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Networks provide one of the best representations for ecological communities, composed of many

species with sometimes dense connections between them. Yet the methodological literature

allowing one to analyse and extract meaning from ecological networks is dense, fragmented,

and unwelcoming. We provide a general overview to the �eld, outlining both the intent of the

di�erent measures, their assumptions, and the contexts in which they can be used. We anchor

this discussion in examples from empirical studies, and conclude by highlighting what we think

should be the future developments in the �eld.
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Abu ‘Uthman ‘Amr ibn Bahr was perhaps the �rst scientist to provide, as early as in the eighth

century, a description of a food chain (Egerton 2002). About a thousand years later, Camerano

(1880) introduced the idea that the diversity of animal forms, and therefore the biological diversity

itself, can only be explained when framed in the context of inter-relationships between species.

“Network-thinking” now permeates almost all areas in ecology and evolution (Proulx et al. 2005),

and is one of the fastest growing ecological disciplines (Borrett et al. 2014), accounting for 5% of

all published papers in 2012. Network-based approaches are gaining momentum as one of the

most helpful tools for the analysis of community structure (Poisot et al. 2016d), because they o�er

the opportunity to investigate, within a common formal mathematical framework, questions

ranging from the species-level to the community-level (Poisot et al. 2016d). Applying network

approaches to a variety of ecological systems, for example hosts and parasites (Poulin 2010), or

bacteria and phage (Weitz et al. 2013), yields new methodological and biological insights, such as

the observation that networks tend to be locally nested but regionally modular (Flores et al. 2013),

which suggests that di�erent ecological and evolutionary regimes are involved at di�erent scales.

Yet the analysis of ecological networks is still a young �eld, and this comes with challenges to

tackle. First, there is a pressing need for additional methodological developments, both to ensure

that our quantitative analysis of networks is correct, and that it adequately captures the ecological

realities that are, ultimately, of interest. Second, we need to better understand the limitations

and domain of application of current methods. Finally, there is a lack of a consensus on what

constitutes a “gold standard” for the representation, analysis, and interpretation of network data

on ecological interactions within the framing of speci�c ecological questions. This last point is

especially true in light of a recent proliferation of often poorly-tested methods that presume

to measure the same thing. All things considered, the analysis of ecological networks can be

confusing to newcomers as well as researchers who are more well-versed in existing methods.

Most notions in community ecology, including the de�nition of a community (Vellend 2010;

Morin 2011), and several de�nitions of a niche (Holt 2009; Devictor et al. 2010), emphasize the

need to study the identity of species and their interactions simultaneously (although ecological

network analysis can be critiqued for ignoring species identity in many instances). Studies of

ecological communities can therefore not discard or disregard interactions (McCann 2007). With

the existence of methods that can analyze (large) collections of interactions, this approach is

methodologically tractable. However, working on large number of species and interactions has

often been discouraged (McCann 2007), because large networks without a clear focal groupe

represent an ecological reality with a too large complexity to allow meaningful analysis or

interpretation. There are a number of reasons for which the supposed “complexity” of multi-

species assemblages can be interpreted with a lot of caution. First, “complexity” is often used as a

catch-all term by ecologists to mean “species rich”, “densely connected”, or “possessing non-

random properties”. This terms sacri�ces accuracy for the sake of brevity, and most importantly

strays far from the formal concept of complexity: that which cannot be adequately described by a

�nite number of parameters or instructions. Although they are densely connected and markedly

non-random, ecological networks can be well described by a reduced number of variables (either

nodes and edges, or more global emerging properties) (Eklöf et al. 2013; Poisot & Gravel 2014;

Chagnon 2015). In the absence of evidence for network complexity, we can safely assume that

ecological networks are, at best, merely complicated.

Graph theory provides a robust and well formalized framework to handle and interpret interactions

between arbitrarily large (or small) numbers of species. Theoretical analyses of small assemblages

of interacting species (e.g. “community modules”, Holt 1997) have generated key insights on
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the dynamics of properties of ecological communities. We expect there is even more to gain by

using graph theory to account for structure at increasingly high orders, because there is virtually

no upper bound on the number of nodes (species) or edges (interactions) it can be applied to,

and theory on large graphs can help predict the asymptotic behaviour of ecological systems. In

short, although graph theory may appear as overwhelmingly complicated and unnecessarily

mathematical, it lets us express a variety of measures of the structure of networks that can be

mapped onto ecologically relevant questions.

Rather than providing a review of the consequences of network structure on ecological properties

of communities and ecosystems (see Jordano & Bascompte 2013 for mutualistic systems, and

Mccann (2012) for food webs), this manuscript aims to establish a framework for how ecological

networks can be analyzed. As the variety of network measures available is overwhelming, and as

the popularity of network thinking in ecology increases, the �eld in need of an assessment of

the state of its methodological development, which is necessary to determine how we can best

analyze data from ecological networks.

1 what are species interaction networks?

Ecological networks of species interactions can e�ciently be represented using the mathematical

formalism of graph theory. A graph G is de�ned as an ordered pair (V , E), where every element

of E (the edges) is a two-element subset of V (the nodes). From this simple structure, we can

measure a large number of properties (see e.g. Newman 2010 for an introduction). A simple graph
contains neither self-edges (a node is linked to itself) or multiedges (the same two nodes are

linked by more than one unique edge), whereas a multigraph contains at least one multiedge. As

we illustrate in �g. 1, edges can be directed (e.g. A eats B), or undirected (e.g. A and B compete);

unweighted (e.g. A pollinates B) or weighted (e.g. A contributes to 10% of B’s pollination). In the

context of studying ecological interactions, V is a set of ecological objects (taxonomic entities, or

other relevant components of the environment), and E are the pairwise relationships between

these objects. As both the strengths of interactions and their direction are highly relevant to

ecological investigations, data on species interactions are most often represented as networks:
directed and weighted graphs. We use network as a shorthand for “graph” throughout. Species

interaction networks can, �nally, be represented as unipartite or bipartite networks. Unipartite
networks are the more general case, in which any two vertices can be connected; for example,

food webs or social networks are unipartite (Post 2002; Dunne 2006). Unipartite networks can

represent interactions between multiple groups; for example, food webs can be decomposed in

trophic levels, or trophic guilds. Bipartite networks, on the other hand, have vertices that can be

divided in disjointed sets T (top) and B (bottom), such that every edge goes from a vertex from T ,

to a vertex from B; any ecological community with two discrete groups of organisms can be

represented as a bipartite network (parasites and hosts, Poulin 2010; e.g. plant and mutualists,

Jordano & Bascompte 2013; phage and bacteria, Weitz et al. 2013). It is possible to represent

k-partite networks, i.e. networks with k discrete “levels”. This formalism has been used for

resources/consumers/predators (Chesson & Kuang 2008), and other plant-based communities

(Fontaine et al. 2011). Tripartite networks are usually analyzed as collections of bipartite networks,

or as unipartite networks. There still exists little data on ecological k-partite networks, and it is

therefore di�cult to establish solid recommendation about how they can be analyzed; this is a

part of the �eld in which methodological development is still needed and ongoing.
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Figure 1 Di�erences between (un)weighted and (un)directed graphs. Graphs A and C are undirected, and

graphs A and C are unweighted.

