 768 multiplex 192 

primers, each containing a unique 10bp multiplex tag (Supplementary Table 3, see Methods), 193 

we found that combining the barcode DNA samples from 768 different chemical-genetic 194 

experiments produced profiles of similar quality to profiles for the same set of compounds 195 

generated at 96-plex (Fig. 1g). Thus, we adopted a screening strategy of 768 samples per Illumina 196 

HiSeq sequencing lane, or 6144 samples per flow cell. Under these conditions, biological 197 

replicates (independently grown cultures of the same strain pool) from different sequencing lanes 198 

exhibited highly reproducible chemical-genetic profiles (Fig. 1h). In pilot experiments, we 199 

sequenced barcodes using two separate reads, one for the multiplex tag and another for the deletion 200 

barcode; this methodology was thought to improve sequencing accuracy because it reduces the 201 

read length20. However, we achieved a more uniform distribution of sequence counts across 202 

conditions and barcoded mutants by using a single sequencing reaction designed to read through 203 

the entire PCR amplicon (Supplementary Fig. 3c).  204 

 205 

Chemical-genetic profiling of diverse compound libraries 206 

Applying our optimized pipeline, we generated chemical-genetic interaction profiles for 207 

13,524 compounds by screening seven diverse compound collections: the RIKEN Natural Product 208 

Depository (NPDepo), which is composed largely of purified natural products or natural product 209 
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derivatives, four collections from the National Cancer Institute’s Open Chemical Repository 210 

(natural products: NCI-NP, approved oncology drugs: NCI-ONC, structural and mechanistic 211 

diversity sets: NCI-STRUCT-DIV and NCI-MECH-DIV, respectively), a library of compounds 212 

from the National Institutes of Health Small Molecule Repository with a history of use in human 213 

clinical trials (NIH Clinical Collection or NIHCC), and the Glaxo-Smith-Klein kinase inhibitor 214 

collection (GSK-KI). A complete description of these collections, all compounds screened, their 215 

structures, basic physical properties, and chemical-genetic data is provided (Supplementary 216 

Table 4 and Supplementary Information).  217 

 218 

Chemical-genetic interactions were identified and scored by comparing the individual 219 

mutant barcode read counts to those from a set of solvent control conditions. A negative chemical 220 

genetic (CG) interaction score represents hypersensitivity to a compound whereas a positive CG 221 

score represents resistance (see Methods). At a relatively strict CG score threshold of +/-2.5 (z-222 

score for enrichment/depletion in the presence of the compound relative to DMSO control), we 223 

observed positive chemical-genetic interactions between 0.5% of all compound-deletion mutant 224 

pairs, and negative chemical-genetic interactions between 1.1% of all compound-deletion mutant 225 

pairs. The set of highly bioactive compounds, which inhibited growth of the pooled collection by 226 

more than 20% (~4700 compounds), exhibited a substantially higher frequency of chemical-227 

genetic interactions, with 1.3% and 2.3% of compound-mutant pairs for positive and negative 228 

interactions, respectively. Each deletion mutant displayed, on average, ~46 positive interactions 229 

and ~79 negative interactions across the entire collection of screened compounds. The number of 230 

chemical-genetic interactions for each strain (CG score ≥ 2.5 or ≤ -2.5) across all screened 231 

compounds is presented in Supplementary Table 5. Importantly, compounds screened both in 232 

our study, using the diagnostic set and in previous studies using the entire nonessential deletion 233 

mutant collection showed positive correlations, despite differences in strain backgrounds and 234 

methods used to measure mutant strain abundance (microarray vs. sequencing) (Supplementary 235 

Table 6).11,21  236 

 237 

Hierarchical clustering analysis10,12 provides a visual representation of the diversity of the 238 

resultant chemical-genetic profiles. We focused on the most responsive subset of 173 gene deletion 239 

mutants, whose chemical-genetic profiles consisted of at least three extreme negative interactions 240 

(CG score ≤ -5), and 1380 compounds, which were derived from all seven collections (Fig. 2, See 241 

methods). The clustered matrix highlighted chemical-genetic interactions involving sets of 242 

functionally related genes participating in different biological processes, including DNA 243 

replication & repair (i), mitosis and chromosome segregation (ii), glycosylation, protein 244 

folding/targeting, cell wall biogenesis (iii), transcription and chromatin organization (iv), vesicle 245 

traffic (v), cell polarity and morphogenesis (vi), and other biological functions (Fig. 2). For 246 

example, a cluster of compounds, including benomyl and the tubulin-binding compound 247 

nocodazole, showed specific chemical-genetic interactions with TUB3 and CIN1, suggesting these 248 

compounds may target microtubule function or, more generally, target pathways with roles in 249 
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mitosis and chromosome segregation. Indeed, this cluster includes a previously uncharacterized 250 

compound from the RIKEN NPDepo collection, NPD2784, which we found strongly inhibits 251 

polymerization of mammalian tubulin in vitro (Supplementary Fig. 4).  252 

 253 

Integrating genetic and chemical-genetic profiles 254 

The chemical-genetic interaction profile of a compound that targets a specific biological 255 

process should overlap the genetic interaction profiles of genes that function as part of that 256 

biological process12,15. To identify biological processes targeted by compounds, we compared the 257 

chemical-genetic profile of each compound to our comprehensive set of genetic interaction profiles 258 

(Supplementary Fig. 5), allowing us to score each compound-gene pair for profile similarity (see 259 

Methods). This analysis generated a set of gene-level similarity scores identifying a set of potential 260 

target genes for each compound. Although prediction of the precise gene target requires deeper 261 

experimental analysis, our approach readily predicted the biological process targeted by a 262 

particular compound based on Gene Ontology (GO) annotations shared among the target gene set 263 

(see Methods). To focus on high-confidence predictions, we estimated false discovery rates (FDR) 264 

for biological process-level predictions based on both resampled and DMSO control profiles and 265 

applied specific FDR thresholds (RIKEN NPDepo screen: FDR ≤ 25%; NCI/NIH/GSK screen: 266 

FDR ≤ 27%, see Methods). This analysis yielded 1522 high-confidence compound profiles that 267 

we refer to as our high confidence set (HCS) (Supplementary Table 7). We found that strains 268 

with many negative and positive chemical-genetic interactions are important for bioprocess-level 269 

predictions (Supplementary Table 8). Interestingly, and in accordance with recent findings 270 

regarding the differences in functional information encoded by negative vs. positive genetic 271 

interactions14, we found that negative chemical-genetic interactions were the primary driver of 272 

genetic interaction-based target predictions, and without them, the quality of the predictions was 273 

reduced substantially (See Methods, Supplementary Table 9).  274 

 275 

In general, we found that compound bioactivity was correlated with our ability to make 276 

high-confidence predictions, as ~82% of compounds in our high confidence set inhibited growth 277 

>20% (Supplementary Fig. 6). However, the remaining ~18% of HCS compounds were 278 

associated with a more modest bioactivity (<20% growth inhibition), suggesting that even weakly 279 

bioactive compounds can yield functionally informative chemical-genetic profiles and that pre-280 

screening for bioactivity may exclude some predictive profiles. A set of 296 compounds displayed 281 

extremely high bioactivity, with >90% growth inhibition, and nearly 60% (122) of these 282 

compounds were excluded from the final dataset because their interaction profiles did not meet 283 

thresholds for strain representation. Interestingly, chemical-genetic profiles for these highly 284 

bioactive compounds showed that mutants defective for two genes involved in amino acid 285 

transport, GTR1 and AVT5 were highly resistant and accounted for a majority of the read counts 286 

from these compound conditions. This suggests that these genes may play general roles in small 287 

molecule transport and that their deletions may confer general resistance to highly bioactive 288 
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compounds (Supplementary Fig. 7), and we confirmed this finding for gtr1Δ cells in an 289 

independent experiment involving 23 different compounds (Supplementary Table 10). 290 

 291 

Defining the functional landscape of compound collections 292 

To view the functional diversity of entire compound collections, each HCS compound was 293 

mapped onto the global genetic interaction profile similarity network at the location of the gene 294 

with the most similar genetic interaction profile to the compound’s top predicted biological process 295 

target15,22. The global network of genetic interaction profile similarities consists of 17 densely 296 

connected gene clusters, each representing a distinct biological process14 (Fig. 3a). The integration 297 

of the set of chemical-genetic profiles from a particular compound collection into the global 298 

genetic interaction profile similarity network allowed visualization of functional space covered by 299 

the compound collection (Fig. 3b) and enabled quantification of the diversity of targeted biological 300 

processes (Fig. 4a). 301 

 302 

Every major functional cluster in the genetic network appeared to be targeted by at least 303 

one compound screened in this study (Fig. 3b). However, glycosylation, mitosis, cell polarity, and 304 

vesicle traffic related functions were the most frequently targeted, suggesting that these 305 

bioprocesses are more susceptible to chemical perturbation in yeast (Fig. 4a). When corrected for 306 

the number of compounds, the RIKEN NPDepo collection was the most functionally diverse 307 

collection, whereas the NCI natural products collection (Supplementary Fig. 8) was the least 308 

diverse. The NPDepo library can be partitioned chemically and mechanistically into different 309 

subset collections, including natural products (NP), natural product derivatives (NPD), and anti-310 

cancer compounds (a manually curated list of RIKEN compounds with known anticancer activity, 311 

Supplementary Table 4), all of which showed distinct functional signatures in terms of their 312 

targeted bioprocess predictions. Each compound collection targets a unique set of biological 313 

processes (Fig. 3b and 4b), suggesting that this global view of collection functionality can aid 314 

prioritization of screening efforts based on specific bioprocess targets of interest.  315 

 316 

For the larger collections, we observed compounds targeting all 17 biological processes 317 

represented in the global genetic interaction similarity map. For example, the RIKEN NPDepo 318 

library was large and diverse enough to target all the major biological processes (Fig. 4a-b). 319 

Interestingly, the rate at which compounds targeted different biological processes differed from 320 

the distribution of genes across bioprocesses, suggesting a biased chemical target space (Fig. 4b 321 

i-iv). While each chemical library displayed a unique set of predicted bioprocess targets, common 322 

signatures emerged across several of the collections. For example, we observed a ~4-fold 323 

enrichment of compounds targeting glycosylation & protein folding related processes for most 324 

compound collections, including the NPDepo and NCI mechanistic diversity collections, which 325 

were designed to be relatively unbiased in terms of structure and functional annotations (Fig. 4b). 326 

Conversely, we saw a common depletion for compounds targeting DNA replication & repair and 327 

chromatin/transcription related processes, suggesting these processes are perturbed by compounds 328 
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less frequently than expected, which could be an important consideration if, for example, targeting 329 

this biological process for cancer therapeutics is a major goal.  330 

 331 

While enrichment for cytosolic targets and depletion for nuclear targets appeared as a 332 

general trend across several compound collections, exceptions were observed within specific 333 

libraries. In particular, for the NCI oncology collection, which is made up of anti-cancer agents 334 

largely directed towards the inhibition of cell division cycle functions and DNA replication/repair, 335 

we observed a strong enrichment for compounds targeting DNA replication & repair and 336 

transcription & chromatin organization relative to the expected background (Fig. 4b, p<0.001). 337 

The NCI oncology collection, along with the anti-cancer subset of the RIKEN collection, differed 338 

the most from the general trend observed for larger, less biased collections, reflecting the fact that 339 

these compounds have been selected for very specific purposes, which is largely confined to 340 

inhibiting growth of replicating cells.  341 

 342 

The NIH-CC had a unique enrichment for compounds targeting metabolism and fatty acid 343 

biosynthesis, driven by GO predictions for sterol metabolic processes (Fig 4b, Supplementary 344 

Table 11). The majority of the compounds supporting this interact with cytochrome P450 345 

enzymes23–27. In humans, compounds that inhibit or interact with cytochrome P450 have a high 346 

degree of drug-drug interactions 28,29. In yeast, cytochrome P450 homologs ergosterol biosynthesis 347 

genes (ERG11, ERG5, NCP1). Thus, the yeast system provides a means of predicting compounds 348 

that interact with human cytochrome P450 enzymes, which could indicate compounds with a high 349 

degree of drug interactions.  350 

 351 

The GSK kinase inhibitor (KI) library contains a characterized set of inhibitors of human 352 

kinases30. Three compounds from this collection were previously identified to bind human mitogen 353 

and stress activated kinases (MSK)31, and in yeast these had significant (p<0.05) enrichment for 354 

targeting the GO process of intracellular protein kinase cascade. This signaling pathway in yeast 355 

is mediated by the yeast mitogen activated protein kinase encoded by SLT2, the top single-gene 356 

target prediction for all 3 compounds (Supplementary Table 12), and has high homology to 357 

human ERK1, 2, and 4. Further, 5 compounds known to target human Polo-like kinase (PLK), 358 

were predicted in yeast to target the GO process nuclear import (Supplementary Table 12). The 359 

yeast homolog of PLK is CDC5, which is involved in regulating nuclear shape. These examples 360 

again suggest our yeast assay could be used to predict potential chemical bioprobes in human cells. 361 

 362 

In general, the chemical-genetic functional signatures we observed appear to be related to 363 

cellular localization because cytoplasmic or cell surface related bioprocesses were more readily 364 

perturbed and thus enriched across diverse chemical libraries (p<0.0001), whereas nuclear 365 

processes were less susceptible to chemical perturbation, and compounds predicted to target these 366 

processes were depleted among many of the libraries tested (p<0.0001) (Supplementary Table 367 

13). This may suggest that, in general, bioactive compounds are less likely to reach the nucleus, 368 
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while cell surface and cytosolic targets may be more reactive. This is consistent with a previous 369 

study32, which reported that out of 1362 annotated drug targets with orthologs across 4 mammalian 370 

species, only 8.4% of these targets localized to the nucleus whereas 56% of targeted proteins 371 

localized to either membranes or the cytosol. 372 

 373 

Integrating structural and functional data 374 

 Because the RIKEN NPDepo contains sets of compound derivatives based upon variations 375 

of core scaffolds, we tested if compounds predicted to target similar functions were enriched for 376 

specific structural classes (Fig. 4b v-vi). Indeed, we found several instances where a large class of 377 

structural derivatives had similar predicted modes of action (Supplementary Table 14). For 378 

example, chemical-genetic profile similarity grouped a coherent set of artemisinin derivatives (Fig. 379 

4b v) together within a broader subset of 358 compounds annotated to the “mitosis and 380 

chromosome segregation” biological process. While artemisinin is an effective anti-malarial drug, 381 

the cellular target(s) of this compound remain unclear33. In yeast, artemisinin is known to affect 382 

the cell cycle as well as mitochondrial function34,35. Furthermore, artemisinin has well-established 383 

effects on cancer cell cycle progression36–38. Our functional annotation supports both of these 384 

diverse roles for artemisinin because our artemisinin-related natural product (NP266) was 385 

annotated with 2 different biological process predictions: mitochondria cristae formation and 386 

microtubule cytoskeleton organization (Supplementary Table 7); however, the artemisinin 387 

derivatives that contain a relatively long side chain, extending from the three-ring core, have 388 

stronger predictions to a mitosis-related rather than a mitochondrial bioprocess-level target. 389 

 390 

In another example, the furanocoumarin tricycle (psoralen) structural class is represented 391 

by multiple derivatives within the NPDepo library (Fig. 4b vi). Psoralen and its derivatives have 392 

been used to treat cutaneous T-cell carcinoma and dermatological conditions such as psoriasis and 393 

eczema39. The RIKEN NPDepo psoralen derivatives were frequently predicted to affect vesicle 394 

trafficking and membrane associated processes, and it is possible that other RIKEN NPDepo 395 

compounds with overlapping functional annotation could have a similar therapeutic potential.  396 