Networks can be represented using their adjacency matrix (A). For a unipartite network containing

S species, A is a square matrix of dimensions (S, S). For a bipartite network containing T + B

species, the dimensions are (T , B), and the A matrix is usually referred to as the incidence matrix.

In both cases, the elements aij of the matrix indicate whether species i interact with species j. In

unweighted networks, aij = 1 when i and j interact and 0 otherwise. In weighted networks the

strength of the interaction is given, instead of being set to unity. Note that in weighted networks,

the strength of the interaction is not necessarily between 0 and 1; if the strength of interactions

depicts the raw e�ect of one population on another, then it can take on both negative and positive

values. The adjacency matrix is symmetrical for undirected networks, because aij = aji . In simple

networks, the matrix diagonal is empty as there are no self-edges (which, ecologically, could

represent autophagy, breastfeeding in mammals or cannibalism). We would like to note that A is

not the de facto community matrix: in some situations, it can be more pro�table to describe the

community using its Jacobian matrix, i.e. one in which aij represents the net e�ect of species i on

species j (Gravel et al. 2016b; Monteiro & Faria 2016; Novak et al. 2016).

Species interaction networks are compiled and resolved for a multitude of taxonomic and

organisational levels (Thompson & Townsend 2000): individuals (Araújo et al. 2008; Dupont et al.

2009, 2014; Melián et al. 2014); species (Morand et al. 2002; Krasnov et al. 2004); at heterogeneous

taxonomic resolutions, including species, genera, and more di�usely de�ned “functional” or

“trophic” species (Martinez et al. 1999; Baiser et al. 2011); groups of species on the basis of their

spatial distribution (Baskerville et al. 2011). This is because species interaction networks are

amenable to the study of all types of ecological interactions, regardless of the resolution of

underlying data: mutualistic, antagonistic, competitive, and so on. Recent developments made it

possible to include more than one type of interaction within a single network (Fontaine et al.

2011; Ké� et al. 2012), which allows greater ecological realism in representating communities

having several types of interactions (e.g., plants are consumed by herbivores, but also pollinated

by insects). Such networks are instances of multigraphs. Another development accounts for the

fact that ecological interactions may have e�ects on one another, as proposed by e.g. Golubski

& Abrams (2011); these are hypergraphs. Hypergraphs are useful when interactions rely, not

only on species, but also on other species interactions: for example, an opportunistic pathogen

may not be able to infect a healthy host, but may do so if the host’s immune system is already

being compromised by another infection. Hence it is not only species, but also their interactions,

which interact. As both of these developments are recent, there is little methodology to describe

systems represented as multigraphs or hypergraphs, and we will only mention them brie�y going

forward. In a way, methodological developments on these points is limited by the lack of data to

explore their potential. As the interest among network ecologists will increase for systems in
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which the current paradigm of species–species interactions falls short, we expect that the in�ow

of data will stimulate the emergence of novel methods.

Identifying interactions across ecological entities can be done in a variety of ways, ranging from

literature survey and expert knowledge, direct or indirect observation in the �eld using gut

content (Carscallen et al. 2012), stable isotopes, molecular techniques such as meta-barcoding and

environmental DNA (Evans et al. 2016; O’Donnell et al. 2017), to modelling based on partial data

or mechanistic models. Depending on how they were assembled, species interaction networks

can represent a multitude of ecological realities. When based on �eld collection (Morand et al.

2002; Bartomeus 2013; Carstensen et al. 2014), they represent realized interactions, known to

have happened (unreported interactions can be true or false absences, depending on sampling

e�ort among other things). Another common method is to “mine” the literature (e.g. Havens

1992; Strong & Leroux 2014) or databases (e.g. Poisot et al. 2016c), to replace or supplement

�eld observations. In this situation, species interaction networks describe potential interactions:

knowing that two species have been observed to interact once, there is a chance that they interact

when they co-occur. Another more abstract situation is when interactions are inferred from a

mixture of data and models, based on combinations of abundances (Canard et al. 2014), body size

(Gravel et al. 2013; Pires et al. 2015), or other traits (Crea et al. 2015; Bartomeus et al. 2016). In this

situation, species interaction networks are a prediction of what they could be. In keeping with

the idea of “networks as predictions”, a new analytical framework (Poisot et al. 2016b) allows

working directly on probabilistic species interaction networks to apply the family of measures

presented hereafter.

2 what can we learn with ecological networks?

For this part, unless otherwise stated, we will focus on describing measures of the structure of

unweighted, directed networks (i.e. either the interaction exists, or it does not; and we know which

direction it points), to the exclusion of quantitative measures that account for the strength of these

interactions. In most of the cases, quantitative variations of the measures we present exist (see e.g.
Bersier et al. 2002), and share a similar mathematical expression. There is a long-standing dispute

(Post 2002) among ecologists as to whether “arrows” in networks should represent biomass �ow

(e.g. from the prey to the predator) or interaction (e.g. from the predator to the prey). Because not

all interactions involve biomass transfer, and because networks may be used to elucidate the

nature of interactions, we will side with the latter convention. In general, we will assume that the

interaction goes from the organism establishing it to the one receiving it (e.g. from the pollinator

to the plant, from the parasite to the host, etc).

2.1 What do communities look like?

2.1.1 Order, size and density

During the last decades, various network measures have been developed to characterize the

general structure of interacting communities, capturing both species identity and their interactions

(Dunne et al. 2002b; Montoya et al. 2006; Allesina & Pascual 2007; Thompson et al. 2012). Most
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of these measures encompass and supplement usual measurements in community ecology. In

addition to how many species are there, and which species are in local area, knowledge of their

interactions is indeed an additional layer of information that network measures exploit to quantify

biodiversity.

A �rst descriptor of a network is its order (S), i.e. the total number of nodes. If nodes are species,

order measures the species richness of the community described by the network G. The total

number of edges (L) is the size of the network. From these two measures is computed the linkage
density L

S
(e.g. Bartomeus 2013), which is the mean number of edges per node – or simply, if

a random species is selected, how many edges would it be expected to have. Linkage density

should be considered with caution as it can be misleading: the distribution of edges among nodes

in species interaction networks is rarely uniform or normal (Williams 2011), and a minority of

species are known to establish a majority of interactions (Dunne et al. 2002a). Moreover L is

known to scale with S
2

(Cohen & Briand 1984; Martinez 1992), at least in trophic interaction

networks.

This observation that L scales with S
2

has cemented the use of an analog to linkage density,

the connectance (Co), as a key descriptor of network structure (Martinez 1992). Connectance is

de�ned as
L

m
, i.e. the proportion of established interactions (L), relative to the possible number of

interactions m. The value of m depends of the type of network considered. In a unipartite directed

network, m is S
2
. In a directed network in which species cannot interact with themselves, m

is S(S − 1). In an undirected network, m is S
S−1

2
if the species cannot interact with themselves,

and S
S+1

2
if they can. In a bipartite network, m is T × B, the product of the number of species at

each level. The connectance varies between 0 if the adjacency matrix is empty to 1 if its entirely

�lled. It is also a good estimate of a community sensitivity to perturbation (Dunne et al. 2002a;

Montoya et al. 2006) as well as being broadly related to many aspects of community dynamics

(Vieira & Almeida-Neto 2015). Although simple, connectance contains important information

regarding how links within a network are distributed, in that many network properties are known

to strongly covary with connectance (Poisot & Gravel 2014; Chagnon 2015), and the fact that

most ecological networks “look the same” may be explained by the fact that they tend to exhibit

similar connectances (�g. 2). Poisot & Gravel (2014) derived the minimum number of interactions

that a network can have in order for all species to have at least one interaction. This allows us

to express connectance in the [0; 1] interval, where 0 indicates that the network has the least

possible number of interactions.

2.1.2 Edges repartition within the networks

The majority of real-world species interaction networks are highly heterogeneous with regard to

edges distribution among nodes. This distribution can be studied as such (through the degree
distribution), but also refects a particular organization of the network, which can also be studied.

Quantitative measures of di�erent structures have been developed from graph theory and have

played a growing role in understanding the evolution and functioning of ecological communities

– in particular, because these measures add a small amount of information (comparatived to

measures presented later in this manuscript), they are a natural �rst step in moving away from a

species-centric view of community into the arguably more realistic species-and-interactions view

that networks capture well.

The degree of a node is its number of edges, then the degree distribution P(k) measures the
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Figure 2 To illustrate the strong relationship betweeen connectance and other network measures, we

generated random bipartite networks (lines) with 15 species on the top, 30 on the bottom, and connectances

ranging from 0.1 to unity. For each of these networks, we measured their nestedness using �, their

modularity (best partition out of 100 runs), and the relative frequencies of three bipartite motifs between

two species from the top and two species from the bottom. The sparsely connected motif corresponds to

two independent interactions. The partially connected motif represents the addition of one interactions

to the sparsely connected one, and the fully connected is the addition of another interaction. All of these

measures have a strong covariance with connectance, and for this reason, the comparison of networks

with di�erent connectances must rely on randomizations. Empirical data from pollination networks are

shown for reference (triangles). Data, methods, and code: https://osf.io/82ypq/.
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probability that a species has k edges within the network. The degree distribution can be

calculated as P(k) = N (k)/S where N(k) is the number of nodes with k edges, and S is the number

total of species in the network. The degree distribution allows identi�cation of important nodes,

such as potential keystone species (Solé & Montoya 2001 ; Dunne et al. 2002b), generalists, and

specialist species (Memmott et al. 2004). In directed networks, the degree distribution can be

divided into in-degree and out-degree. These respectively correspond to species vulnerability (e.g.
number of predators in food webs) and generality (e.g. number of resources in food webs). It is

often assumed that the distribution of degree in networks should resemble a power law (Strogatz

2001; Caldarelli 2007). In other words, the proportion P(k) of nodes with degree k should be

proportional to k
−


(but see see Jordano et al. 2003 – a truncated power-law may be a more

accurate description). Dunne et al. (2002a) found that, at least in food webs, ecological networks

tend not to be small-world or scale-free, but deviate from these rules in small yet informative

ways that hold ecological information. The power law essentially describes the expected behavior

of nodes in a network in a constraint-free world, although this is unlikely to apply to ecological

systems. We instead suggest that deviations from the power law be analysed as having ecological

meaning: why there are more, or fewer, species with a given frequency of interactions may reveal

reasons for and/or constraints on particular species interactions.

The network diameter gives an idea of how quickly perturbations may spread by providing a

measure of how dense the network is. Diameter is measured as the longest of all the shortest

distances (dij ) between every pairs of nodes in the graph (Albert & Barabási 2002), where dij

is the length of the shortest path (sequence of edges) existing between the nodes i and j. A

small diameter indicates presence of a densely connected nodes, or hubs, hence fast propagation

between nodes which may make the network more sensitive to perturbation (e.g. rapid spread of

a disease, Minor et al. 2008). The diameter is relative to the number of nodes in the network, since

it relies on counting the number of edges in a path, which may become larger as the network

order increases. To overcome this issue, the diameter can also be measured as average of the

distances between each pair of nodes in the network.

2.1.3 Aggregation of nodes based on their edges

From the heterogeneous repartition of interactions between nodes in species interaction networks,

certain structures and grouping of edges around nodes emerge. While the degree distribution hints

at how edges are organized around single nodes, one can frame this question at the scale of the

entire network. It is likely that other structure will appear when multiple nodes are considered at

once. This can be done by analyzing what types of relationships the nodes (representing species,

etc) are typically embedded in (e.g. competition, intraguild predation), through the analysis of

motifs distribution, or by determining if there are nodes found in dense clusters or non-overlapping

compartments, forming modular communities.

Species interaction networks can be decomposed in smaller subgraphs of n species, called motifs

(Milo et al. 2002). The smallest modules to which they can be decomposed are three-species motifs

(Holt 1997). The relative frequencies of each of these motifs holds information about network

structure. There are thirteen possible three-nodes motifs in directed networks, each representing

a di�erent relationship between three nodes, such as competition between A and B for a shared

resource C (A → C ← B), or a linear chain between A, B and C (A → B → C). Among these

thirteen motifs, some are present in species interaction networks with a lower or higher frequency

that what is expected in random networks. Motifs distributions are characteristic of network
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type (neuronal, electrical, social, ecological, and so on). In food webs for example, motifs’ under-

and over-representation has been found to be consistent across di�erent habitats (Camacho et

al. 2007; Stou�er et al. 2007; Borrelli 2015). In ecological networks, motifs have been referred

to as the basic building blocks of communities, as they represent typical relationship between

species. Studying their distribution (i.e. how many of each type of motif is there is this network)

o�ers an opportunity to bridge the gap between two traditional approaches (Bascompte & Melián

2005), namely the study of the dynamics of simple modules such as omnivory or linear food chain

(Pimm & Lawton 1978; Holt 1996; McCann et al. 1998), and the analysis of aggregated metrics

describing the community as a whole. Motif distributions have been used to study the processes

underlying the assembly and disassembly of ecological communities (Bastolla et al. 2009), as

well as of the link between communities’ structure and dynamics (Stou�er & Bascompte 2011).

More recently, motifs have also been used to de�ne species trophic roles in the context of their

community (Baker et al. 2014) and link this role to the network’s stability (Borrelli 2015).

The clustering coe�cient is useful to estimate the “cliquishness” of nodes in a graph (Watts &

Strogatz 1998) – that is their grouping in closely connected subsets. It measures the degree to

which the neighbours of a node are connected (the neighborhood of a node i is composed of

all of the nodes that are directly connected to i). In other words, it gives an idea of how likely

it is that two connected nodes are part of a larger highly connected group or “clique”. Two

di�erent versions of the clustering coe�cient (CC) exist. First, it can be de�ned locally, for each

node i (Watts & Strogatz 1998). In this case cci =
2Ni

ki (ki−1)
where ki is i’s degree (its number of

neighbors) and Ni is the total number of interactions between i’s neighbors. It describes the

fraction of realized edges between i’s neighbors and thus vary between 0 (none of i’s neighbors

are connected) and 1 (all of them are connected, forming a “clique”). From this measure, we

can calculate the average local clustering coe�cient: CC1 =
∑
i
ci

S
where S is the total number

of nodes. This �rst version describes the “cliquishness” of a typical neighborhood, but has the

drawback of giving more in�uence to nodes with a small degree. Nevertheless, the clustering

coe�cient provides a way of characterising the structure of the graph through the analysis of

CC
k
, which is the average of the cci of all nodes of degree k, and speci�cally of the distribution of

CC
k

across multiple values of k. The clustering coe�cient can also be de�ned globally, for the

entire graph (So�er & Vazquez 2005; Saramäki et al. 2007) and is calculated as follows CC2 =
3Nt

Nc
,

where Nt is the number of triangles in graph G (a is connected to b and c, b to a and c and c to a

and b) and Nc is the number of 3-nodes subgraphs (e.g. a is connected to b and c, b and c are

connected to a but not to each other). Kim (1993) suggested that this property of a network can

be used to infer competition, but this has to our knowledge received little attention in ecology.