 397 

Targeted biological process validations and assessment of predictive power 398 

In a previous study, the DNA content of yeast mutant strains harboring conditional alleles 399 

of essential genes were analyzed by flow cytometry, showing how each essential gene affects cell 400 

cycle progression and mapping specific cell cycle progression defects to different biological 401 

process40. For example, inhibiting the function of essential genes involved in translation causes an 402 

accumulation of cells in G1 phase (“G1” phenotype), reflecting insufficient protein synthetic 403 

capacity to transit the restriction point in G1 (referred to as Start in yeast), whereas inhibiting genes 404 

involved in DNA synthesis causes an accumulation of cells in S phase (“S” phenotype), and 405 

inhibiting mitosis genes results a G2 phase accumulation (“G2” phenotype). We performed high-406 

throughput flow cytometry analysis on cell populations exposed to a set 67 different HCS 407 

compounds from the RIKEN NPDepo (Supplementary Fig. 9) that were predicted to cause 408 
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specific cell cycle arrest phenotypes (Fig. 5a-b). In total, 27/67 (40%) of these compounds resulted 409 

in a cell cycle perturbation, and overall, 19/27 (70%) of compounds affecting cell cycle progression 410 

induced a phenotype consistent with our chemical-genetic predictions (Supplementary Table 15). 411 

For example, NPE94 was predicted to affect regulation of mitosis, and indeed, cells treated with 412 

this compound accumulated in G2 phase (Fig. 5a). Compounds displaying a cell cycle phenotype 413 

showed significant enrichment for each of the compounds’ predicted phenotypes over a 414 

background with permuted compound labels (G1: ~12-fold enrichment over background, p<0.001; 415 

G2: ~3-fold enrichment, p<0.01; S: 4-fold enrichment, p<0.001) (Fig. 5a-b). While only 40% of 416 

compounds induced a cell cycle phenotype in the single-dose and single time point tested, we 417 

suspect that an analysis using a dose curve and multiple time points would likely reveal cell cycle 418 

phenotypes among a number of the remaining ~60% of compounds predicted to affect this process. 419 

 420 

As a second validation, we examined the activity of 25 compounds annotated to cell wall-421 

related biological processes, utilizing several different cell biological readouts. To serve as 422 

controls, we selected 24 high-confidence compounds with equivalent growth inhibition and 423 

diverse bioprocess-level predictions but excluding “Cell Polarity and Morphogenesis” or 424 

“Glycosylation, Protein folding and Cell Wall Biosynthesis” bioprocesses predictions 425 

(Supplementary Table 16). Microscopic examination of fluorescent staining of two different cell 426 

wall polymers, β-1,3-glucan and chitin, revealed that 8/25 (32%) cell wall predicted compounds 427 

induced abnormal cell wall composition (Fig. 5c-d), and 10/25 (40%) caused increased bud neck 428 

width (Fig. 5e), a common phenotype of cell-wall-targeting agents41,42. Furthermore, 7 of these 429 

compounds caused hypersensitivity to zymolyase (Supplementary Fig. 10a), which degrades 430 

yeast cell wall β-1,3-glucan. In addition, 3/25 compounds caused rapid cell leakage similar to 431 

echinocandin B (Supplementary Fig. 10b), an antifungal drug that inhibits β-1,3-glucan 432 

biosynthesis. Among these compounds, we found a set compounds structurally similar to 433 

pseudojervines (Supplementary Fig. 10c). Based on this, we predicted, and confirmed that the 434 

poorly characterized parent compound jervine caused similar, abnormal glucan localization 435 

(Supplementary Fig 10d). The proportion of compounds that showed cell wall phenotypes in the 436 

cell wall-predicted set of compounds was significantly greater than that in the control compounds, 437 

even when all pseudojervines were treated as one compound. Overall, 48% (12/25) of the 438 

compounds predicted to target cell wall biosynthesis exhibited at least one cell wall defect 439 

associated phenotype, and 36% (9/25) of the compounds exhibited at least two phenotypes 440 

(Supplementary Table 16). In contrast, only 4% (1/24) of the control compounds showed any 441 

cell wall phenotypes (p < 0.05), (Supplementary Table. 16).   442 

 443 

Predicting compounds with dual targets 444 

Our database of biological-process level annotation also offers the potential to screen for 445 

compounds that have multiple targets. Many pharmaceuticals perturb multiple cellular functions43, 446 

and identifying multifunctional compounds provides opportunities for drug repurposing and 447 

addressing potential side-effects of clinical agents44. We mined our HCS set of predictions to 448 
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identify compounds that were associated with two, distinct biological processes (Fig 6a, 449 

Supplementary Table 17). One of the top ranked compounds predicted to have multiple targets 450 

was NP214, a bleomycin A2 derivative. NP214 was predicted to target two different processes: 451 

(1) DNA replication (p<0.001) and (2) cellular proton transport (p<0.0001). The primary target of 452 

bleomycin and related compounds is DNA45; however, there is also evidence suggesting that these 453 

compounds perturb cellular membranes46–48, a secondary mode of action that could underlie 454 

bleomycin-induced side effect of lung fibrosis46. In mammalian cells, apart from its DNA activity, 455 

bleomycin has been shown to affect membrane redox potential and proton movement49. Moreover, 456 

bleomycin-iron complexes generate singlet oxygen and cause lipid peroxidation50,51. Thus, our 457 

chemical-genetic biological process predictions captured both the primary role of bleomycin 458 

(DNA damage) and secondary mechanisms that are consistent with known bleomycin side-effects.  459 

From a ranked list of dual target predictions (Supplementary Table 17) for HCS 460 

compounds, we observed a common coupling of DNA related processes and cell wall biogenesis 461 

(Fig. 6a). For example, when we exposed yeast cells to NPD5925, a novel RIKEN NPDepo 462 

compound that was predicted to affect both DNA catabolism (p<0.001) and cell wall biogenesis 463 

(p<0.001), they displayed cell surface defects, such as zymolyase sensitivity (Supplementary Fig. 464 

10), and a cell leakage phenotype resembling that of echinocandin B (Fig. 6b). Because NPD5925 465 

is fluorescent, we imaged its staining pattern and found that it localized to the nucleus, similar to 466 

DAPI (4',6-diamidino-2-phenylindole) (Fig. 6c, Supplementary Fig. 11); it also induced a 467 

G1/early S phase cell cycle arrest, similar to the arrest observed with high levels of hydroxyurea 468 

(Fig. 6d).52 While a compound that targets a pleiotropic gene could appear to perturb multiple, 469 

unique processes, we scanned the global yeast genetic interaction network for examples of genes 470 

displaying this type of genetic interaction profile; however, we were unable to find a single gene 471 

that could explain the dual bioprocess-level predictions of NPD5925 (Supplementary Fig. 12), 472 

which supports the dual functions of NPD5925, suggesting it perturbs both DNA catabolism and 473 

cell wall biogenesis processes independently.  474 

Despite the clear dual target signal of these compounds, the effect of dose likely plays a 475 

significant role in separating the multiple modes of action of a compound. Indeed, a dose curve 476 

would likely help further dissect primary from secondary mechanisms of action of compounds. 477 

For example, in the case of NP214 and NPD5925, it is possible that DNA may be the primary 478 

target, and thus the DNA binding CG score signal would likely be apparent at lower doses, whereas 479 

the cellular proton transport or cell wall signals may only be detectable at higher doses. However, 480 

as we have screened dozens of DNA damaging agents that have not yielded these specific dual 481 

target signals, it is not likely that these findings are a consequence of general effects on DNA. 482 

While we still do not know the exact mechanism of NPD5925, we are able to deconstruct complex 483 

phenotypic consequences of a compound.  484 

New chemical genomic resources and analytical tools 485 

We generated an active database named MOSIAC (http://mosaic.cs.umn.edu/), housing all 486 

our chemical-genetic screens. The MOSAIC database catalogs the structural and basic physical 487 
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properties of all compounds tested, including their bioactivity, chemical-genetic profiles, as well 488 

as the biological process and gene-level target predictions. We also developed novel software 489 

tools, called BEAN-counter (Barcoded Experiment Analysis from Next-generation sequencing), 490 

for processing raw sequencing data into chemical-genetic interaction profiles, and CG-TARGET 491 

(Chemical-Genetic Translation via A Reference Genetic interaction nETwork) for predicting 492 

biological process-level targets from chemical-genetic interaction profiles. These new software 493 

tools are available at http://github.com/csbio/.  494 

 495 

The Bioprocess Diversity Set: A collection of functionally characterized bioactive compounds 496 

We distilled the most functionally diverse compounds from all 7 libraries analyzed in this 497 

study into a new “Bioprocess Diversity Set” (Supplementary Table 18), which represents a 498 

selected collection of our HCS bioactive compounds whose targets span the functional landscape 499 

of the cell. We also selected “Bioprocess Specific Sets”, each consisting of a set of compounds 500 

predicted to target one of the 17 different biological processes represented in the global genetic 501 

interaction profile similarity network (Supplementary Table 19). We anticipate that these new 502 

compound collections should provide a powerful new resource for modulating cellular physiology 503 

through diverse perturbations and streamlining the chemical-genetic discovery pipeline, enabling 504 

a focused analysis on specific biological processes of interest. The Bioprocess Diversity Set and 505 

the Bioprocess Specific Sets can easily be sorted to focus on individual compound libraries, 506 

including the NCI, NIH, GSK and RIKEN NPDepo libraries. 507 

 508 

DISCUSSION 509 

Our high-throughput chemical-genetics platform addresses a need for an unbiased, whole 510 

cell method that provides rapid, functional annotation of compound libraries. We used this system 511 

to screen 13,524 compounds across 7 different libraries, yielding rich chemical-genetic profiles 512 

and high-confidence functional predictions for a set of 1522 compounds. We cataloged the 513 

complete dataset as an open chemical-genetics resource (http://mosaic.cs.umn.edu/). 514 

 515 

Our functional annotation of chemical libraries offers a strategy for prioritizing compounds 516 

that display bioactivity directed towards particular biological processes. The scale of functional 517 

annotation also provides a global view of the chemical activity within a library, which should allow 518 

testing of general hypotheses relevant to chemical biology. Importantly, the high-throughput 519 

nature of this assay provides opportunities for systematic, large-scale functional analysis of natural 520 

extract collections. Natural extract collections are often far more expansive than pure compound 521 

libraries and may contain broader mechanistic diversity. Functional annotation of these collections 522 

would help identify and prioritize promising extracts for detailed fractionation10.  523 

 524 

Our approach highlights the use of drug hypersensitive and diagnostic mutant sets for 525 

compound characterization, which allowed us to interrogate more compounds and use smaller 526 

quantities. Certain drug efflux transporters can be dedicated to certain classes of drugs, such as 527 
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PDR5 which has a documented specificity to steroid drugs53. Thus, although we only explored one 528 

genetic background for sensitization, it is possible to construct new yeast mutant collections using 529 

different genetic backgrounds tailored specifically for hypersensitivity to particular drug classes. 530 

In addition, while we selected a diagnostic pool of mutants specifically for genome-wide 531 

functional annotation, diagnostic pools with specific functional biases could be designed to 532 

investigate particular cellular processes or targets. Moreover, the diagnostic pool may be further 533 

reduced in size for greater multiplexing, as we found as few as 157 strains had equivalent 534 

predictive power as the entire non-essential collection of ~4900 strains (see Methods). 535 

 536 

One advantage of our approach is that we can functionally characterize compounds that do 537 

not show strong bioactivity. While bioactivity was predictive of our ability to make high-538 

confidence predictions, it was not absolutely necessary. Pre-screening for bioactivity, which is a 539 

common approach11,21 can potentially exclude compounds with specific but possibly nonessential 540 

modes of action. For example, ~18% (270 of 1518) of the HCS compounds we identified for which 541 

we had bioactivity measures inhibited growth <20%. Indeed, weakly acting compounds targeting 542 

specific functions represent a starting point for chemical modifications to improve bioactivity. 543 

 544 

Biological process target predictions derived from the global yeast genetic interaction 545 

network provides a roadmap, not only for other microorganisms (e.g. S. pombe, E. coli), but also 546 

for mammalian systems. Importantly, the construction of genetic interaction maps in human cell 547 

lines is possible, as is the mapping of chemical-genetic interactions54–56. Thus, the same 548 

approaches and predictive tools we implemented in yeast can be adapted and applied as a general 549 

strategy to map analogous chemical-genetic networks for human cells. More generally, 550 

combinatorial genetic and chemical-genetic approaches can be used to identify new drug leads that 551 

work synergistically to expand our understanding of druggable target space3,57.    552 
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Figure legends 585 

Figure 1. Miniaturizing chemical-genetic profiling. (a) A high-throughput chemical-genetics 586 

platform for functional annotation of compound libraries. (b) The fraction (%) of compounds 587 

showing a bioactive response based on detection of a halo of growth inhibition surrounding a 588 

compound spotted on a lawn of WT strain, a pdr1∆ pdr3∆ double mutant, or a pdr1∆ pdr3∆ snq2∆ 589 

triple mutant strain (3). (c) Comparison of WT vs. 3∆ strains for detecting a benomyl-TUB3 590 

chemical-genetic interaction (n=3, mean ± S.E.). (d) Comparison of WT vs. 3∆ strains for 591 

detecting a micafungin-BCK1 chemical-genetic interaction (n=3, mean ± S.E.). (e) Plots of 592 

precision [True positives / (True positives + False positives)] versus recall (total number of true 593 

positives) to evaluate gene function predictions based on genetic interaction profile similarities 594 

derived from the entire non-essential deletion mutant collection (red), the diagnostic strain 595 

collection (blue), and a random selection of deletion strains the same size as the diagnostic 596 

collection (grey). True positives were defined as those gene pairs where both genes are annotated 597 

to the same GO gold standard set of terms72. (f) Detection of chemical-genetic interactions (red) 598 

following 48 h growth in the presence of benomyl. (g) Correlation of average benomyl chemical-599 

genetic interaction profiles (n=3, technical replicates) derived from multiplexing 96 vs. 768 600 

chemical genetic screens in a single sequencing lane. Benomyl-specific chemical-genetic 601 

interactions are shown in red. (h) Correlation of micafungin chemical-genetic interaction profiles 602 

derived from two independent biological replicates. Specific micafungin chemical-genetic 603 

interactions are shown in red. 604 

 605 

Figure 2. Two-dimensional hierarchical clustering of chemical-genetic interactions. Mean 606 

negative chemical-genetic interactions are represented in red (n=3, technical replicates). Rows, 607 

173 deletion mutant strains; columns, 1380 bioactive compounds from the high confidence set 608 

(HCS). Sections are expanded to allow detailed visualization of compounds targeting processes 609 

related to DNA replication & repair (i), mitosis and chromosome segregation (ii), glycosylation, 610 

protein folding/targeting, and cell wall biogenesis (iii), transcription and chromatin organization 611 

(iv), vesicle traffic (v), cell polarity and morphogenesis (vi). 612 

 613 

Figure 3. The functional landscape of diverse compound collections. (a). The global genetic 614 

interaction similarity network. (a left panel) Genes (nodes) that share similar genetic interaction 615 

profiles are connected by an edge in the global genetic interaction similarity network. Genes 616 

sharing highly similar patterns of genetic interactions are proximal to each other; less-similar genes 617 

are positioned further apart. (a right panel) Densely connected network clusters, color coded by 618 

functional enrichments annotations to 17 distinct biological processes. (b) Integrating genetic and 619 

chemical-genetic interaction profiles to predict biological processes targeted by HCS compounds. 620 