Whereas clustering analysis gives information about the grouping of nodes within their immediate

neighbourhood (but no information about the identity of nodes in this neighborhood), a measure

of modularity gives a similar information at a larger scale. Network modularity measure how

closely connected nodes are divided in modules, also called compartments (Olesen et al. 2007).

A module is de�ned as a subsystem of non-overlapping and strongly interacting species. The

modular structure of graphs has been studied because of its dynamical implications, in that

modularity promotes stability by containing perturbations within a module, thereby constraining

their spreading to the rest of the community (Stou�er & Bascompte 2010, 2011). This has been

a key argument in the diversity-stability debate (Krause et al. 2003). A major challenge when

studying species interaction networks’s modularity is to �nd the best subdivision of the network.

Several methods have been developed for this purpose, including the optimization of a modularity

function (Guimerà et al. 2004; Newman 2004; Newman & Girvan 2004; Guimerà & Amaral 2005;
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Figure 3 Illustration of the nested and modular structure of networks, represented as matrices. A is a

perfectly nested matrix; in B, three interactions (in grey) have been displaced to lose the perfectly nested

structure. C is a perfectly modular network; in D, three interactions have been displaced to lose the

modular structure.
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Guimerà & Nunes Amaral 2005). The principle underlying this function is to �nd the optimal

subdivision that maximizes the number of interactions within modules while minimizing the

number of edges between modules. The calculated modularity is then compared with a null

model that has the same number of links and nodes, with the links connected to each other

randomly. Modularity optimization has a resolution limit (in that its performance decreases with

the size of the network) making it less reliable for large species interaction networks (Fortunato

& Barthélemy 2007); there are methods designed speci�cally to work on thousands of nodes and

more (see e.g. Liu & Murata 2009). To compare outcomes of di�erent modularity measurements,

it possible to use an a posteriori method. In a network where modules are already found, the

realized modularity (Q
′

R) measure the proportion of edges connecting nodes within modules

(Poisot 2013). This is expressed as

Q
′

R
= 2 ×

W

L

− 1 , (1)

where W is the number of edges within modules, and L is the total number of edges. This takes

on a value of 1 when modules are disconnected from one another (which is not true of other

modularity functions that account for the probability of establishing an edge). This measure can

take on negative values if there are more edges between modules than within them, which can be

viewed as a non-relevant partitioning of the community.

2.1.4 Nestedness

species interaction networks can also present a nested structure, where the species composition of

small assemblages are subsets of larger assemblages. In food webs, a nested structure occurs when

the diet of the specialists species is a subset of the diet of the more generalist species – and where

the predators of species are nested as well. The analysis of nestedness has revealed ecological and

evolutionary constrains on communities. For example, it has been hypothesized that a nested

structure promotes a greater diversity by minimizing competition among species in a community

(Bastolla et al. 2009). Various metrics have been developed to quantify nestedness (Ulrich 2009;

Ulrich et al. 2009). Most are based on the principle that when a matrix is ordered by rows and

columns (that is descending in rank from above and from the left) a nested networks will present

a concentration of presence data in the top-left corner of the matrix, and a concentration of

absence data in the opposite corner (see Staniczenko et al. 2013 for an exception). Numerous

studies (Rodriguez-Girones & Santamaria 2006; Fortuna et al. 2010; Flores et al. 2011) use the

proportion of unexpected presence or absence in the matrix to quantify nestedness. Seemingly

the most widely used measure of nestedness is NODF (nestedness measure based on overlap and

decreasing �lls), as suggested by Almeida-Neto et al. (2007); Bastolla et al. (2009) designed � as an

improvement over NODF, that does not require a re-ordering of the nodes (i.e. there is no need to

put the most densely connected nodes �rst, and the least densely connected nodes last). As per

Bastolla et al. (2009), � is de�ned as:

�(A) =

∑
i<j
nij

∑
i<j

minimum(ni , nj )

(2)

where nij is the number of common interactions between species i and j, and ni is the number of
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interactions of species i. Note that this formula gives the nestedness of rows with regard to the

columns, though one can also measure the nestedness of columns with regard to rows as �(A
′
),

and calculate the nestedness of the whole system as the average of these two values. We suggest

that, since it does not rely on species re-ordering, � can be used over NODF or other nestedness

measures. There are some caveats to this argument, however. First, the number of permutations

for NODF is known, and for networks of a small size, they can be computed in a reasonable time.

Second, NODF can help understanding how di�erent orderings of the matrix (e.g. using traits

instead of degree) contributes to nestedness – if this is the question of interest, then NODF is the

logical choice. Once ordered by degree, NODF and � are identical (with the exception that NODF

accounts for decreasing �ll, whereas � does not).

2.1.5 Intervality

A last measure of species interaction networks structure is their intervality. The �rst step in

calculating intervality is to identify a common trait along which nodes can be ordered. This can

be body mass in the case of food webs, but can also be a property derived from their position in

the network, such as their degree; indeed, a nested bipartite network is interval when species are

organized by decreasing degree. Intervality then measures how well interactions of all species

can be described by this trait. A network is called interval when it can be fully explained by one

dimension (trait). An interval food web with species ordered by their body mass, as an example,

has predator eating a consecutive range of preys, that all fall into a range of body masses (Eklöf &

Stou�er 2016), or are closely related from a phylogenetic standpoint (Eklöf & Stou�er 2016). Most

unipartite ecological networks are close to being interval with one or several dimensions, such as

de�ned by body size (Zook et al. 2011) or arbitrary traits derived from the interactions themselves

(Eklöf et al. 2013). There are several methods to quantify a network’s intervality. Cattin et al.

(2004) have measured the “level of diet discontinuity” using two measures: (i) the proportion

of triplet (three species matrix) with a discontinuous diet (i.e. at least one species gap), in the

whole food web (D
diet

), and (ii) the number of chordless cycles (Cy4
). A cycle of four species is

considered as chordless if at least two species out of the four are not sharing prey, so the diets

cannot be totally interval. Nevertheless, these two measures only give a local estimation of the

intervality. Stou�er et al. (2006) proposed to measure the intervality of the entire network by

re-organizing the interaction matrix to �nd the best arrangement with the fewer gaps in the

network. This is a stochastic approach that by de�nition does not guarantee to �nd the global

optimum, but has the bene�t of working at the network scale rather than at the scale of triplets of

species.