Colored nodes represent chemical compounds derived from the indicated collection. Each 621 

compound was placed on the map at the position of the gene with the most similar genetic 622 

interaction profile from the compound’s top predicted target process. 623 

 624 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

Figure 4. Functional signatures of compound collections. (a) Number of compounds within 625 

each collection’s HCS annotated to 17 distinct biological processes. (inset) Estimated functional 626 

diversity of each collection based on the uniqueness of chemical-genetic profiles from each library. 627 

(b) Compound collections and sub-collections were clustered based on their functional profiles. 628 

Collections whose chemical-genetic interaction profiles are enriched (yellow) or depleted (blue) 629 

for 17 distinct biological processes are shown. Sections are expanded (i-vi) to allow detailed 630 

visualization of significantly enriched GO biological process terms that drive the enrichment and 631 

depletion of target predictions, as well as enriched structural features of compounds predicted to 632 

target a biological process. Black bars represent the proportion of compounds within a collection 633 

annotated to a GO biological process, and grey bars represent the proportion of profiles in the GI 634 

background set annotated to the same GO term. (v-vi) Enriched structural features of artemisinin 635 

(v) and psoralen (vi) derivatives that are annotated to a specific biological process are presented 636 

with R-group decomposition.  637 

 638 

Figure 5. Large-scale validation of predicted target processes. (a) Comparison of observed and 639 

predicted cell cycle arrest phenotypes induced by 67 high-confidence compounds. Observed 640 

phenotypes were derived from flow cytometry analysis and predicted phenotypes were generated 641 

by mapping biological process annotations of the 67 compounds from this study to cell cycle arrest 642 

phenotypes via Yu et al. 200640. Compounds that induced a G1 phase delay phenotype (G1/G2 643 

ratio +1.5 standard deviations from the DMSO mean – above grey shaded box) or G2 phase delay 644 

phenotype (-1.5 standard deviations from the DMSO mean – below grey shaded box) are indicated 645 

(blue circles, n=2, biological replicates). (b) Compounds confirmed by flow cytometry analysis to 646 

cause defects in S phase progression (at least 1.5 standard deviations above the DMSO mean – 647 

above grey line) are indicated (blue circles, n=2 biological replicates). (c) β-1,3 glucan 648 

(AB=aniline blue) and chitin (CFW=calcofluor white) staining of cells treated with compounds 649 

predicted to affect the cell wall. Arrows indicate abnormal deposition of cell wall chitin or β-1,3 650 

glucan. (d) Proportion of cells with increased β-1,3 glucan or chitin signal following treatment 651 

with predicted cell wall targeting compounds (n=3, mean ± S.E.). (e) Measurement of bud neck 652 

width in pre/post M-phase cells following treatment with 25 compounds predicted to target the 653 

cell wall (n=5). Blue text and circles indicate greater than average bud neck width. * denotes 654 

pseudojervine compounds.  655 

 656 

Figure 6. Identification of compounds with dual targets. (a) Compounds predicted to target 657 

multiple distinct bioprocesses. Nodes indicate a predicted gene target located within a biological 658 

process-enriched network cluster defined in the global genetic interaction profile similarity 659 

network. Edges represent compounds predicted to target two distinct biological processes. 660 

NPD5925 was predicted to target the distinct processes of DNA catabolic process and fungal-type 661 

cell wall biogenesis (yellow edge). NP214 was predicted to target DNA replication and cellular 662 

proton transport (white node, yellow edge). (b) Measurement of cell leakage (adenylate kinase 663 

assay) from cells treated with DMSO, hydroxyurea, echinocandin B, and NPD5925 (n=3, mean ± 664 
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S.E.). (c) Images of a cell stained with NPD5925 (fluorescent), DAPI, and the merged fluorescent 665 

signal. (d) Cell cycle analysis of cells following treatment with α-factor, DMSO, hydroxyurea 666 

(HU), MMS, and. NPD5925. 667 

  668 
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 669 

Online Methods 670 

Constructing a genome-wide drug sensitive yeast deletion collection 671 

Construction of the pdr1Δ pdr3Δ snq2Δ triple mutant is described in Andrusiak 201219. 672 

Briefly, PDR1 was deleted in the SGA query strain (Y7092)58 by replacement with the natMX 673 

antibiotic resistance marker, which provides resistance to the drug nourseothricin (NAT). To 674 

construct the pdr1Δ pdr3Δ double mutant, PDR3 was deleted in the pdr1Δ mutant by replacement 675 

with the K. lactis URA3 autotrophic marker, which permits cells to grow on synthetic media 676 

lacking uracil. The pdr1Δ, pdr3Δ, and snq2Δ single or double mutants were constructed by 677 

replacing the wild type gene with the natMX, K. lactis URA3, and K. lactis LEU2 markers, 678 

respectively. The natMX, Kl.URA3 and Kl.LEU2 markers were amplified from plasmids using 679 

primers designed with 50 base pairs of sequence homologous to regions upstream and downstream 680 

of the genes. PCR amplicons were transformed into the appropriate strains using lithium acetate 681 

and polyethylene glycol-based transformations59. Deletion of the native gene and integration of 682 

the marker at the correct locus was confirmed using a series of PCR-based confirmations. 683 

Confirmation primers were designed specific to regions both flanking the integration site and 684 

internal to the inserted marker to interrogate both the full length of the inserted marker and the 5’ 685 

and 3’ boundaries. 686 

 687 

The MATα pdr1Δ::natMX pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 (y13206) query strain 688 

carried the can1Δ::STEpr-SP_his5 and lypΔ SGA reporters. STEpr-SP_his5 is an auxotrophic 689 

marker that allows only MATa cells to grow in the absence of histidine, while the can1Δ and lypΔ 690 

deletions allow haploid cells to grow in the presence of the drugs canavanine and thialysine, 691 

respectively. The MATα query strain was crossed to an ordered array of MATa xxxΔ::kanMX 692 

deletion mutants and the resulting heterozygous diploids were transferred to media with reduced 693 

carbon and nitrogen to induce sporulation and the formation of haploid meiotic progeny. The 694 

resulting spores were transferred to synthetic media lacking histidine and containing canavanine 695 

and thialysine to select for the MATa meiotic progeny. Cells were then transferred to synthetic 696 

media lacking uracil and containing NAT to select for growth of cells carrying both the 697 

pdr3Δ::KI.URA3 and pdr1Δ::natMX deletions. Finally, these cells were transferred to synthetic 698 

media lacking uracil & leucine and containing G418 & NAT to select for the desired pdr1Δ pdr3Δ 699 

snq2Δ xxxΔ mutants. This protocol was adapted from Kuzmin et al 201660. 700 

 701 

Assessing compound hit rate of sensitized yeast strains 702 

The chemical sensitivity of deletion mutants was assessed using a high-throughput 703 

chemical growth inhibition halo assay. After growing WT, pdr1Δ pdr3Δ and pdr1Δ pdr3Δ snq1Δ 704 

mutant yeast strains overnight to saturation, cultures were standardized to an OD600 = 4.0 and 2 705 

mL was added to a 50 mL stock of 2% YP (10 g/L yeast extract, 20 g/L peptone) + 2% galactose 706 

+ 1% agar (YPGal). Seeded plates were prepared by pouring 10 mL of culture into NUNC square 707 

plates and drying for 10 minutes to facilitate compound absorption. Robotic pinning with the 708 
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Biotec ADS384 was used to transfer 0.2 μL of each natural product to the seeded plates at a density 709 

of 88 compounds per plate; 440 diverse compounds (Supplementary Table 1) from the RIKEN 710 

NPDepo were evaluated in total. After incubating for 24 hours at 30 °C, plates were imaged and 711 

the visible areas of growth inhibition were measured using JMicrovision (Version 1.2.2. 712 

http://www.jmicrovision.com). A compound was deemed toxic if it generated an area of growth 713 

inhibition with a diameter greater than 1 mm. Thus, we assessed the number of compounds that 714 

perturbed growth (e.g. compound hits) of WT, pdr1Δ pdr3Δ and pdr1Δ pdr3Δ snq1Δ mutant 715 

strains.  716 

 717 

The chemical-sensitivities of the top drug-sensitive deletion mutants identified from the 718 

adapted assay were confirmed by growing deletion strains in the presence of the tested drug (34.4 719 

µM benomyl, 25 nM micafungin, or 1% DMSO) for 24 hours and recording the resulting optical 720 

density at 600 nm. Strains tested harbored deletions either in a wild-type background or in the 721 

drug-hypersensitive pdr1Δ pdr3Δ snq2Δ background. Values plotted are percentages calculated 722 

by dividing the OD600 measured after growth in DMSO by the OD600 measured after growth in 723 

the specific concentration of compound and multiplying by 100 (Fig 1. c-d). Y709258 was used as 724 

the WT control and the pdr1Δ pdr3Δ snq2Δ mutant was used as the drug hypersensitive control. 725 

(n = 3). 726 

 727 

Defining the diagnostic gene set for optimized chemical genomic screens  728 

A diagnostic set of 310 genes was selected by combining the output from two methods: a 729 

computational strategy and a manual selection. A set of 157 genes was selected by identifying 730 

functionally relevant genes using a computational approach called COMPRESS-GI (Deshpande et 731 

al. in preparation). Because genetic interaction profile similarity can be accurately measured using 732 

only a subset of the genome-wide profile, the COMPRESS-GI method selects genes to be included 733 

in a genetic interaction (and chemical-genetic) profile to maximize the agreement between 734 

pairwise gene similarities computed from the compressed profile and gene co-annotation 735 

information from the Gene Ontology. Selection of such a subset of genes is useful for our chemical 736 

genomics study because the reduced chemical-genetic profile for each compound is directly 737 

compared with the corresponding reduced genetic interaction profiles, which generates accurate 738 

compound-gene similarities based on a small set of mutants. The COMPRESS-GI algorithm is 739 

described and evaluated in depth elsewhere (Deshpande et al. in preparation). 740 

 741 

In addition to the 157 genes selected with the computational approach, we also manually 742 

selected 236 genes. The logic for the manual method was to pick any single member of the same 743 

pathway/complex because members of the same pathway/complex possess similar genetic 744 

interactions. Hence, picking one gene from each pathway/complex should be sufficient to cover 745 

the genetic network space associated with all the genes in that pathway/complex. We applied 2-746 

dimensional hierarchical clustering to cluster gene deletion mutants based on their genetic 747 
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interaction profiles, and then manually selected strains that displayed rich genetic interaction 748 

profiles representative of each of the 17 functionally enriched cluster from the global genetic 749 

interaction profile similarity network (Costanzo et al., 201614) to generate a minimal subset of 750 

yeast deletion mutants that re-capitulated the majority of functional profiles observed in our 751 

reference map. 752 

 753 

Both the COMPRESS-GI and manual gene selection methods were applied using a filtered, 754 

non-essential yeast genetic interaction dataset15 where strains observed to exhibit extreme read 755 

counts in barcode sequence (top/bottom 10%) were removed. Also, in cases where multiple 756 

different mutant alleles were available for the same gene, the allele with the highest number of 757 

genetic interactions (highest interaction degree) in its genetic interaction profile was chosen. We 758 

found 83 genes in common between the computational and manually-derived lists, suggesting that 759 

the two methods had good agreement with respect to which genes were informative. The union of 760 

genes from the two selection methods comprised the initial diagnostic strain set (Supplementary 761 

Table 1).  762 

 763 

Pilot experiments using this diagnostic set (Supplementary Table 1, diagnostic pool 764 

version 1) revealed a number of mutants that still exhibited abnormally high or low barcode counts 765 

in all experiments. These were removed to generate a collection of 310 strains for the final version 766 

of the diagnostic strain set (Supplementary Table 1, diagnostic pool version 2).  767 

 768 

Optimization of signal detection/sequencing parameters 769 

Initial optimizations were conducted using a preliminary diagnostic pool of 491 strains. 770 

This pool of deletion mutants was constructed by pinning frozen 96-well glycerol stocks of each 771 

strain onto Nunc Omni Tray plates containing YPD + G418 solid media and incubating for 2 days 772 

at 30°C. Each plate was then flooded with 10 mL of YPD liquid media and a cell spreader was 773 

used to re-suspend grown colonies. The resulting cell suspensions were transferred to a 50 mL 774 

conical tube where glycerol was added to a 15% final concentration. Finally, the pool was adjusted 775 

to a final concentration of 50 OD600/mL by dilution or centrifugation and stored at -80 °C until 776 

required. To assay the mutant pool for drug-hypersensitivity, cells were thawed, counted using a 777 

haemocytometer, and diluted to seven different final inoculum densities (3727-58 cells / strain) in 778 

YP + 2% galactose in a 96-well flat-bottom plate. Cultures were then spiked with either 34.4 µM 779 

benomyl, 25 nM micafungin, or a 1% DMSO control. After growing for 18, 24, or 48 h at 30 °C, 780 

cells from each well were harvested by centrifugation. Genomic DNA was purified from the 781 

harvested cells by re-suspending in 125 μL of zymolyase buffer (1 mg/mL) and using the 782 

QIAextractor (Qiagen) as per manufacturer's instructions, with a 100 μL elution volume.   783 

 784 

Barcodes were amplified from each of the wells using multiplex primers as described 785 

elsewhere61 for 20, 25, or 30 cycles. Samples were gel purified from 2% agarose and assessed for 786 

quality using the Kapa Illumina qPCR kit. Samples were sequenced at a loading concentration of 787 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

10 pM on an Illumina HiSeq2000 as a single uninterrupted read (“read through”). The 30 cycle 788 

samples were also sequenced using a “separated read” strategy, where the barcodes were read in a 789 

first sequencing step, while the multiplex tags were read after a second priming step. Output from 790 

“read-through” and “separated read” runs were then compared. The signal to noise was calculated 791 

by taking the mean CG score of the top 10 array genes divided by the standard deviation of all 792 

array genes CG scores. This was done for each drug, PCR cycle, cell density, culture combination. 793 

 794 

Multiplex tag design and 768-plex primer selection 795 

We designed one thousand 10 bp multiplex tags such that (1) the Levenshtein distance 796 

between any two tags was greater than 3, and (2) the tags were balanced in terms of nucleotide 797 

distribution. Condition (1) ensures that multiplex tags are maximally distinguishable even with a 798 

small number of sequencing errors while condition (2) ensures that the GC content and predicted 799 

melting point of all tags were within a small range. Because the space of multiplex tags is too large 800 

to exhaustively enumerate, we generated random multiplex tags and selected tags iteratively if 801 

both conditions were true. Primers containing the Illumina sequencing adapter, common priming 802 

site for the UPTAG barcode, and 1000 selected 10 bp multiplex tags were synthesized (Sigma, St. 803 

Louis, MO, USA), arrayed in 96-well plates. To assess amplification performance of the multiplex 804 

tags, we performed 1000 identical pooled growth experiments on the diagnostic strain pool under 805 

control conditions (DMSO). Samples were processed as described above and sequenced on an 806 

Illumina MiSeq lane (1000-plex). We used the count distribution to identify 8 plates (768 multiplex 807 

tags) with the most uniform distribution of read counts (Supplementary Fig. 13), and discarded 808 

plates containing multiplex tags with highly divergent reads counts. These 8 plates of multiplex 809 

tags with equivalent performance were used in all subsequent experiments (Supplementary Table 810 

3).  811 

To test the effects of multiplexing on the chemical genetic interaction signal, we selected 812 

a set of 768 compound conditions, including DMSO controls, known agents, and novel bioactive 813 

compounds from the RIKEN collection. For each assay we used the optimal pooled growth 814 

conditions defined above. We included a subset of compounds also screened in the Parsons et al. 815 

2006 dataset as controls at every plexing level (96, 192, 384, and 768)10. We dosed the pooled 816 

cells at a level that inhibited growth by 20-50% compared to the DMSO control. Genomic DNA 817 

extraction, PCR, sample prep, and sequencing were performed as described above.  818 