2.2 How are communities di�erent?

Detecting spatial and temporal variation in ecological networks, and associating these variations

to environmental factors, may yield insights into the underlying changes in ecosystem functions,

emergent properties, and robustness to extinction and invasion ( Tylianakis et al. 2007; Tylianakis

& Binzer 2013). These e�orts have been hindered by the di�culty of quantifying variation

among interaction networks. The challenge lies in �nding a meaningful way to measure the

dissimilarity between networks (Dale & Fortin 2010). Given the ecological properties or processes

of interest, a direct comparison – not always computationally tractable – may not be necessary.
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Hence, networks can be indirectly compared through their properties (e.g. degree distribution,

connectance, nestedness, modularity, etc.). Multivariate analyses of network metrics have been

used to estimate the level of similarity between di�erent networks (Vermaat et al. 2009; Baiser et

al. 2011), while null models were used to statistically compare observed values to their expected

random counterparts (e.g. Flores et al. 2011). These methods are not entirely satisfactory. The

actual variation in species interaction networks can be measured more easily in a replicated

context: given the same species, what are the causes that make them interact in the same way,

or not? Quantifying actual variation in network structure can be achieved through a di�erent

approach to sampling, where instead of relying on the sampling of a large number of networks in

di�erent environments, e�orts are focused on the same system at reduced spatial or temporal

scales. The development of methods to analyse replicated networks is still hampered by the

lack of such data; this is especially true in food webs. Replicated food webs based only on the

knowledge of the local species and their potential interactions (e.g. Havens 1992) is not always

appropriate: by assuming that interactions always happen everywhere, we do not capture all

sources of community variation (in addition to the issue of co-occurrence being increasingly

unlikely when the number of species increases). Sampling of ecological networks should focus on

the replicated documentation of interactions within the same species pool, and their variation in

time and space (Poisot et al. 2012; Carstensen et al. 2014; Olito & Fox 2015), as opposed to relying

on proxies such as comparison of di�erent communities across space (Dalsgaard et al. 2013), or

time (Roopnarine & Angielczyk 2012; Yeakel et al. 2014).

2.2.1 Relationship between key network properties

Analysis of network structure measures has so far played a central role in the comparison of

networks and in the search for general rules underpinning their organization (Dunne 2006;

Fortuna et al. 2010). Notably, the number of species a�ects the number of interactions in real

ecological networks(Martinez 1992; Brose et al. 2004), and thus many other network properties

(Dunne 2006). The trivial aspects of the networks covary with essential aspects of the network,

such as species abundance distributions (Blüthgen et al. 2008; Vázquez et al. 2012; Canard et

al. 2014), network dimensions and sampling intensity (Martinez et al. 1999; Banašek-Richter

et al. 2004; Chaco� et al. 2012). This issue can seriously limit the interpretation of network

measures and their use for network comparison. Furthermore, most of these measures are highly

correlated among themselves: Vermaat et al. (2009) report that network multidimensionality can

be reduced largely along three major axes related to connectance, species richness (which is tied to

connectance because the number of interactions scales with the number of species) and primary

productivity (which is hard to measure, and is not easily de�ned for all systems). More recently,

Poisot & Gravel (2014) and Chagnon (2015) showed that because of constraints introduced by the

interaction between connectance and network size, the covariation of the simplest measures of

network structure is expected to be very strong. As a consequence, it is barely possible to make

robust network comparisons using the variations in these basic descriptors. We therefore need to

go beyond these global network properties, and �nd meaningful alternatives that allow a better

understanding of the ecological di�erences between networks.
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2.2.2 Higher order di�erences in structure

Other methods accounting for the structure of the entire network have been developed. For

example, some methods are based on the frequency distribution of small subnetworks including

network motifs (Milo et al. 2002) and graphlets (a more general de�nition of motifs; Przulj 2007;

Yavero lu et al. 2015). The method of graph edit distance gives edit costs (each modi�cation to the

graph counts for one unit of distance) for relabeling nodes, as well as insertion and deletion of both

nodes and edges (Sanfeliu & Fu 1983), and therefore provides a well-de�ned way of measuring the

similarity of two networks. Other suitable measures to determine network similarity are based on

graph spectra (Wilson & Zhu 2008; Stumpf et al. 2012). Spectral graph theory (which is yet to be

applied comprehensively to the study of species interaction networks, but see Lemos-Costa et al.

(2016)) characterizes the structural properties of graphs using the eigenvectors and eigenvalues of

the adjacency matrix or the closely related Laplacian matrix (the Laplacian matrix, de�ned as

D − A, wherein D is a matrix �lled with 0’s in the o�-diagonal elements, and the degree of each

node on the diagonal, accounts both for network structure and for degree distribution). Some

methods allow the algorithmic comparison of multiple networks in which no species are found in

common (Faust & Skvoretz 2002; Dale & Fortin 2010), and are primarily concerned about the

overall statistical, as opposed to ecological, properties of networks.

2.2.3 Ecological similarity and pairwise di�erences

All of the aforementioned methods focus on the mathematical similarity of networks rather

than their ecological similarity. To �ll this gap, Poisot et al. (2012) presented a framework for

measurement of pairwise network dissimilarity, accounting both for species and interaction

turnover through space, time or along environmental gradients. Following Kole� et al. (2003), this

approach partitions interactions in three sets: shared by both networks, unique to network 1, and

unique to network 2. The �-diversity can be measured by comparing the cardinality of these three

sets to re�ect symmetry of change, gain/loss measures, nestedness of interaction turnover, etc.

This method of network �-diversity can also be extended to multiple network comparisons using

their relative di�erence from the same meta-network. While many measures of �-diversity exist

to analyse compositional data, there is still a lack of a comprehensive methodology regarding their

applications to networks. A large part of the issue stems from the fact that species interactions

require the species pair to be shared by both community, and thus measures of network �-diversity

is strongly constrained by the structure of species co-occurrence. Absent co-occuring species

pairs, or if no two networks have common species, these methods cannot be applied. None of the

current methods seem su�cient for characterizing the structure for a meaningful comparison

and extracting information hidden in the topology of networks, and the development of future

methods that work regardless of species composition seems like a straightforward high-priority

topic.

2.3 What do species do?

Not all species in large communities ful�ll the same ecological role, or are equally important for

processes and properties acting in these communities. As species interactions are a backbone for

fundamental mechanisms such as transfer of information and biomass, one can expect that the
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role of a species re�ects its position within its community, organized by trophic level, abundance,

body size or other ecologically meaningful organizing principle. In species interaction networks,

it is possible to measure the position and the role of species in di�erent ways, giving di�erent

ecological information.

2.3.1 Centrality

Centrality is a measure of how “in�uential” a species is, under various de�nitions of “in�uence”.

It has been used to suggest possible keystone species in ecological networks (Jordán & Scheuring

2004; Martín González et al. 2010). We would like to note that the ability of network structure

measures to identify keystone species is highly dubious; the canonical de�nition of a keystone

species (Paine 1969) requires knowledge about biomass and e�ects of removal, which are often

not available for network data, and make predictions that are primarily about species occurrences.