 819 

Screening the NPDepo/NCI/NIH/GSK collections 820 

We performed our pooled growth assay with the diagnostic mutant collection under 821 

optimized conditions as described above. Excluding controls compounds, we performed two 822 

screens totaling 13524 conditions, which represented 13431 uniquely-named compounds. In the 823 

initial batch of compounds examined, we screened the first 9840 members of the growing RIKEN 824 

NPDepo, and in the second batch, we screened six publicly available plated libraries: the NCI 825 

Natural Product (117 compounds), Approved Oncology (101), Structural Diversity (1599), and 826 
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Mechanistic Diversity (821) collections, the NIH Clinical Collection (720), and the 827 

GlaxoSmithKline kinase inhibitor collection (326). The NPDepo is maintained as 1 mg/mL stocks, 828 

and we screened it at a final concentration of 10 µg/mL, with the exception of a number of 829 

compounds that received additional lower dosing in a pilot experiment (Supplementary Table 4). 830 

All remaining collections were screened at 100 µM, with the exception of the NCI Mechanistic 831 

Diversity set (10 µM) (Supplementary Table 4). Selected compounds were re-screened at lower 832 

concentrations if the initial concentration resulted in severe growth inhibition. The diagnostic 833 

mutant pool was grown in 200 µL cultures in 96-well plates. Each plate had 88 test compounds, 4 834 

control compounds, and 4 internal DMSO conditions, (Supplementary Fig. 14). Each lane 835 

consisted of 7 compound plates and one DMSO control plate, and every plate had 3 independent 836 

PCR replicates. For pairs of replicates of our control compounds, we measured Pearson correlation 837 

coefficients of 0.94, 0.95, 0.93, and 0.92 for our control compounds, respectively (Benomyl, 838 

Micafungin, MMS, Bortezomib). Thus, 3 replicates were sufficient to ensure high-quality, 839 

quantitative chemical genomic profiles. The primer set used to amplify each plate was shuffled for 840 

each replicate in such a way that each compound replicate would not use any single multiplex tag 841 

more than once. The primer set used to amplify the DMSO plate was different for each lane. The 842 

control compounds give very distinct CG profiles and were used to ensure proper plate orientation 843 

at all steps of the process. Culture OD was measured at 0, 24, and 48 h, and growth at 24 h relative 844 

to the DMSO control was used as a measure for bioactivity. 845 

 846 

Following growth, genomic DNA was extracted as described above. The genomic 847 

extractions for each plate were amplified in triplicate using three unique multiplex primer plates 848 

(3 technical replicates). We used 768-plexing per lane, which means each sequencing lane 849 

contained PCR amplified barcodes from eight 96-well plates. We ensured each of the multiplex 850 

primer plates were used to amplify the DMSO plates allowing us to detect and remedy any 851 

potential multiplex primer biases following sequencing. Following PCR, samples were pooled first 852 

by plate, then by lane. The “per lane” samples were purified by 2% agarose gel and the product 853 

quantified by qPCR as described above. All samples were run at a loading concentration of 10 pM 854 

as single-end, 50 bp reads on an Illumina Hiseq2000. 855 

 856 

Description of compound collections 857 

RIKEN NPDepo  858 

The RIKEN Natural Products Depository (NPDepo) is a public depository of small molecules. 859 

Currently, the NPDepo chemical library contains 39,200 pure compounds, half of which are 860 

natural products and their derivatives62. 861 

Each of the remaining collections are publicly available and can be requested at the sites listed 862 

below. 863 

NIH-Clinical collection 864 

http://nihsmr.evotec.com/evotec/sets/ncc 865 

NCI-Structural diversity collection  866 
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https://www.dtp.nci.nih.gov/branches/dscb/div2_explanation.html 867 

NCI-Mechanistic diversity collection 868 

https://www.dtp.nci.nih.gov/branches/dscb/mechanisticII_explanation.html 869 

NCI-Oncology collection 870 

https://www.dtp.nci.nih.gov/branches/dscb/oncology_drugset_explanation.html 871 

NCI-Natural products collection 872 

https://www.dtp.nci.nih.gov/branches/dscb/natprod_explanation2.html 873 

GSK-Kinase inhibitor collection 874 

https://www.ebi.ac.uk/chembldb/extra/PKIS/ 875 

 876 

Computing molecular descriptors for all screened compounds  877 

 SMILES and InChI string representations of all molecules were generated using the 878 

OpenBabel cheminformatics toolkit63 (http://openbabel.org) and its python wrapper, pybel64. All 879 

molecular descriptors (column J through the last column) were calculated using PaDEL-880 

Descriptor65, a wrapper for the Chemistry Development Kit cheminformatics toolkit66. 881 

 882 

Chemical-genetic interaction scoring method 883 

The first step in the chemical genetic interaction scoring pipeline was to count the number 884 

of reads that mapped to each combination of knockout strain and chemical condition. All 50 bp 885 

sequencing reads were collected from the sequencing instrument as fastq files. All sequences in 886 

the fastq files containing the common primer sequence (U1 primer) were retained. No more than 887 

two errors were allowed (command: agrep -2) when matching the common primer sequence. Each 888 

retained sequence was then split into a “multiplex tag” (bases 1-10) and a “barcode” (bases 28-47). 889 

Each multiplex tag was matched against the list of expected multiplex tags, with no errors allowed 890 

for a match. Each barcode was matched to the barcodes in the diagnostic strains, with two errors 891 

allowed. A double hash data structure (one hash for the multiplex tag and a second for the barcode) 892 

was used to record the number of reads that matched to a particular combination of multiplex tag 893 

(identifies the condition) and barcode (identifies the strain). 894 

Multiple filters were applied to clean the read count data before further processing. First, 895 

data from the gtr1∆ and avt5∆ strains were removed, because these strains were over represented 896 

following growth in a specific set of conditions and thus accounted for a large majority of the read 897 

counts (Supplementary Fig. 7). Conditions that possessed low read counts across specified 898 

number of strains (see parameter settings below) were then removed (“condition count filter”), 899 

followed by strains with low read counts across a certain number of conditions (“strain count 900 

filter”). Details on each filter and its application are found in the “Applying the chemical-genomics” 901 

section below. The read count total for each strain-condition combination was then transformed 902 

into log space or set to NaN if 0.  903 

Chemical-genetic interactions were then calculated by comparing the profile of log read 904 
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counts from each condition across all strains to a reference profile of log read counts across all 905 

knockout strains. First, the reference profile was calculated as the log of the strain-wise average 906 

profile across all DMSO control read count profiles (excluding read counts less than 20, which 907 

were set to NaN and excluded from the calculation). Second, the log read count profile for each 908 

condition was LOWESS normalized with respect to the reference DMSO profile (span = 30%). 909 

Finally, chemical-genetic interactions were computed as z-scores representing the standardized 910 

deviation of each strain in the condition profile with respect to its counterpart strain in the reference 911 

profile. 912 

Chemical-genetic z-scores were calculated in two different ways: the first using a 913 

condition-specific standard deviation and the second using a reference standard deviation vector. 914 

The condition-specific standard deviation was calculated on the middle 75% of the strain-wise 915 

deviations between each condition profile and the reference profile. The reference standard 916 

deviation vector was calculated using all DMSO control profiles, as the square root of the 917 

LOWESS-derived estimate (span = 30%) of the squared deviations with respect to the reference 918 

profile. One reference standard deviation vector was computed for the positive deviations and 919 

another for the negative deviations; the final reference standard deviation vector was specific to 920 

each individual condition depending on the signs of the deviations in that condition. Chemical 921 

genetic z-scores were then calculated as the deviation from the reference divided by the larger of 922 

1) the condition-specific standard deviation or 2) the appropriate value from the reference standard 923 

deviation vector (pos. or neg. standard deviation). Positive z-scores suggest resistance to the 924 

condition, and negative z-scores suggest sensitivity to the condition relative to the fitness of each 925 

mutant in the control condition. 926 

We observed a multiplex tag batch effect in the z-score dataset, wherein the average 927 

correlation between conditions with the same multiplex tag was larger than the average correlation 928 

between conditions with different multiplex tags. To address this effect, we first removed the 929 

multiplex tags with the worst batch effects (“batch effect filter”). Then, we applied Fisher’s linear 930 

discriminant analysis (LDA) to reduce the pairwise condition correlations observed within 931 

multiplex tags vs. between multiplex tags, a method which has been previously used to remove 932 

batch effects from genetic interaction screens58. LDA components were removed based on PR 933 

curve analysis of the multiplex tag effect (“multiplex tag effect parameters”, see settings for each 934 

dataset below). To prepare the data for LDA, duplicated conditions with the same multiplex tag 935 

were removed such that only one compound replicate was retained per multiplex tag.  936 

Following the removal of the multiplex tag effect, we performed two final processing steps 937 

to yield the final dataset. In the “SVD” step, a large technical artifact was removed using singular 938 

value decomposition (SVD). This effect was deemed to be technical, as it was a general signature 939 

that occurred in ~1/3 of the condition profiles and had only a small number of weak Gene Ontology 940 

biological process enrichments. When removed (by removing projections of compounds’ profiles 941 

onto the first SVD-derived component), correlations with genetic interaction profiles were not 942 

noticeably affected. In the “replicate collapsing” step, profiles from technical replicate conditions 943 
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were collapsed into single, mean profiles. To determine which replicates would be collapsed into 944 

each final profile, a graph was constructed in which nodes were the technical replicates and edges 945 

indicated a correlation between two replicates above a certain threshold (“replicate correlation 946 

threshold”).  947 

Chemical genetic interaction scoring algorithm 948 

Pseudocode for the scoring algorithm is included below. 949 

xi = read count profile for condition i across all strains 950 

x_logi = log(xi) 951 

i_reference = indices of reference conditions (DMSO control profiles) 952 

x_ref = log( strain-wise mean vector across all xi for i in i_reference, excluding values in each xi 953 

of less than 20 read counts ) 954 

 955 

# Compute continuous estimates of positive and negative standard deviations across the reference 956 

profile (compute lowess on squared deviations) 957 

x_dev_pos, x_ref_pos, x_dev_neg, x_ref_neg = empty vector 958 

For each condition index i_ref in i_reference: 959 

 x_normi_ref = x_logi_ref, lowess-normalized with respect to x_ref 960 

 x_devi_ref = x_normi_ref – x_ref 961 

 x_dev_sqi_ref = (x_devi_ref) ^ 2 962 

 For j in 1:length(x_ref): 963 

  if (x_devi)j >= 0: 964 

   Append (x_dev_sqi_ref)j to x_dev_pos 965 

   Append x_refj to x_ref_pos 966 

  if (x_devi)j < 0: 967 

   Append (x_dev_sqi_ref)j to x_dev_neg 968 

   Append x_refj to x_ref_neg 969 

  970 

 # Calculate continuous standard deviations 971 

 x_std_pos = x_dev_pos, lowess-normalized with respect to x_ref_pos; one value is retained 972 

per element in x_ref, yielding a vector of standard deviations that each correspond to one strain in 973 

the x_ref profile 974 

 x_std_neg = same as x_std_pos, but derived from x_dev_neg 975 

 976 

# Compute chemical-genetic interaction scores for all condition profiles 977 

For each condition index i: 978 

 x_normi = x_logi, lowess-normalized with respect to xref 979 

  980 

 # Deviation from the reference profile 981 

 x_devi = x_normi – x_ref 982 
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  983 

 # Condition-specific standard deviation for condition xi 984 

 std_constanti = standard deviation across middle 75% of x_devi 985 

  986 

 # Reference standard deviation for condition xi 987 

 std_continuousi = empty vector 988 

 For j in 1:length(x_devi): 989 

  if (x_devi)j >= 0: 990 

   (std_continuousi)j = x_std_posj 991 

  else: 992 

   (std_continuousi)j = x_std_negj 993 

 994 

 # The maximum standard deviation applicable to each element in x_devi 995 

 std_maxi = max( (std_constanti)j, (std_continuousi)j ) for each element with index j in 996 

x_devi 997 

  998 

 # Chemical-genetic z-score profile 999 

 zi = x_devi  /  std_maxi 1000 

Applying the chemical genetic interaction scoring method to chemical genomic screens in 1001 

this study 1002 

Data in this study were collected from two large screening efforts. The “RIKEN” screen 1003 

encompasses all compounds originating from the RIKEN Natural Product Depository, and the 1004 

“NCI/NIH/GSK” screen encompasses all remaining compounds (the NCI collections, NIH 1005 

Clinical Collection, and GSK Kinase Inhibitor collection). The same basic experimental and 1006 

computational procedures described above were used with a few minor variations, which are 1007 

documented below. 1008 

Filters: 1009 

 RIKEN screen 1010 

o Condition count filter: The condition was removed if it had < 200 total read counts 1011 

across all strains. 1012 

o Strain count filter: No filter was applied 1013 

o Batch effect filter: A multiplex tag, and its corresponding conditions, was removed 1014 

if the average pairwise correlation of its conditions was 0.4 or higher. The average 1015 

correlation value was calculated using only DMSO control profiles. 1016 

 1017 

 NCI/NIH/GSK screen  1018 
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o Condition count filter: For each condition to pass this filter, 50% of strains in the 1019 

condition vector were required to possess more than 20 read counts. 1020 

o Strain count filter: For each strain to pass this filter, 50% of the conditions in the 1021 

strain vector were required to possess more than 20 read counts. 1022 

Batch effect filter: A multiplex tag, and its associated conditions, was removed if the average 1023 

pairwise correlation of its conditions was 0.4 or higher. The average correlation value was 1024 

calculated using all profiles from the screen. 1025 

Multiplex tag effect parameters 1026 

 RIKEN screen: 6 LDA components were removed 1027 

 NCI/NIH/GSK screen: 5 LDA components were removed 1028 

Order of SVD and replicate collapsing steps 1029 

 RIKEN screen: 1030 

1. SVD removal of large technical effect 1031 

2. Replicate collapsing (replicate correlation threshold: 0.7) 1032 

 NCI/NIH/GSK screen: 1033 

1. Replicate collapsing (replicate correlation threshold: 0.5) 1034 

2. SVD removal of large technical effect 1035 

 1036 

All chemical-genetic interaction heat maps were hierarchically-clustered on both axes using 1 −1037 

𝑆𝐶(𝑋, 𝑌) as the distance measure with average linkage (where X and Y are chemical-genetic 1038 

interaction profiles and 𝑆𝐶 is the cosine similarity between two vectors, 1039 

 𝑆𝐶(𝑋, 𝑌) =
∑ 𝑋𝑖

𝑛
𝑖=1 𝑌𝑖

√∑ 𝑋𝑖
2𝑛

𝑖=1 √∑ 𝑌𝑖
2𝑛

𝑖=1

  1040 

. They were visualized using Java TreeView. 1041 

 1042 

Predicting compounds’ modes of action based on chemical-genetic and genetic interaction 1043 

profiles 1044 

 1045 

Genetic interaction dataset 1046 

Genetic interaction data was obtained from a recently assembled S. cerevisiae genetic 1047 

interaction dataset14. The genetic interactions were derived from most recent quantitative fitness 1048 

observations of non-essential, double mutant strains described in Costanzo et al., 2010, and 1049 

Costanzo et al., 2016)14,15. The data consist of a genetic interaction score (the difference between 1050 

each double mutant’s observed and its expected fitness values) and an associated p-value for each 1051 

double mutant. The data were preprocessed by setting all epsilon scores to zero for which the 1052 

associated p-value was greater than 0.05. 1053 

 1054 
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From this preprocessed dataset, we identified a subset of 1505 high-signal genetic targets 1055 

that would provide a robust basis for target prediction from our chemical-genetic data. The criteria 1056 

for selecting each query GI profile were: 1) it must have greater than 40 significant interactions 1057 

(degree > 40), 2) the sum of its cosine similarity scores with all other query profiles must be greater 1058 

than 2, and 3) the sum of its dot products with all other query profiles must be greater than 2. These 1059 

criteria helped to define a set of genetic interaction screens with sufficient signal for correlation 1060 

with chemical genetic profiles. The final genetic interaction dataset consisted of the 1505 query 1061 

GI profiles that passed these criteria, each of which reflects the interaction of the query gene with 1062 

the ~300 array genes also present in the chemical genetic interaction profiles. 1063 

 1064 

Predicting a compound’s genetic targets 1065 

 We predict the genetic targets (GTs) of a compound by calculating the similarity between 1066 

the compound’s CG profile and the GI profile of each potential genetic target. However, common 1067 

similarity measures such as Pearson and cosine correlation allow low-degree (low-intensity) CG 1068 

profiles to correlate highly with GI profiles, despite their lack of signal. We therefore developed a 1069 

target prediction score that gives preference to the genetic predictions made for high-degree over 1070 

low-degree CG profiles. 1071 

  1072 

 This score, called the genetic target (GT) score, is calculated for each compound-GT pair 1073 

as the dot product of the compound’s CG profile and the GT’s L2-normalized GI profile: 1074 

  𝐺𝑇 = 𝐶𝐺 ∙
𝐺𝐼

‖𝐺𝐼‖2
  (Eqn. 1) 1075 

where GT is the genetic target score for the compound-GT pair, CG is the chemical genetic 1076 

interaction profile of the compound, and GI is the genetic interaction profile of the genetic target. 1077 

Using this score, higher degree (higher intensity) CG profiles will tend to have higher GT scores 1078 

than will lower degree CG profiles, while the GI profile degree of each genetic target exerts no 1079 

influence on its GT scores. 1080 

 1081 

Predicting the biological process targets of compounds 1082 

 We developed a method to predict the biological process targets (process targets, or PTs) 1083 

of a compound, which combines the results of three different PT prediction methods. Each of these 1084 

methods utilizes a similar scheme. First, GTs are mapped to PTs using propagated Gene Ontology 1085 

biological process terms. Second, for each compound-PT pair, a z-score and empirical p-value are 1086 

derived by calculating a statistic (mean or sum) on the GT scores for genes in the PT and comparing 1087 

it to an appropriate null distribution. The specific details of each step are described in the following 1088 

sections. 1089 

 1090 

Defining the process targets 1091 

 The process targets are a subset of terms from the “biological process” branch of the Gene 1092 

Ontology annotations (http://geneontology.org/). The mapping of S. cerevisiae genes to biological 1093 

process terms was obtained from the Saccharomyces cerevisiae Genome Database 1094 
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(http://www.yeastgenome.org/). Terms were propagated using “is_a” relationships, meaning that 1095 

a gene annotated to term A was additionally annotated to term B if term A (the child term) had an 1096 

“is_a” relationship with term B (the parent term). After propagation, terms with 4-200 genes 1097 

annotations from the set of 1505 GTs included in our genetic interaction data were selected to 1098 

become the “process targets.” 1099 

 1100 

Process-based z-score and p-value 1101 

 A z-score was computed to reflect the strength of a compound’s prediction to each 1102 

candidate PT relative to control compounds’ predictions to the same PT. For a compound-PT pair, 1103 

the relevant statistic used to calculate the z-score is the sum of the compound’s GT scores for genes 1104 

in the PT (the “PT-sum”). The z-score for each compound-PT pair was calculated using equation 1105 

2, where 𝑆 is the PT-sum for the compound-PT pair, 𝑆̅ is the mean of the PT-sum values for that 1106 

PT across all control CG profiles, and 𝜎 is the standard deviation of the PT-sum values for that PT 1107 

across all control CG profiles. 1108 

  𝑧 =
𝑆−𝑆̅

𝜎
 (Eqn. 2) 1109 

 An empirical p-value was also derived to accompany this z-score. Specifically, for a given 1110 

compound-PT pair, the empirical p-value was the fraction of times a control CG profile generated 1111 

an equal or larger PT-sum than did the compound’s CG profile for that PT. 1112 

 1113 

Compound-based z-score and p-value 1114 

 A second z-score was computed to measure the specificity of each compound’s prediction 1115 

to the candidate PT. The z-score for each compound-PT pair was calculated using equation 3, 1116 

where 𝑠̅ is the mean of the compound’s GT scores for genes in the PT, 𝑁 is the number of genes 1117 

annotated to the PT, 𝜇 is the mean of all GT scores for the compound, and 𝜎 is the standard 1118 

deviation of all GT scores for the compound. 1119 

  𝑧 =
𝑠̅−𝜇

𝜎

√𝑁

 (Eqn. 3) 1120 

 An empirical p-value was derived to accompany each z-score, providing for a significance-1121 

based comparison of the results with those from other z-score based metrics. To generate the null 1122 

distribution for computing this p-value, the compound’s GT scores were randomly shuffled with 1123 

respect to the GT labels 10,000 times. This preserves the mapping between GTs and PTs across 1124 

the randomizations, and thus accounts for any effects due to the Gene Ontology structure. For a 1125 

given compound-PT pair, the p-value is the fraction of times that the z-score calculated from the 1126 

shuffled set of GT scores is equal to or larger than that calculated from the unshuffled scores. 1127 

 1128 

Computing a combined z-score and p-value for compounds and their process targets 1129 

 Three different sets of (z-score, empirical p-value) were computed for each compound-PT 1130 

pair. One of these sets of values consisted of the compound-based z-score and p-value. Each of the 1131 

other two sets was composed of a process-based z-score and p-value, with one z-score/p-value 1132 

combination derived from 5724 experimental negative control profiles and the other z-score/p-1133 
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value combination from 50,000 resampled CG profiles. The 5724 control profiles were generated 1134 

by growing the yeast diagnostic mutant pool in the absence of a compound but in the presence of 1135 

the compound’s solvent, DMSO (a negative control), and the 50,000 resampled profiles are 1136 

described in more detail in the “Assessing the false discovery rate of process target predictions” 1137 

section that follows. 1138 

  1139 

 To derive a single measure of significance, the largest (least significant) p-value of the 1140 

three methods described above and its corresponding z-score were used as the final compound-PT 1141 

score, as it represents the most conservative estimate of the strength and significance of a 1142 

compound’s prediction to a PT. 1143 

 1144 

Assessing the false discovery rate of process target predictions 1145 

 We assessed the false discovery rate of our process target predictions by predicting the 1146 

process targets of control CG profiles and comparing the significance of those predictions with 1147 

process target predictions made for the compound CG profiles. Two sets of control CG profiles 1148 

were used: the DMSO condition CG profiles and the resampled CG profiles. 50,000 randomly 1149 

resampled CG profiles were constructed by selecting one CG interaction score from each strain 1150 

across all CG profiles in that screen. In this manner, the variance of each strain (especially, the 1151 

tendency of certain strains to “drop out” of the pool) was captured in these resampled CG profiles. 1152 

  1153 

 For each set of compound and control conditions, the following procedure was employed 1154 

to count the number of discoveries for FDR calculation: at every p-value, the number of conditions 1155 

whose significant prediction was less than or equal to that p-value was counted; to enable a fair 1156 

comparison between compound and control condition counts, the control condition counts were 1157 

multiplied by a scale factor such that the total number of control conditions matched the total 1158 

number of compound conditions. 1159 

  1160 

 A continuous false discovery rate estimate was then calculated as a function of the p-value 1161 

for each type of control condition (DMSO and resampled CG profiles), by dividing the adjusted 1162 

number of predictions made for the control condition by the number of predictions made for the 1163 

compound condition at each p-value. Any resulting FDR values that were greater than 1 were 1164 

adjusted to 1. The FDR derived from the resampled CG profiles was used for all subsequent 1165 

analyses, as it was the more conservative (larger) of the two FDR estimates. From each screen, we 1166 

identified a subset of high confidence predictions and combined them to generate the “high-1167 

confidence set” (HCS) (RIKEN: FDR ≤ 25%; NCI/NIH/GSK: FDR ≤ 27%). 1168 

 1169 

To assess the performance of predictions, we identified known compounds with described 1170 

modes-of-action present in our high-confidence prediction set (“gold standard compounds”). If the 1171 

predicted process was functionally related to the known mode-of-action, we considered this a 1172 

successful prediction (Supplementary Table 20). 1173 
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 1174 

Characterizing the contribution of strains with high and low chemical-genetic interaction 1175 

degree to process-level target prediction 1176 

We also characterized the contribution of the highest and lowest-degree strains to process-1177 

level predictions, this time by removing the 15% highest or lowest-degree strains before predicting 1178 

process-level targets. The degree of a strain was defined as the number of interactions with CG 1179 

score absolute value ≥ 2.5 it possessed across the RIKEN subset of compound-derived chemical-1180 

genetic interaction profiles (no DMSO or resampled profiles). After removing 40 of the highest or 1181 

41 of the lowest-degree strains (out of the 275 strains that overlapped with the S. cerevisiae genetic 1182 

interaction network array strains, (Supplementary Table 8), process-level targets were predicted 1183 

as described in “Predicting compounds’ modes of action based on chemical-genetic and genetic 1184 

interaction profiles” and “Assessing the false discovery rate of process target predictions.” 1185 

Comparisons regarding the number and identity of discovered compounds, and the identity of their 1186 

predictions, were performed to determine the roles that high and low chemical-genetic interaction 1187 

degree strains played in predicting process-level targets. 1188 

 1189 

While the removal of low-degree strains had little effect on the identity of discovered 1190 

compounds and their predictions, the removal of high-degree strains had noticeable effects. The 1191 

“no-low-degree” profiles led to discovery of 927 bioprocess-level target predictions, 794 of which 1192 

matched the original RIKEN “all-strain” predictions (94% of the 848 original RIKEN high 1193 

confidence set, or HCS) (Supplementary Table 8.1). In contrast, the “no-high-degree” profiles 1194 

led to the discovery of only 667 high confidence bioprocess-level target predictions, most of which 1195 

overlapped with the RIKEN HCS (537 compounds, or 63% of the RIKEN HCS). In addition, the 1196 

predictions derived from “no-low-degree” profiles tended to match the predictions of in the 1197 

RIKEN HCS (602/794, or 76%, of “all-/no-low-degree” compounds shared predictions with 1198 

Jaccard ≥ 0.25), while the predictions derived from “no-high-degree” profiles were less consistent 1199 

(168/667, or 31%, of “all/no-high-degree” compounds shared predictions with Jaccard ≥ 0.25). 1200 

 1201 

The importance of high-degree strains to bioprocess-level predictions was further 1202 

confirmed by examining the identities of the predicted processes. While removing high-degree 1203 

strains does not destroy the performance of bioprocess-level predictions, it does substantially 1204 

change the distribution of the most frequently-predicted bioprocesses and reduce prediction 1205 

accuracy for some well-characterized compounds. After removing high-degree strains, the top 1206 

predicted bioprocess by far was “spindle assembly,” followed by other microtubule and cell cycle-1207 

related processes, and finally, bioprocesses related to localization, pH and ATP, glycosylation, and 1208 

DNA damage/repair (Supplementary Table 8.2). For three well-characterized compounds, the 1209 

removal of high-degree strains substantially reduced prediction specificity for tunicamycin, altered 1210 

predictions of rank 3 and below for benomyl, and left the predictions for MMS essentially 1211 

unchanged (Supplementary Table 8.3). In contrast, removing low-degree strains had little effect 1212 
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on either the distribution of process-level predictions in the high-confidence set or the highest-1213 

confidence predictions for benomyl, MMS, and tunicamycin. 1214 

 1215 

Characterizing the respective contribution of negative and positive interactions to process-1216 

level target prediction 1217 

Using the RIKEN NPDepo high-confidence set of compounds, we characterized the 1218 

contribution of positive and negative chemical-genetic interactions to our process-level 1219 

predictions. First, chemical-genetic interaction profiles containing either only positive or only 1220 

negative interaction scores were generated. Process-level targets were then predicted using these 1221 

“positive-only” or “negative-only” profiles as described in “Predicting compounds’ modes of 1222 

action based on chemical-genetic and genetic interaction profiles” and “Assessing the false 1223 

discovery rate of process target predictions.” We then compared the number and identity of the 1224 

compounds discovered, and the identity of their predictions, between “positive-only,” “negative-1225 

only,” and “all-interaction” prediction sets to determine which side(s) of the chemical-genetics 1226 

interaction profiles were important for predicting perturbed processes. 1227 

 1228 

Two schemes were employed to generate the “positive-only” and “negative-only” 1229 

chemical-genetic interaction profiles and their subsequent process-level predictions. Scheme 1 1230 

profiles showed how all negative and all positive interaction scores contribute to process-level 1231 

predictions, and scheme 2 profiles accounted for biases that could have occurred due to differences 1232 

in the number of positive vs. negative interactions in the scheme 1 profiles. To generate “negative-1233 

only” profiles under scheme 1, the positive scores in all compounds, DMSO control profiles, and 1234 

resampled profiles were set to zero; conversely, “positive-only” profiles under this scheme were 1235 

generated by setting all negative scores to zero. To generate the “positive-only” and “negative-1236 

only” profiles under scheme 2, an equal number of scores with absolute value ≥ 1 were selected 1237 

from the extreme positive or negative ends, respectively, for each compound, DMSO, and 1238 

resampled profile. 1239 

 1240 

“Negative-only” and “positive-only” chemical-genetic interaction profiles led to the 1241 

identification of a substantially different sets of “high-confidence” compounds (at least one 1242 

prediction with FDR ≤ 25%), with the “negative-only” profiles reproducing the “all-interactions” 1243 

high confidence set much better than did the “positive-only” profiles. Both high confidence sets 1244 

derived from “negative-only” profiles from scheme 1 (all scores) and scheme 2 (equal number of 1245 

positive vs. negative scores) possessed roughly the same number and identity of compounds when 1246 

compared to the “all-interaction” high confidence set (Supplementary Table 9). Specifically, 1247 

85% (723/848) and 81% (689/848) of the high confidence compounds identified using all 1248 

interactions were discovered using scheme 1 “negative-only” profiles (“negative-all/all” 1249 

comparison) and scheme 2 “negative-only” profiles (“negative-equal/all” comparison), 1250 

respectively. While the high confidence set derived from scheme 1 “positive-only” profiles was 1251 

similar in size to the “all-interactions” high confidence set, the compounds in both scheme 1 and 1252 
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scheme 2 “positive-only” high confidence sets had much lower overlap with the “all-interactions” 1253 

high confidence set (345/848, or 41% – “positive-all/all” comparison, and 183/848, or 22% – 1254 

“positive-equal/all” comparison, respectively). 1255 

 1256 

In addition to driving the discovery of the same compounds that were in the “all-1257 

interactions” high confidence set, negative chemical-genetic interactions also drove the discovery 1258 

of the same predictions for these compounds. For example, 68% (494/723) of the “negative-all/all” 1259 

co-identified compounds and 47% (326/689) the “negative-equal/all” co-identified compounds 1260 

had a Jaccard coefficient of ≥ 0.25 for their predictions. In contrast, only 17% (58/345) of the 1261 