These measures may be able to identify list of candidate keystone species, but this requires careful

experimental / observational validation. Nevertheless, knowledge of network structure allows us

to partition out the e�ect of every species in the network. For example, in networks with a nested

structure, the core of generalist species have higher centrality scores, and the nested structure

thought to play an important role for network functioning and robustness (Bascompte et al.

2003). We provide an illustration of some centrality measures in �g. 4.

Degree centrality (CD(i) = ki ; Freeman (1977)) is a simple count of the number of interactions

established by a species. In directed networks, this measure can be partitioned between in-degree

(interactions from others to i) and out-degree (interaction from i to other). It is a local measure,

that quanti�es the immediate in�uence between nodes. As an example, in the case of a disease, a

node with more interactions will be more likely both to be infected and to contaminate more

individuals (Bell et al. 1999). To compare species’ centrality, CD has to be normalized by the

maximum degree (⟨CD⟩ = CD/kmax).

Closeness centrality (CC ) (Freeman 1978; Freeman et al. 1979) measures the proximity of a species

to all other species in the network, and is therefore global in that, although de�ned at the species

level, it accounts for the structure of the entire network. It is based on the shortest path length

between pairs of species and thus indicates how rapidly/e�ciently a node is likely to in�uence

the overall network. The node with the highest CC is closer to all other node than any other

node and will thus a�ect more rapidly the overall network if, for example, there is a perturbation

(Estrada & Bodin 2008). Formally, CC is de�ned as

CC (i) = ∑

j≠i

n − 1

dji

, (3)

where dij is the shortest path length between i and j, and n is the number of species.

Betweenness Centrality (CB) (Freeman 1977) describes the number of times a species is between a

pair of other species, i.e. how many paths (either directed or not) go through it. This measure is

thus ideal to study the in�uence of species loss on fragmentation processes for example (Earn

2000; Chadès et al. 2011; McDonald-Madden et al. 2016). Nodes with high CB values are considered

as modules connectors in the network. The value of CB is usually normalized by the number of

Analyzing ecological networks page 16 of 39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2017. ; https://doi.org/10.1101/112540doi: bioRxiv preprint 

https://doi.org/10.1101/112540
http://creativecommons.org/licenses/by/4.0/


Figure 4 On the simple graph depicted in the top (nodes of the same color have the same centralities), we

measured centrality using betweenness, eigen centrality, degree centrality, and closeness. The values

have been corrected to sum to unity. The value in bold gives the most central family of nodes for the

given measure. This example illustrates that di�erent measures make di�erent assumptions about what

being “central” mean.
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pairs of species in the network excluding the species under focus, and is measured as

CB(i) = 2 × ∑

j<k;i≠j

g
jk
(i)/g

jk

(n − 1)(n − 2)

, (4)

where g
jk

is the number of paths between j and k, while g
jk
(i) is the number of these paths that

include i.

Eigenvector centrality (CE – Bonacich 1987) is akin to a simulation of �ow across edges, in which

each species in�uences all of its partners simultaneously. It then measures the relative importance

of species by assigning them a score on the basis that an interaction with more in�uential species

contribute more to a species’ score than the same interaction with a low-scoring species (Allesina

& Pascual 2009). From a graph adjacency matrix A, the eigenvector centrality of species i is given

by

CE(i) =

1

�

∑

j

AijCE(j) , (5)

where Aij is 1 if i interacts with j and 0 otherwise, and � is a constant. This can be rewritten as

the eigenvector equation:

Ac = �c , (6)

wherein c is the vector of all values of CE . As all values of CE have to be positive, as per the

Perron-Frobenius theorem, � is the greatest eigenvalue of A.

Finally, Katz’s centrality (CK – Katz 1953) is a measure of the in�uence of a node in the network.

This measure takes into account all the edges connecting a node to its neighborhood. However,

an immediate neighbor has more weight than a distant one. CK is de�ned as

CK (i) =

∞

∑

k=1

n

∑

j=1

�
k
A
k

ij
, (7)

wherein � is the attenuation constant, and k is the length of the paths between i and j. The

� value is between 0 and 1/�, where � is the largest eigenvalue of A. Larger values of � give

more importance to distant connections, thus allowing this measure to function either locally

(immediate neighborhood) or globally (entire graph). CK can be used in directed acyclic graphs

(e.g. trees), which is not true of CE . This is also the only measure to have a probabilistic equivalent

(Poisot et al. 2016b).

Studying di�erent measures of centrality provide important information regarding the roles of

certain species/nodes. As an example, a species may have a low CD and a high CB , meaning that

it plays a key role in connecting species that would not be connected otherwise even if it does not

interact with them directly. A low CD and a high CC means that the species has a key role by

interacting with important species. Because the absolute values of centrality vary with network
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size and connectance, Freeman et al. (1979) suggest that the centralization measure, rarely applied

in ecology, be used when comparing centrality across networks. Centralization is de�ned, for

any centrality measure Cx , as the sum of the di�erences between each node’s centrality, and

the highest centrality value (∑
i
(Cx (i) − max(Cx ))). This measure is then divided by the maximal

possible value of centralization for a network with the same number of nodes and edges, which in

turns depends on the formulae used to measure centrality, and can be estimated based on random

draws of the networks.

2.3.2 Species functional roles

Species functional roles can be re�ected in the interactions they establish. The usual approach in

functional ecology is to look at species traits (Violle et al. 2007); they do in part in�uence the

network position of species, either by mediating interactions (Brose et al. 2006a; Alexander et al.

2013), or by preventing them altogether (Olesen et al. 2011). For instance, Petchey et al. (2008a)

used allometric scaling of body size and foraging behavior of individual consumers to predict

species interaction. When multiple traits are studied, it is possible to build a dendrogram based

on these traits and choose an arbitrary threshold on which to “cut” the tree. The species are

then grouped at the base of the dendrograms in several groups (Petchey & Gaston 2002). This

method usually does not account directly for interactions between species (Petchey et al. 2008a)

but is useful when studying a process for which the in�uential traits are known or to test the

importance of a particular (set of) traits on a function. When grouping species according to

their traits, the critical issue is to select a valid (set of) traits from which groups will be formed.

The functional groups identi�ed this way are then analysed in the light of the species position

within the network. Note that one can, in this situation, adopt a very generous de�nition of what

constitutes a trait: spatial grouping of species (Baskerville et al. 2011) for example, is one example

in which examining interactions in the light of species attributes provides ecological insights.

Absent external information, the role of a species can be hinted at by its interactions: species with

similar interactions are often grouped in trophic species; it is in fact a common misunderstanding

that generative food web models (Williams & Martinez 2000; Cattin et al. 2004) predict species
interaction, where they actually predict interactions between trophic groups. The groups formed

using this method will exhibit a high homogeneity in functional role but are likely to miss some

species that do not interact with the same partners despite ful�lling the same functions at a

di�erent place in the network. Dalla Riva & Stou�er (2015) suggested an alternative to this

approach: species positions are analyzed before clustering them into groups, allowing investigation

of species interactions and avoiding obfuscation of the variance within groups.