“all/positive-all” and 3% (6/183) of the “all/positive-equal” co-identified compounds met this 1262 

criterion for the similarity of their predictions, suggesting that even for compounds where 1263 

predictions were made, the predicted modes of action were largely different. From this evidence, 1264 

negative chemical-genetic interactions are clearly the primary driver of genetic interaction-based 1265 

target predictions. 1266 

 1267 

In addition, two lines of evidence suggest that the predictions made using only positive 1268 

chemical-genetic interactions are of lower quality than those derived from all or only negative 1269 

interactions. First, we observed that the predictions from positive chemical-genetic interactions 1270 

were overwhelmingly biased toward GO terms related to RNA splicing/processing and cell 1271 

cycle/mitosis, while those from all or only negative interactions were more diverse (GO terms 1272 

related to cellular localization, chromatin organization and transcription, cell wall, vesicle-1273 

mediated transport, pH regulation, protein degradation, microtubules and cytoskeleton, etc., in 1274 

addition to cell cycle/mitosis) (Supplementary Table 9.1). Second, we observed that in the set of 1275 

predictions derived from only positive interactions, three well-characterized compounds 1276 

(benomyl, MMS, tunicamycin), whose known mechanisms of action are well-captured by process-1277 

level predictions based on either all or only negative interactions, both 1) failed to make the high 1278 

confidence compound list and 2) did not show predictions consistent with known mechanisms 1279 

(Supplementary Table 9.2). 1280 

 1281 

Visualizing the relationship between compound bioactivity and inclusion into the high 1282 

confidence set 1283 

 We assessed the fraction of compounds in the high confidence set as a function of 1284 

bioactivity, which can also be thought of as the probability that a compound will be in the high-1285 

confidence set given its bioactivity. The bioactivity (percent growth compared to DMSO) and high 1286 

confidence set status (true/false, respectively set to 1/0 for analysis) for each compound were 1287 

extracted from Supplementary Table 4. A loess curve was then fit through the 1/0 high-1288 

confidence status values with respect to the bioactivity values, using a span of 0.1 and least-squares 1289 

fitting with a polynomial degree of 2. The curve on the plot was drawn at points 2.5 units apart, 1290 

starting at the smallest observed bioactivity value (Supplementary Fig. 6). 1291 

 1292 
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Determining functional distributions of compound collections 1293 

Generating the background set of chemical genomic profiles 1294 

To account for biases in the distribution of process predictions introduced by our discovery 1295 

pipeline, we generated a set of “background” chemical genomic profiles. Each background profile 1296 

was a high-signal GI profile with noise added based on the variance of each strain across all GI 1297 

profiles (Gaussian, 𝜇 = 0, 𝜎 = 2 × 𝜎𝑠𝑡𝑟𝑎𝑖𝑛). Each of these 4515 profiles (3 for each of 1505 GI 1298 

profiles) simulated a compound that targets one gene. This enabled the estimation of any functional 1299 

biases introduced by our GI-based discovery pipeline. 1300 

 1301 

Computing distributions of process predictions for each compound class 1302 

We calculated the proportion of each compound class that was predicted to each process 1303 

term. (Supplementary Table 21). Those proportions were then compared to the proportion of the 1304 

background profiles predicted to each process using a proportion test in R (Supplementary Table 1305 

22). To sort from the most significant enrichment to the most significant depletion compared to 1306 

the background, p-values from the proportion test were modified such that p-values from 1307 

proportions greater than the background ranged from 0 to 1, and p-values from proportions smaller 1308 

than the background ranged from 2 to 1. Using a ranksum analysis with the modified p-values as 1309 

the input, we determined, for each class, if processes that mapped to each functional neighborhood 1310 

were predicted more or less frequently than in the background set. Rank-sum p-values were 1311 

Bonferroni-corrected and visualized as a heatmap (Fig. 4b). 1312 

 1313 

Compound diversity sets for functional neighborhoods 1314 

We assigned all the compounds associated with a specific functional neighborhood to a 1315 

single cluster and split up the cluster recursively to form clusters of more similar compounds. At 1316 

any recursive step, we determined the cluster with the lowest average within-cluster chemical 1317 

genomic similarity and divided the cluster into two new clusters using K-means clustering. We 1318 

stopped generating new clusters right before our algorithm would generate at least two individual 1319 

clusters exceeding our predefined limit for the maximum average between-cluster chemical 1320 

genomic similarity (cosine similarity of 0.3). We repeated the algorithm 1000 times for each 1321 

neighborhood and selected, from each cluster, the compound with the strongest prediction as a 1322 

candidate for our diversity set. We finally sorted all our candidates across all the repetitions from 1323 

the most frequent to the least frequently occurring. To define the compound diversity set, we 1324 

selected from this ranked list as many top candidates as were needed to cover all the clusters in at 1325 

least 50% of the repetitions. 1326 

 1327 

Comparison with other chemical genomic datasets 1328 

An independent set of whole-genome chemical genomic screens have been performed 1329 

previously by Lee et al., (2014) and Hoepfner et al., (2014)14,15. These studies interrogated 3,239 1330 

and 2,923 compounds, respectively, and they were performed using both a heterozygous and 1331 

homozygous diploid deletion mutant profiling platform. The homozygous diploid deletion mutant 1332 
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profiling platform is comparable to the chemical-genetic analysis we carried out with haploid 1333 

deletion mutants. Our study shares 145 compounds in common with the Lee et al. study and 31 1334 

compounds in common with the Hoepfner et al. study. In particular, all three studies reported an 1335 

overlap of 9 compounds.  1336 

  1337 

Comparisons were made between our chemical-genetic interaction scores with the 1338 

Hoepfner et al. median absolute deviation logarithmic scores, and with the Lee et al. fitness defect 1339 

scores (multiplied by -1), such that the chemical-genetic interaction profiles were restricted to the 1340 

277 genes common between the three studies. For the nine shared compounds (Supplementary 1341 

Table 6), our study shows an average Pearson correlation coefficient (PCC) of 0.29 with Lee et 1342 

al., and 0.38 with Hoepfner et al. whereas Lee et al. and Hoepfner et al. show a PCC of 0.22. Thus, 1343 

our study shows significant agreement with both the Lee et al., study (p-value: 5 x 10-7) and the 1344 

Hoepfner et al. study (p-value: < 1 x 10-8). 1345 

 1346 

We also compared the members of the compound diversity sets derived from our RIKEN 1347 

and Clinical screens to the major chemical-genetic signatures defined in Lee et al. and found 1348 

favorable overlap of the chemical space occupied by compounds from both studies. After 1349 

computing PCC between each diversity set compound and each compound from Lee et al. that was 1350 

annotated to a major signature, we observed that all 45 major Lee et al. signatures contained at 1351 

least one compound that was significantly similar to a compound in both diversity sets (PCC > 1352 

0.2, one-sided test, p-values obtained by shuffling the profile gene labels 10,000 times followed 1353 

by Benjamini-Hochberg correction, FDR < 0.05) and that most of the compounds in the RIKEN 1354 

and Clinical diversity sets contributed to this overlap (123/130 unique RIKEN and 187/214 1355 

Clinical compounds) (Supplementary Fig. 15a). When applying a more stringent PCC threshold 1356 

(PCC > 0.4), only 18 and 12 (out of 45) Lee et al. major signatures are covered by 32 and 39 1357 

compounds from the RIKEN and Clinical diversity sets, respectively. 1358 

 1359 

In addition, we mapped the Lee et al. major signatures to our bioprocesses and found that 1360 

many of these mappings agree functionally (Supplementary Fig. 15b). After computing PCC 1361 

between the profiles of each high confidence compound and each compound from Lee et al. that 1362 

was annotated to a major signature, we annotated each correlation > 0.3 to a major 1363 

signature/bioprocess pair (the bioprocess annotation for each high confidence compound was 1364 

based on its best process prediction). For each major signature/bioprocess pair, we then counted 1365 

the number of unique Lee et al. and high confidence compounds, respectively, that contributed to 1366 

these correlations. We normalized these counts by the size of their respective major signature or 1367 

bioprocess and multiplied the resulting fractions together to derive a confidence score that 1368 

deemphasizes major signature/bioprocess pairs for which a very small number of compounds 1369 

annotated to the major signature (or bioprocess) is responsible for most of the correlations to the 1370 

compounds in the bioprocess (or major signature). A table that maps each Lee et al. major signature 1371 

to its most confident bioprocess is provided (Supplementary Table 23), as is a table that maps 1372 
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each Lee et al. signature to any bioprocess with which it shared at least one profile correlation > 1373 

0.3 (Supplementary Table 23.1). Both tables are sorted by confidence in descending order. 1374 

Agreement between the Lee et al. major signatures and our bioprocess annotations was 1375 

encouraging; specifically, Golgi (Lee et al.) mapped to Vesicle traffic (this study), ubiquinone 1376 

biosynthesis & proteasome (Lee et al.) to Protein Degradation (this study), ergosterol depletion 1377 

effects on membrane (Lee et al.) to Metabolism & Fatty Acid Biosynthesis (this study), and DNA 1378 

damage response (Lee et al.) to DNA Replication & Repair (this study). Overall 43/45 major 1379 

chemical-genetic signatures possessed at least one compound with PCC > 0.3 to a compound in 1380 

our study and therefore could be mapped to a bioprocess; however, mappings derived from a very 1381 

small number of compounds in either member of the pair should be interpreted with more caution. 1382 

 1383 

Identifying structural motifs contributing to functional enrichments 1384 

To identify structural motifs that drove specific functional neighborhood enrichments, we 1385 

performed discriminative molecular substructure mining on the RIKEN HCS set of compounds 1386 

using the MoSS tool67. Using the proportion of each compound class that was predicted to each 1387 

process term (see “Computing distributions of process predictions for each compound class”), we 1388 

selected only process terms that had a significantly higher proportion of predictions in at least one 1389 

compound class versus the GI background (proportion test in R, Bonferroni-corrected). Then, for 1390 

each process term, we identified substructures that occurred at least twice as frequently in 1391 

compounds with high confidence predictions to that process term (the “active” set) versus 1392 

compounds that did not have high confidence predictions to that term (the “inactive” set). This 1393 

discriminative mining was performed twice per process term: once by drawing the inactive set of 1394 

compounds from all screened compounds in the RIKEN NPDepo, and once by drawing the 1395 

inactive set from all NPDepo compounds in the HCS. By selecting the minimum of these two 1396 

enrichments, we sought to control for bias in the distribution of substructures in the inactive 1397 

compounds. The information about the substructures and their enrichments was compiled across 1398 

all experiments. The final output is a table of substructures that show enrichment for a particular 1399 

functional category (Supplementary Table 14). 1400 

 1401 

Localization enrichments 1402 

We sought to determine if the compounds in particular collections exhibited bias in the 1403 

localization of their targets. Using the proportion of each compound class that was predicted to 1404 

each process term (see “Computing distributions of process predictions for each compound class”), 1405 

we selected process terms that had significantly higher (enriched) and lower (depleted) proportions 1406 

of predictions versus the GI background (proportion test in R, Bonferroni-corrected). For each 1407 

compound collection, two gene lists were assembled, each representing the union of the genes 1408 

annotated to either enriched or depleted (pbonf ≤ 0.05) process terms. 1409 

 1410 

A hypergeometric test was performed to determine which of these gene lists were enriched 1411 

for genes annotated to specific cellular components. P-values were Bonferroni-corrected. Gene 1412 
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annotations to cellular compartments were obtained from Huh et al. 200368, Koh et al. 201569, and 1413 

the yeast GO slim cellular compartment annotations (http://www.yeastgenome.org/). The 1414 

background set of genes for all hypergeometric tests was the set of 1499 query genes with GO 1415 

process annotations from the high-degree genetic interaction dataset. 1416 

 1417 

Flow cytometry based global validations of targeted processes 1418 

67 compounds with process target predictions mapping to G1-phase arrest, S-phase arrest, 1419 

or G2-phase arrest flow cytometry phenotypes (based on Yu et al. 200640) were selected from the 1420 

high confidence set. Compounds that ultimately mapped to multiple cell cycle phenotypes via their 1421 

process target predictions were removed from consideration. For each cell cycle phenotype, the 50 1422 

compounds with the highest overlap of 1) gene targets driving the process prediction that mapped 1423 

to the phenotype and 2) the genes directly annotated to the phenotype (Yu et al., 2006) were 1424 

selected. Compounds were then manually selected from these lists based on their bioactivity, as 1425 

compounds with higher bioactivity were assumed more likely to induce a cell cycle phenotype. 1426 

 1427 

Cultures of the control strain (y13206) were grown to early log phase (0.4 OD) in YPGal 1428 

(1% yeast extract, 2% peptone, 2% galactose). 250 µL per well of the starting culture was aliquoted 1429 

into a 96-well block. The cultures were treated with 10 µg/mL of each compound and incubated 1430 

at 30 °C for 2-3 h. We included the compounds hydroxyurea, MMS, nocodazole, and tunicamycin 1431 

as controls known to arrest cell cycle in G1, S, G2 and post-G2 respectively. From each culture, 1432 

200 µl was transferred into a new 96 well plate, pelleted at 2000 rpm for 5 min. Pellets were 1433 

resuspended in 20 µL of 50 mM Tris-Cl (pH 8.0), 50 mM EDTA buffer. 160 µl of cold 99% EtOH 1434 

was added to the wells. Cells were pelleted at 4000 rpm for 2 min at RT, resuspended in RNAse 1435 

A solution (50 mM Tris-Cl pH 8.0, 0.4 mg/mL RNAseA), and incubated for 2 h at 37 °C. Cells 1436 

were pelleted at 4000 rpm for 2 min at RT, and 50 µL of proteinase K solution was added (50 mM 1437 

Tris-Cl pH 7.2, 200 mM NaCl, 78 mM MgCl2, filter sterilized). The cells were then incubated for 1438 

50-60 min at 50 °C. Cells were pelleted at 4000 rpm for 2 min at RT, and resuspended in 55 µL of 1439 

FACS buffer (200 mM Tris-Cl pH 7.5, 200 mM NaCl, 78 mM MgCl2, filter sterilized). In a new 1440 

96 well plate, 180 µL of SYBR Green solution (2X SYBR Green, 50 mM TrisCl pH 7.2) was 1441 

added to each well. 20 µL of fixed cells from the previous step was added. The plate was then 1442 

processed via high-throughput flow cytometry as described in Yu et al., 2006. The voltage of the 1443 

green channel was adjusted so that on the linear scale the 1C peak and the 2C peak were well 1444 

spaced, the 1C peak was away from the vertical axis. The FSC-A vs FL1-A was used to gate out 1445 

aggregates and dead cells. The final histograms have FL1-A on the x-axis (area of the green 1446 

channel). 1447 

 1448 

Cell cycle phenotypes were called by drawing thresholds based on 46 control DMSO 1449 

profiles, on either the percent of cells in S phase (%S) or the ratio between the percentages of cells 1450 

in G1 (1C peak) vs. G2 (2C peak) phase (G1/G2 ratio). Specifically, the mean and standard 1451 

deviation were computed for both the %S and the G1/G2 ratio in the DMSO control samples. 1452 
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These values were used to convert the corresponding values from the treatment compounds into 1453 

z-scores. A phenotype was called if the z-scores of both replicates passed the appropriate z-score 1454 

threshold of either 1.5 or -1.5. The specific thresholds for phenotypes calls were as follows: a 1C 1455 

phenotype was called if G1/G2 ratio > 1.196; a 2C phenotype was called if G1/G2 ratio < 0.809; 1456 

and an S phenotype was called if %S > 19.5%. 1457 

 1458 

Enrichments and p-values were computed empirically by shuffling the phenotypes 1459 

associated with the compounds and counting the number of cell cycle phenotypes associated with 1460 

each prediction in the shuffled data (100,000 randomizations). Compound identities were 1461 

preserved during the randomization, such that both replicates of a compound were associated with 1462 

the same cell cycle phenotype prediction after each randomization. Enrichments were computed 1463 

by dividing the number of calls observed from the real data by the average expected number of 1464 

calls for each combination of predicted and observed phenotype (averaged over all compound-1465 

predicted phenotype randomizations). In a similar fashion, empirical p-values were computed for 1466 

each combination of predicted and observed phenotype by counting the fraction of randomizations 1467 

that produced the same or larger number of calls. 1468 

 1469 

Multi-parameter validation of cell wall targeting compounds  1470 

For the adenylate kinase (AK) cell leakage assay, an overnight culture of the drug 1471 

hypersensitive yeast strain (y13206) in log phase was harvested and washed twice with fresh 1472 

YPGal medium. The final pellet was resuspended in 1 mL fresh YPGal. Fifty microliters of cell 1473 

suspension (~1x106 cells), 1% DMSO, 10 µg/mL of each test compound was added in individual 1474 

wells of 96-well culture plate containing YPGal medium to a final volume of 100 mL, mixed by 1475 

pipetting and incubated at 25 °C for 4 h (n=3). The plate was equilibrated to room temperature for 1476 

30 min and the contents were transferred into a luminescence compatible 96-well white-walled 1477 

plate. Next, 100 μL of ToxiLight AK reagent (Lonza) was added to each well and incubated at 1478 

room temperature for 30 min, and luminescence was measured with a Wallace ARVO SX 1420 1479 

Multilabel Counter (Perkin Elmer Life Sciences). Hit compounds resulted in more than 20000 1480 

units. Cells were stained with the glucan stain aniline blue and the chitin stain calcofluor white as 1481 

described previously41, and hits assessed by irregular glucan or chitin staining detected by eye. 1482 

Treated cells were analyzed by high-dimensional morphometric analysis (CalMorph) as described 1483 

previously (n=5)70. A neck width and morphological noise (heterogeneity) was determined as 1484 

described previously41.  1485 

 1486 

Zymolyase sensitivity assay 1487 

Zymolyase sensitivities were tested as described previously71 with slight modifications. 1488 

Yeast cells (y13206) were grown in YPGal until log phase (~4x107 cells/mL), and 50 mL of aliquot 1489 

was transferred into fresh 150 mL YPGal containing test compounds in 96-well microtiter plate 1490 

(10 or 40 mg/mL for test compounds, as for controls: 2.5 mg/ml for echinocandin B, 30 mM for 1491 

hydroxyurea, 1% for DMSO). The cell-containing plate was incubated at 25 °C for 4 h with 1492 
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shaking. After incubation, cells were washed twice with 10 mM Tris-HCl (pH7.5), and 1493 

resuspended to zymolyase solution (0.94 mg/mL of Zymolyase 100T (Seikagaku) in 10 mM Tris-1494 

HCl (pH 7.5)). Cell suspensions were incubated at 30 °C, and OD600 values were measured for 1 1495 

h after the addition of zymolyase with plate reader (SPECTRAmax plus384, Molecular devices). 1496 

In each sample, OD600 values were standardized at time 0 to equal 1 (or 100%). 1497 

 1498 

Cell cycle analysis of NPD5925 1499 

Y13206 cells were grown to mid-log phase in YPD, and a sample of this asynchronous 1500 

population was saved for later analysis. The cells were treated with alpha factor and incubated for 1501 

2.5 hours at 30 °C, and a sample of the alpha factor-arrested population was saved for later analysis. 1502 

Pronase and test compounds were added to the remaining arrested population. We tested DMSO 1503 

(2%), hydroxyurea (0.2 M), MMS (0.03%), and NPD5925 (20 µg/mL). The treated cells were 1504 

incubated for 1 h and then prepared and analyzed via flow cytometry as described above. 1505 

 1506 

Tubulin inhibition assay and assessing predictive power 1507 

We carried out in vitro tubulin polymerization assays using the cytoskeleton fluorescent 1508 

based porcine tubulin polymerization assay (Cytoskeleton Inc, USA) following manufacturer 1509 

specifications. We used 10 µg/mL of test compound for each assay. We tested the control 1510 

compounds nocodazole, paclitaxel, and the predicted tubulin targeted compound NPD2784 versus 1511 

a DMSO solvent control.  1512 

 1513 

Identifying compounds with multiple, unique mechanisms of action 1514 

We devised an algorithm to prioritize compounds from the RIKEN HCS whose chemical 1515 

genetic (CG) interaction profiles appeared to be a combination of multiple, diverse genetic 1516 

interaction (GI) profiles, indicating that they exert their effects via multiple, unique mechanisms 1517 

of action. For a compound, we first constructed profiles reflecting the mean contribution of each 1518 

strain in its CG profile to each of its process target (PT) predictions. Then, the initial cluster of 1519 

“mean contribution profiles” was seeded with the profile from the highest confidence PT 1520 

prediction. To complete the clustering, the mean contribution profiles from progressively lower-1521 

confidence PT predictions were either added to an existing cluster (if they possessed a Pearson 1522 

correlation coefficient of ≥ 0.5 with a profile in that cluster) or used to seed a new cluster. 1523 

Compounds were prioritized if they possessed two clusters of mean contribution profiles with very 1524 

low average similarity between them, suggesting that two distinct signals in the GI network 1525 

contributed to the signal observed in their CG profiles.A set of contribution profiles was generated 1526 

for a compound and one of its PT predictions by taking the element-wise product of the 1527 

compound’s CG profile and the L2-normalized GI profile of each gene that drove the PT prediction 1528 

(genes with genetic target score ≥ 2 and were annotated to the PT, which are shown in columns 1529 

“driver_common” and “driver_score” in Supplementary Table 7. The “mean contribution 1530 

profile” for one compound and PT prediction was calculated as the strain-wise mean across all of 1531 
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the contribution profiles associated with that compound and one PT prediction. GI profiles were 1532 

from the set of high-signal genetic interaction profiles. 1533 

 1534 

Staining of cells with NPD5925 1535 

Log phase yeast cells (y13206) were fixed with 3.7% formaldehyde solution. The fixed-1536 

cell suspension was centrifuged to make cells a pellet, and the pellet was mixed with the same 1537 

volume of NPD5925 (1 mg/mL) and incubated at 25 °C for 30 min. Cells were washed twice with 1538 

phosphate-buffered saline (PBS), and a small cell aliquot was mixed with mounting solution (90% 1539 

glycerol, 9.975% PBS, 0.025% 0.1 N NaOH) containing p-phenylenediamine (1 mg/mL) and 4',6-1540 

diamidino-2-phenylindole (DAPI, 0.7 mg/mL). A prepared specimen was observed by fluorescent 1541 

microscope (Axioimager M1, Carl Zeiss) with regular rhodamine or DAPI filter sets (Carl Zeiss). 1542 

An intensity profile was extracted from cell images by ImageJ (http://imagej.nih.gov/ij/). 1543 

 1544 

Adenylate kinase (AK) assay of NPD5925  1545 

An overnight culture of yeast strain (y13206) in log phase was harvested and washed twice 1546 

with fresh YPGal medium and the final pellet was resuspended in 1 mL fresh YPGal. Fifty 1547 

microliters of cell suspension (~1x106 cells), 1% DMSO, 30 mM hydroxyurea, 20 mg/ml 1548 

Echinocandin B, and 40 mg/mL test compounds were added in individual wells of 96-well culture 1549 

plate containing YPGal medium to a final volume of 100 ml, mixed by pipetting and incubated at 1550 

25 °C for 4 h. The plate was equilibrated to room temperature for 30 min and the contents were 1551 

transferred into a luminescence compatible 96-well white-walled plate. Next, 100 μL of ToxiLight 1552 

AK reagent (Lonza) was added to each well and incubated at room temperature for 30 min, and 1553 

luminescence was measured with a Wallace ARVO SX 1420 Multilabel Counter (Perkin Elmer 1554 

Life Sciences). 1555 

 1556 

Assessing potential targets of NPD5925 for pleiotropy between DNA and cell wall processes 1557 

The chemical genetic interaction profile was compared against high confidence genetic 1558 

interaction profiles using a genetic interaction normalized cosine score (genetic target score, Eqn. 1559 

1 above). The top ten high confidence genes were displayed alongside the chemical genetic 1560 

interaction profile.  1561 

 1562 

For each of the high confidence GO process predictions for NPD5925, the genetic 1563 

interaction profile of the drivers of that GO process prediction, high confidence genes with a 1564 

genetic target score above 2 annotated to the enriched GO process, were combined using the 1565 

following to form a GO process specific importance profile, 1566 

𝐼𝑛𝑥1,𝐺𝑂𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑟𝑜𝑤𝑚𝑒𝑎𝑛(𝐺𝐼𝑛𝑥𝑘,𝐺𝑂𝑃𝑟𝑜𝑐𝑒𝑠𝑠) 1567 

where k is the number of genes driving the GO process prediction. A GO process driven 1568 

chemical genetic interaction profile is then derived with: 1569 

𝐶𝐺𝐼𝐺𝑂𝑃𝑟𝑜𝑐𝑒𝑠𝑠 = 𝐶𝐺𝐼𝑛𝑥1 ∗ 𝐼𝑛𝑥1,𝐺𝑂𝑃𝑟𝑜𝑐𝑒𝑠𝑠 1570 
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The GO process driven chemical genetic interaction profile is then compared against 1571 

genetic interaction profiles in high confidence using the genetic target score, and the top ten high 1572 

confidence genes were displayed along the GO process driven chemical genetic interaction 1573 

profile. 1574 

  1575 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

 

References 1576 

1. Mario Geysen, H., Schoenen, F., Wagner, D. & Wagner, R. Combinatorial compound 1577 

libraries for drug discovery: an ongoing challenge. Nat. Rev. Drug Discov. 2, 222–230 1578 

(2003). 1579 

2. Cragg, G. M. & Newman, D. J. Natural products: A continuing source of novel drug leads. 1580 

Biochim. Biophys. Acta BBA - Gen. Subj. 1830, 3670–3695 (2013). 1581 

3. Roemer, T. & Boone, C. Systems-level antimicrobial drug and drug synergy discovery. Nat. 1582 

Chem. Biol. 9, 222–231 (2013). 1583 

4. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug 1584 

discovery. Nat. Rev. Drug Discov. 10, 221–237 (2011). 1585 

5. Clemons, P. A. Complex phenotypic assays in high-throughput screening. Curr. Opin. Chem. 1586 

Biol. 8, 334–338 (2004). 1587 

6. Sundberg, S. A. High-throughput and ultra-high-throughput screening: solution- and cell-1588 

based approaches. Curr. Opin. Biotechnol. 11, 47–53 (2000). 1589 

7. Barker, C. A., Farha, M. A. & Brown, E. D. Chemical Genomic Approaches to Study Model 1590 

Microbes. Chem. Biol. 17, 624–632 (2010). 1591 

8. Hoon, S. et al. An integrated platform of genomic assays reveals small-molecule 1592 

bioactivities. Nat Chem Biol 4, 498–506 (2008). 1593 

9. Giaever, G. et al. Chemogenomic profiling: Identifying the functional interactions of small 1594 

molecules in yeast. Proc. Natl. Acad. Sci. U. S. A. 101, 793–798 (2004). 1595 

10. Parsons, A. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic 1596 

profiling in yeast. Cell 126, 611–625 (2006). 1597 

11. Lee, A. Y. et al. Mapping the Cellular Response to Small Molecules Using Chemogenomic 1598 

Fitness Signatures. Science 344, 208–211 (2014). 1599 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

 

12. Parsons, A. B. et al. Integration of chemical-genetic and genetic interaction data links 1600 

bioactive compounds to cellular target pathways. Nat Biotech 22, 62–69 (2004). 1601 

13. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 1602 

387–391 (2002). 1603 

14. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular 1604 

function. Science 353, aaf1420 (2016). 1605 

15. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010). 1606 

16. Smith, A. M. et al. Highly-multiplexed barcode sequencing: an efficient method for parallel 1607 

analysis of pooled samples. Nucl Acids Res gkq368 (2010). doi:10.1093/nar/gkq368 1608 

17. Rogers, B. et al. The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J. 1609 

Mol. Microbiol. Biotechnol. 3, 207–214 (2001). 1610 

18. Coorey, N. V. C., Matthews, J. H., Bellows, D. S. & Atkinson, P. H. Pleiotropic drug-1611 

resistance attenuated genomic library improves elucidation of drug mechanisms. Mol. 1612 

Biosyst. 11, 3129–3136 (2015). 1613 

19. Andrusiak, K. Adapting S. cerevisiae Chemical Genomics for Identifying the Modes of 1614 

Action of Natural Compounds. (2012). 1615 

20. Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina 1616 

amplicon sequencing. Nat. Methods 10, 57–59 (2013). 1617 

21. Hoepfner, D. et al. High-resolution chemical dissection of a model eukaryote reveals targets, 1618 

pathways and gene functions. Microbiol. Res. 169, 107–120 (2014). 1619 

22. Baryshnikova, A. Systematic Functional Annotation and Visualization of Biological 1620 

Networks. bioRxiv 030551 (2016). doi:10.1101/030551 1621 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 

 

23. Pm, V. & Jg, B. In vitro and in vivo study of the effects of enrofloxacin on hepatic 1622 

cytochrome P-450. Potential for drug interactions. Vet. Hum. Toxicol. 38, 254–259 (1996). 1623 

24. Desta, Z., Soukhova, N., Mahal, S. K. & Flockhart, D. A. Interaction of Cisapride with the 1624 

Human Cytochrome P450 System: Metabolism and Inhibition Studies. Drug Metab. Dispos. 1625 

28, 789–800 (2000). 1626 

25. Jeong, S., Nguyen, P. D. & Desta, Z. Comprehensive In Vitro Analysis of Voriconazole 1627 

Inhibition of Eight Cytochrome P450 (CYP) Enzymes: Major Effect on CYPs 2B6, 2C9, 1628 

2C19, and 3A. Antimicrob. Agents Chemother. 53, 541–551 (2009). 1629 

26. Abdel-Rahman, S. M. et al. Potent Inhibition of Cytochrome P-450 2D6-Mediated 1630 

Dextromethorphan O-Demethylation by Terbinafine. Drug Metab. Dispos. 27, 770–775 1631 

(1999). 1632 

27. Laugesen, S., Enggaard, T. p., Pedersen, R. s., Sindrup, S. h. & Brøsen, K. Paroxetine, a 1633 

Cytochrome P450 2D6 Inhibitor, Diminishes the Stereoselective O-demethylation and 1634 

Reduces the Hypoalgesic Effect of Tramadol. Clin. Pharmacol. Ther. 77, 312–323 (2005). 1635 

28. Dresser, G. K., Spence, J. D. & Bailey, D. D. G. Pharmacokinetic-Pharmacodynamic 1636 

Consequences and Clinical Relevance of Cytochrome P450 3A4 Inhibition. Clin. 1637 

Pharmacokinet. 38, 41–57 (2012). 1638 

29. Obach, R. S. et al. The Utility of in Vitro Cytochrome P450 Inhibition Data in the Prediction 1639 

of Drug-Drug Interactions. J. Pharmacol. Exp. Ther. 316, 336–348 (2006). 1640 

30. Dranchak, P. et al. Profile of the GSK Published Protein Kinase Inhibitor Set Across ATP-1641 

Dependent and-Independent Luciferases: Implications for Reporter-Gene Assays. PLoS ONE 1642 

8, e57888 (2013). 1643 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 

31. Bamford, M. J. et al. (1H-Imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine 1644 

derivatives: A novel class of potent MSK-1-inhibitors. Bioorg. Med. Chem. Lett. 15, 3402–1645 