Coux et al. (2016) suggested to use interactions to measure the functional role of species, by

applying FD (“Functional Diversity”; Laliberté & Legendre 2010) to the adjacency or incidence

matrix of the network. Under this framework, like in Mouillot et al. (2013), the uniqueness of a

species is hinted at by its distance to the centroid of all other species. We argue that this approach

should be questioned for two reasons. First, it is sensitive to the ordination choices made. Second,

it is not clear how it allows the comparison of results across di�erent networks: not only does the

position of a species vary in relation to other species in the network, it varies from one network to

another. Note that centrality measures are not necessarily better at identifying which species are

unique: as we show in �g. 4, for some measures, non-unique nodes have high centrality values. We

argue that the development of measures for node uniqueness should received increased attention.

In particular, measures that rely on ordination only account for �rst-order interactions, i.e. the
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direct interactions between species. As a consequence, a large part of the network structure,

which emerges through consideration of longer chains of interactions, is not accessible via these

methods.

Looking at network motifs is a promising way to address species functional roles and node

uniqueness. Motifs are all the possible ways a �xed number of species (usually three or four) can

interact. Within these motifs, species can occupy a variety of unique positions; for example,

within a linear food chain, there are three distinct positions (bottom, middle, top), whereas a

trophic loop has a single unique position. Within motifs with three species, 30 unique positions

can be identi�ed (Stou�er et al. 2012), and for each species, its frequency of appearance at each

of these position within networks has been shown to be an inherent characteristic conserved

through its evolutionary history. This method has the advantage of grouping species that may be

di�erent in terms of guild or partners, but that contribute in the same way to the structure of the

community. Based on this vector it is possible to statistically identify species that exhibit similar

pro�les. Motif positions tend to be well conserved both in time (Stou�er et al. 2012) and space

(Baker et al. 2014), making them ideal candidates to be investigated alongside functional traits

and phylogenetic history.

2.3.3 Partition based on modularity

In large communities, some species are organized in modules (see “What do communities look

like” part “Edges repartition within the graph”), within which they interact more frequently

among themselves than with species of the same overall network but outside of their module.

Guimerà & Nunes Amaral (2005) proposed that when functional or topological modules can be

found in large networks, the functional role of a species can be de�ned by how its interactions

are distributed within its module and with other modules. To identify these roles, the �rst step is

to identify the functional modules of a large networks (see “What do communities look like” part

“Edges repartition within the network”). The pro�le of species interactions is determined by

using two measures.

First, the z-score quanti�es how well-connected a species i is within its module m.

zi =

Ki − Kmi

�Km
i

, (8)

where Ki is the degree of i within its module mi ; Kmi
is the average of K over all species of mi

and �Km
i

is the standard deviation of K in mi .

Second, the participation coe�cient (PC) describes the pro�le of i’s interaction with species found

outside of the module m.

PCi =

NM

∑

m=1

(

Kis

ki

)
2
, (9)

where ki is the total degree of species i, meaning a count of all its connection, inter- and intra

module. The PC of a species therefore varies between 0 (all edges are within the module) and 1
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(all interactions are uniformly distributed among all the modules). The use of these indices is

based on the assumption that species with similar interactions have similar traits and so are

expected to play the same functional role.

Olesen et al. (2007) use these two values to divide species in four groups, based on a cuto� for

z (2.5) and for PC (0.62). Species with low z and low PC are “peripherals” – they are not well

connected within or between modules. Species with low z and high PC connect well between, but

not within, modules, and are “connectors”. Species with high z and low PC are “module hubs”,

well connected within their own modules but not with the outside. Finally, species with high z

and high PC are “network hubs”, connecting the entire community. In their analysis of plants and

pollinators, Olesen et al. (2007) reveal that pollinators tend not to be module hubs, and are also

less frequently network hubs than plants are.

2.3.4 Contribution to network properties.

As species make di�erential contributions to network structure and processes, the removal of

certain species will therefore have a greater e�ect on the community’s stability and functioning,

and these species are therefore stronger contributors to these processes. Di�erential contribution to

several processes can be estimated in multiple ways: by performing removal/addition experiments

in real ecological systems (e.g. Cedar creek or BIODEPTH experiments), by analyzing the e�ect of

a species extinction within empirical (Estrada & Bodin 2008) or simulated (Berlow et al. 2009)

systems, by using a modeling approach and simulating extinctions (Memmott et al. 2007), or by

analyzing the statistical correlation between an ecosystem property and species functional roles

(Thompson et al. 2012). Another way to quantify the contribution of a species to a property P is

to compare it to its contribution to the same property when its interactions are randomized. This

method allows studying the contribution of a species’ interactions, as the variation of interactions

is intuitively expected to be faster than the variation of species. Indeed, because interactions

require species to co-occur, because there are far more interactions than species, and because

interactions have a dynamic of their own, whether there will be more signal in interactions than

in species presence is an hypothesis that should be tested on empirical systems in priority.

The contribution of a species to a given network measure after its interactions are randomized is

ci =

(P − ⟨P
⋆

i ⟩
)

�
P
⋆

i

, (10)

where P is the property (nestedness, modularity, productivity . . . ), ⟨P
⋆

i ⟩
and �

P
⋆

i

are the average

and standard deviation of the property across a set of random replicates for which species i

interactions have been randomized. The e�ects of several traits or structural properties of species

(such as centrality or STR) on their contributions to given measure can then be analyzed.

2.4 How are species related?

Some species exhibit a much larger set of interactions than others or form denser clusters within

the network. One of the many challenges of ecology is to understand the causes and consequences
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of such heterogeneous species interactions. Species are, �rst and foremost, related by their

phylogenetic history. We will not address this aspect here, in no small part because it does not

easily integrate with network theory. We encourage readers to refer to Cadotte & Davies (2016)

instead.

One way in which the heterogeneity of species interactions is known is through analysis of the

overlap in their partners, known as ecological similarity. For simplicity, we will use the vocabulary

derived from trophic networks, but these methods can be applied to other types of ecological

networks. Ecological similarity between species is a widely used concept that quanti�es the

resemblance between two species or “biotic interaction milieu” (McGill et al. 2006) and allows

analyzing processes ranging from species niche (Elton 1927) and community assembly (Piechnik

et al. 2008; Morlon et al. 2014) to trophic diversity (Petchey & Gaston 2002). The simplest and

most widely used measure of pairwise ecological similarity is the Jaccard coe�cient (Legendre &

Legendre 2012):

SJ =

a

a + b + c

(11)

where a is the number of shared partners, b the number of species that interact with only the �rst

species and c with only the second species (for variations, see (Legendre & Legendre 2012)). The

Jaccard similarity coe�cient is widely used to estimate ecological similarity and competition

between species (Rezende et al. 2009) but does not account for the shared absence of interactions

(but see Chao et al. 2005). This is not a severe issue, as ecological networks tend to be extremely

sparse, and therefore shared absence of interactions may not be informative. The similarity index

has to be chosen with care depending on the focus of the study. In the general equation above,

consumers and resources are seen as perfectly equivalent (additively), but, in directed networks,

it can be adapted to include consumer and resources as di�erent dimensions of trophic activities

and/or for dynamical food webs by including information about �ows (Yodzis & Innes 1992).

Once a similarity matrix is formed from all pairwise measurements, a hierarchical clustering

can be performed to build a dendrogram, which gives information about the trophic diversity

of species within a community and the relative uniqueness of species (but see Petchey et al.