3406 (2005). 1646 

32. Wang, X., Wang, R., Zhang, Y. & Zhang, H. Evolutionary Survey of Druggable Protein 1647 

Targets with Respect to Their Subcellular Localizations. Genome Biol. Evol. 5, 1291–1297 1648 

(2013). 1649 

33. O’Neill, P. M., Barton, V. E. & Ward, S. A. The Molecular Mechanism of Action of 1650 

Artemisinin—The Debate Continues. Molecules 15, 1705–1721 (2010). 1651 

34. Li, W. et al. Yeast Model Uncovers Dual Roles of Mitochondria in the Action of 1652 

Artemisinin. PLoS Genet 1, e36 (2005). 1653 

35. Steinbrück, L., Pereira, G. & Efferth, T. Effects of Artesunate on Cytokinesis and G2/M Cell 1654 

Cycle Progression of Tumour Cells and Budding Yeast. Cancer Genomics - Proteomics 7, 1655 

337–346 (2010). 1656 

36. Disbrow, G. L. et al. Dihydroartemisinin Is Cytotoxic to Papillomavirus-Expressing 1657 

Epithelial Cells In vitro and In vivo. Cancer Res. 65, 10854–10861 (2005). 1658 

37. Li, Y. et al. Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle. 1659 

Bioorg. Med. Chem. Lett. 11, 5–8 (2001). 1660 

38. Goodrich, S. K., Schlegel, C. R., Wang, G. & Belinson, J. L. Use of artemisinin and its 1661 

derivatives to treat HPV-infected/transformed cells and cervical cancer: a review. Future 1662 

Oncol. 10, 647–654 (2014). 1663 

39. Xia, W. et al. Photo-Activated Psoralen Binds the ErbB2 Catalytic Kinase Domain, Blocking 1664 

ErbB2 Signaling and Triggering Tumor Cell Apoptosis. PLoS ONE 9, e88983 (2014). 1665 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 

 

40. Yu, L., Peña Castillo, L., Mnaimneh, S., Hughes, T. R. & Brown, G. W. A survey of 1666 

essential gene function in the yeast cell division cycle. Mol. Biol. Cell 17, 4736–4747 (2006). 1667 

41. Piotrowski, J. S. et al. Plant-derived antifungal agent poacic acid targets β-1,3-glucan. Proc. 1668 

Natl. Acad. Sci. 112, E1490–E1497 (2015). 1669 

42. Okada, H., Ohnuki, S., Roncero, C., Konopka, J. B. & Ohya, Y. Distinct roles of cell wall 1670 

biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional 1671 

morphometric data. Mol. Biol. Cell 25, 222–233 (2014). 1672 

43. Peters, J.-U., Schnider, P., Mattei, P. & Kansy, M. Pharmacological Promiscuity: 1673 

Dependence on Compound Properties and Target Specificity in a Set of Recent Roche 1674 

Compounds. ChemMedChem 4, 680–686 (2009). 1675 

44. Medina-Franco, J. L., Giulianotti, M. A., Welmaker, G. S. & Houghten, R. A. Shifting from 1676 

the single to the multitarget paradigm in drug discovery. Drug Discov. Today 18, 495–501 1677 

(2013). 1678 

45. Grollman, A. P. & Takeshita, M. Interactions of bleomycin with DNA. Adv. Enzyme Regul. 1679 

18, 67–83 (1980). 1680 

46. Hay, J., Shahzeidi, S. & Laurent, G. Mechanisms of bleomycin-induced lung damage. Arch. 1681 

Toxicol. 65, 81–94 (1991). 1682 

47. Moore, C. W., Valle, R. D., McKoy, J., Pramanik, A. & Gordon, R. E. Lesions and 1683 

preferential initial localization of [S-methyl-3H]bleomycin A2 on Saccharomyces cerevisiae 1684 

cell walls and membranes. Antimicrob. Agents Chemother. 36, 2497–2505 (1992). 1685 

48. Poddevin, B., Orlowski, S., Belehradek Jr, J. & Mir, L. M. Very high cytotoxicity of 1686 

bleomycin introduced into the cytosol of cells in culture. Biochem. Pharmacol. 42, 1687 

Supplement 1, S67–S75 (1991). 1688 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 

 

49. Sun, I. L. & Crane, F. L. Bleomycin control of transplasma membrane redox activity and 1689 

proton movement in HeLa cells. Biochem. Pharmacol. 34, 617–622 (1985). 1690 

50. Ekimoto, H., Takahashi, K., Matsuda, A., Takita, T. & Umezawa, H. Lipid peroxidation by 1691 

bleomycin-iron complexes in vitro. J. Antibiot. (Tokyo) 38, 1077–1082 (1985). 1692 

51. Kanofsky, J. R. Singlet oxygen production by bleomycin. A comparison with heme-1693 

containing compounds. J. Biol. Chem. 261, 13546–13550 (1986). 1694 

52. Sidorova, J. M. & Breeden, L. L. Precocious G1/S transitions and genomic instability: the 1695 

origin connection. Mutat. Res. 532, 5–19 (2003). 1696 

53. Mahé, Y., Lemoine, Y. & Kuchler, K. The ATP binding cassette transporters Pdr5 and Snq2 1697 

of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J. Biol. Chem. 271, 1698 

25167–25172 (1996). 1699 

54. Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 1700 

aac7557 (2015). doi:10.1126/science.aac7557 1701 

55. Wang, T. et al. Identification and characterization of essential genes in the human genome. 1702 

Science 350, 1096–1101 (2015). 1703 

56. T, H. et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific 1704 

Cancer Liabilities. Cell 163, 1515–1526 (2015). 1705 

57. Deshpande, R. et al. A Comparative Genomic Approach for Identifying Synthetic Lethal 1706 

Interactions in Human Cancer. Cancer Res. 73, 6128–6136 (2013). 1707 

58. Baryshnikova, A. et al. in Guide to Yeast Genetics: Functional Genomics, Proteomics, and 1708 

Other Systems Analysis Volume 470, 145–179 (Academic Press, 2010). 1709 

59. Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier 1710 

DNA/PEG method. Nat. Protoc. 2, 31–34 (2007). 1711 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 

 

60. Kuzmin, E., Costanzo, M., Andrews, B. & Boone, C. Synthetic Genetic Arrays: Automation 1712 

of Yeast Genetics. Cold Spring Harb. Protoc. 2016, pdb.top086652 (2016). 1713 

61. in (eds. Hempel, J. E., Williams, C. H. & Hong, C. C.) (Springer New York, 2015). 1714 

62. Kato, N., Takahashi, S., Nogawa, T., Saito, T. & Osada, H. Construction of a microbial 1715 

natural product library for chemical biology studies. Curr. Opin. Chem. Biol. 16, 101–108 1716 

(2012). 1717 

63. O’Boyle, N. M. et al. Open Babel: An open chemical toolbox. J. Cheminformatics 3, 33 1718 

(2011). 1719 

64. O’Boyle, N. M., Morley, C. & Hutchison, G. R. Pybel: a Python wrapper for the OpenBabel 1720 

cheminformatics toolkit. Chem. Cent. J. 2, 5 (2008). 1721 

65. Yap, C. W. PaDEL-descriptor: an open source software to calculate molecular descriptors 1722 

and fingerprints. J. Comput. Chem. 32, 1466–1474 (2011). 1723 

66. Steinbeck, C. et al. The Chemistry Development Kit (CDK): an open-source Java library for 1724 

Chemo- and Bioinformatics. J. Chem. Inf. Comput. Sci. 43, 493–500 (2003). 1725 

67. Borgelt, C., Meinl, T. & Berthold, M. MoSS: A Program for Molecular Substructure Mining. 1726 

in Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent 1727 

Pattern Mining Implementations 6–15 (ACM, 2005). doi:10.1145/1133905.1133908 1728 

68. Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–1729 

691 (2003). 1730 

69. Koh, J. L. Y. et al. CYCLoPs: A Comprehensive Database Constructed from Automated 1731 

Analysis of Protein Abundance and Subcellular Localization Patterns in Saccharomyces 1732 

cerevisiae. G3 Bethesda Md 5, 1223–1232 (2015). 1733 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 

 

70. Ohya, Y. et al. High-dimensional and large-scale phenotyping of yeast mutants. Proc. Natl. 1734 

Acad. Sci. U. S. A. 102, 19015–19020 (2005). 1735 

71. Vink, E. et al. The protein kinase Kic1 affects 1,6-{beta}-glucan levels in the cell wall of 1736 

Saccharomyces cerevisiae. Microbiology 148, 4035–4048 (2002). 1737 

72. Myers, C. L., Barrett, D. R., Hibbs, M. A., Huttenhower, C. & Troyanskaya, O. G. Finding 1738 

function: evaluation methods for functional genomic data. BMC Genomics 7, 187 (2006). 1739 

 1740 

  1741 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 

 

Figures 1742 

 1743 
Figure 1. Miniaturizing chemical-genetic profiling. (a) A high-throughput chemical-genetics platform for 1744 
functional annotation of compound libraries. (b) The fraction (%) of compounds showing a bioactive response based 1745 
on detection of a halo of growth inhibition surrounding a compound spotted on a lawn of WT strain, a pdr1∆ pdr3∆ 1746 

double mutant, or a pdr1∆ pdr3∆ snq2∆ triple mutant strain (3). (c) Comparison of WT vs. 3∆ strains for detecting 1747 
a benomyl-TUB3 chemical-genetic interaction (n=3, mean ± S.E.). (d) Comparison of WT vs. 3∆ strains for detecting 1748 
a micafungin-BCK1 chemical-genetic interaction (n=3, mean ± S.E.). (e) Plots of precision [True positives / (True 1749 
positives + False positives)] versus recall (total number of true positives) to evaluate gene function predictions based 1750 
on genetic interaction profile similarities derived from the entire non-essential deletion mutant collection (red), the 1751 
diagnostic strain collection (blue), and a random selection of deletion strains the same size as the diagnostic collection 1752 
(grey). True positives were defined as those gene pairs where both genes are annotated to the same GO gold standard 1753 
set of terms72. (f) Detection of chemical-genetic interactions (red) following 48 h growth in the presence of benomyl. 1754 
(g) Correlation of average benomyl chemical-genetic interaction profiles (n=3, technical replicates) derived from 1755 
multiplexing 96 vs. 768 chemical genetic screens in a single sequencing lane. Benomyl-specific chemical-genetic 1756 
interactions are shown in red. (h) Correlation of micafungin chemical-genetic interaction profiles derived from two 1757 
independent biological replicates. Specific micafungin chemical-genetic interactions are shown in red. 1758 
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 1759 
Figure 2. Two-dimensional hierarchical clustering of chemical-genetic interactions. Mean negative chemical-1760 
genetic interactions are represented in red (n=3, technical replicates). Rows, 173 deletion mutant strains; columns, 1761 
1380 bioactive compounds from the high confidence set (HCS). Sections are expanded to allow detailed visualization 1762 
of compounds targeting processes related to DNA replication & repair (i), mitosis and chromosome segregation (ii), 1763 
glycosylation, protein folding/targeting, and cell wall biogenesis (iii), transcription and chromatin organization (iv), 1764 
vesicle traffic (v), cell polarity and morphogenesis (vi). 1765 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112557doi: bioRxiv preprint 

https://doi.org/10.1101/112557
http://creativecommons.org/licenses/by-nc-nd/4.0/


54 

 

 1766 
Figure 3. The functional landscape of diverse compound collections. (a). The global genetic interaction similarity 1767 
network. (a left panel) Genes (nodes) that share similar genetic interaction profiles are connected by an edge in the 1768 
global genetic interaction similarity network. Genes sharing highly similar patterns of genetic interactions are 1769 
proximal to each other; less-similar genes are positioned further apart. (a right panel) Densely connected network 1770 
clusters, color coded by functional enrichments annotations to 17 distinct biological processes. (b) Integrating genetic 1771 
and chemical-genetic interaction profiles to predict biological processes targeted by HCS compounds. Colored nodes 1772 
represent chemical compounds derived from the indicated collection. Each compound was placed on the map at the 1773 
position of the gene with the most similar genetic interaction profile from the compound’s top predicted target process. 1774 

 1775 
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 1776 

 1777 
Figure 4. Functional signatures of compound collections. (a) Number of compounds within each collection’s HCS 1778 
annotated to 17 distinct biological processes. (inset) Estimated functional diversity of each collection based on the 1779 
uniqueness of chemical-genetic profiles from each library. (b) Compound collections and sub-collections were 1780 
clustered based on their functional profiles. Collections whose chemical-genetic interaction profiles are enriched 1781 
(yellow) or depleted (blue) for 17 distinct biological processes are shown. Sections are expanded (i-vi) to allow 1782 
detailed visualization of significantly enriched GO biological process terms that drive the enrichment and depletion 1783 
of target predictions, as well as enriched structural features of compounds predicted to target a biological process. 1784 
Black bars represent the proportion of compounds within a collection annotated to a GO biological process, and grey bars 1785 
represent the proportion of profiles in the GI background set annotated to the same GO term. (v-vi) Enriched structural 1786 
features of artemisinin (v) and psoralen (vi) derivatives that are annotated to a specific biological process are presented 1787 
with R-group decomposition.  1788 

 1789 
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 1790 

 1791 
Figure 5. Large-scale validation of predicted target processes. (a) Comparison of observed and predicted cell cycle 1792 
arrest phenotypes induced by 67 high-confidence compounds. Observed phenotypes were derived from flow 1793 
cytometry analysis and predicted phenotypes were generated by mapping biological process annotations of the 67 1794 
compounds from this study to cell cycle arrest phenotypes via Yu et al. 200640. Compounds that induced a G1 phase 1795 
delay phenotype (G1/G2 ratio +1.5 standard deviations from the DMSO mean – above grey shaded box) or G2 phase 1796 
delay phenotype (-1.5 standard deviations from the DMSO mean – below grey shaded box) are indicated (blue circles, 1797 
n=2, biological replicates). (b) Compounds confirmed by flow cytometry analysis to cause defects in S phase 1798 
progression (at least 1.5 standard deviations above the DMSO mean – above grey line) are indicated (blue circles, n=2 1799 
biological replicates). (c) β-1,3 glucan (AB=aniline blue) and chitin (CFW=calcofluor white) staining of cells treated 1800 
with compounds predicted to affect the cell wall. Arrows indicate abnormal deposition of cell wall chitin or β-1,3 1801 
glucan. (d) Proportion of cells with increased β-1,3 glucan or chitin signal following treatment with predicted cell wall 1802 
targeting compounds (n=3, mean ± S.E.). (e) Measurement of bud neck width in pre/post M-phase cells following 1803 
treatment with 25 compounds predicted to target the cell wall (n=5). Blue text and circles indicate greater than average 1804 
bud neck width. * denotes pseudojervine compounds.  1805 
 1806 
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 1807 
Figure 6. Identification of compounds with dual targets. (a) Compounds predicted to target multiple distinct 1808 
bioprocesses. Nodes indicate a predicted gene target located within a biological process-enriched network cluster 1809 
defined in the global genetic interaction profile similarity network. Edges represent compounds predicted to target 1810 
two distinct biological processes. NPD5925 was predicted to target the distinct processes of DNA catabolic process 1811 
and fungal-type cell wall biogenesis (yellow edge). NP214 was predicted to target DNA replication and cellular proton 1812 
transport (white node, yellow edge). (b) Measurement of cell leakage (adenylate kinase assay) from cells treated with 1813 
DMSO, hydroxyurea, echinocandin B, and NPD5925 (n=3, mean ± S.E.). (c) Images of a cell stained with NPD5925 1814 
(fluorescent), DAPI, and the merged fluorescent signal. (d) Cell cycle analysis of cells following treatment with α-1815 
factor, DMSO, hydroxyurea (HU), MMS, and. NPD5925. 1816 
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