2008b). Cophenetic correlation (Sokal & Rohlf 1962) can then be used to analyze how well several

dendrograms, built using di�erent methods, preserve the similarity between species (Yodzis &

Winemiller 1999). The similarity of overall communities can also be estimated to see how similar,

or dissimilar, species within it are when compared to null models (Morlon et al. 2014). For this

purpose, the mean or maximum pairwise similarity is averaged across the whole network under

consideration.

2.5 Is any of this signi�cant?

Most network properties tend to be collinear, speci�cally because they covary with connectance.

For example, the number of interactions in a network with a known number of species will limit

the possible values of nestedness, modularity, and so on (Poisot & Gravel 2014). A variety of

approaches can be used to determine whether an observation represents a departure from a

speci�ed random expectation.
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2.5.1 Null hypothesis signi�cance testing

A large number of studies use the null hypothesis signi�cance testing (NHST) paradigm, whether

or not ot is the most appropriate method. NHST works by generating randomized networks

under a variety of constraints, measuring the property of interest on these randomizations, then

commonly using a one-sample t-test with the value of the empirical measure as its reference. This

is justi�ed because, through the mean value theorem, the application of enough randomizations

should yield a normal distribution of the simulated network measure (see Flores et al. 2011). There

are also a number of ways to generate randomized adjacency matrices. Bascompte et al. (2003)

used a probabilistic sampling approach, where the probability of drawing an interaction depends

on the relative degree of the species; Fortuna & Bascompte (2006) used the same approach, with

the distinction that all interactions have the same probability (equal to connectance). Drawing

from a probability distribution in this manner has a number of shortcomings, notably the fact that

some species can end up having no interactions, thus changing the network size. An alternate

approach is to use constrained permutations, where pairs of interactions are swapped to keep

some quantity (the overall number of interactions, the degree of all species, and so on) constant.

This approach is used in null models for species occupancy (Gotelli 2000; Gotelli & Entsminger

2003; Ulrich & Gotelli 2007). Stou�er et al. (2007) used an intermediate approach, where swapping

was done as part as a “simulated annealing routine”, to give the algorithm enough leeway to

explore non-optimal solutions before converging (as opposed to just swapping, which has no

de�nition of the optimality of a solution).

2.5.2 Hypotheses underpinning null models

The speci�cation of a null model embodies the hypothesis that is tested. In the context of bipartite

networks (unipartite networks such as food webs have received comparatively less attention),

there are three broad families of models. Type I (Fortuna & Bascompte 2006) are focused on

connectance, and the probability of any two species i and j interacting is �xed as

Pi→j =

|E|

|T | × |B|

, (12)

where T and B are vertices from the “top” (T = {v ∈ V , k
in
(v) = 0}) and “bottom” (B = {v ∈

V , kout(v) = 0}) levels of the network (these methods where originally applied to bipartite

networks). This model assumes that interactions are distributed at random between all species,

without considering the degree of the species. Deviation from the predictions of this model

indicate that the network measure of interest cannot be predicted by connectance alone.

Type II (Bascompte et al. 2003) adds an additional level of constraint, in that it respects the degree

distribution of the network (in degree k
in

; out-degree kout). In a Type II network,

Pi→j =

1

2 (

k
in
(j)

|T |

+

kout(i)

|B| )
, (13)

meaning that the interaction is assigned under the hypothesis that i distributes its outgoing edges

at random, and j receives its incoming edges at random as well. In this model, species with more
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interactions have a higher probability of receiving interactions in the simulated network. This

respects both the distribution of generality and vulnerability. Deviation from the predictions

of this model indicate that the network measure of interest cannot be predicted by the degree

distribution alone.

Finally, Type III models account for only one side of the degree distribution, and can be de�ned as

Type III in, wherein

Pi→j =

k
in
(j)

|T |

, (14)

and Type III out, wherein

Pi→j =

kout(i)

|B|

. (15)

2.5.3 Topological and generative models

It is important to note that these models, based on permutations, are purely topological. There is

no di�erence, when deciding if an interaction should be assigned between two species, between

e.g. a plant-pollinator network, or a host-parasite network. To inject some processes in the null

models used, several “generative” models have been proposed. By contrast to topological models,

generative models use core assumptions about ecological mechanisms to generate networks that

mimic aspects of a template network. Arguably the most in�uential (despite it being limited to

trophic interactions) is the “niche model” (Williams & Martinez 2000), that generates networks of

trophic groups based on the hypothesis that feeding interactions are determined by an arbitrary

niche-forming axis generally accepted or implied to be body-size ratios (Brose et al. 2006a).

Gravel et al. (2013) showed that the parameters of this model can be derived from empirical

observations. The niche model assumes a beta distribution of fundamental niche breadth in the

entire network; this assumption, close though it may be to empirical data, nevertheless has no

mechanistic or theoretical support behind it. This suggests that so-called generative models

may or may not be adequately grounded in ecological mechanisms, which implies the need for

additional developments. Similar models include the cascade model and the nested-hierarchy

model, but these tend to generate networks that are qualitatively similar to those of the niche

model (Brose et al. 2006b). More recently, several models suggested that species traits can be used

to approximate the structure of networks (Santamaría & Rodríguez-Gironés 2007; Bartomeus

2013; Crea et al. 2015; Olito & Fox 2015; Bartomeus et al. 2016). Finally, networks tend to be well

described only by the structure of species abundances. Both in food webs (Canard et al. 2012) and

host-parasite bipartite networks (Canard et al. 2014), modelling the probability of an interaction

as the product of relative abundance is su�cient to generate realistic networks. These generative

models represent an invaluable tool, in that they allow building on mechanisms (though, as we

illustrate with the niche model, not necessarily ecological ones) instead of observed relationships

to generate the random expectations.
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2.6 Future methods for novel questions

Surveying the methodological toolkit available to analyze ecological networks highlights areas in

which future developments are needed. We identi�ed, in particular, four topics that would require

additional attention.

2.6.1 Multi/hyper graphs

Most of the tools to analyse species interaction networks are limited to node-to-node interactions,

to the exclusion of node-to-interaction or interaction-to-interaction interactions. This limits the

variety of biological situations that can be represented. Golubski & Abrams (2011) presented a

number of situations that elude description in this way. For example, opportunistic infection by a

pathogen O requires the pre-existence of an interaction between a pathogen P and an host H. This

situation is better captured as (i) the existence of an interaction between H and P (noted LHP )

and (ii) the existence of an interaction between O and this interaction, noted O → LHP . Another

hard-to-represent scenario is niche pre-emption: if a host H can be infected by either pathogen P1

or P2, but not both at the same time, then the interactions LHP1
and LHP2

interact antagonistically.

This is a di�erent situation from simple competition between P1 and P2. Although these are

extremely important drivers of, for example, species distributions (Araújo & Rozenfeld 2014; Blois

et al. 2014), the current methodological framework of ecological network analysis is not well

prepared to represent these data.

2.6.2 External information

Building on the basis suggested by Poisot et al. (2015), Bartomeus et al. (2016) proposed that the

mechanisms determining ecological interactions can be identi�ed within a cohesive statistical

framework, regardless of the type of ecological interaction. At its core, their framework assumes

that interactions are the consequence of matching rules, i.e. relationships between traits values

and distributions. For example, a pollinator can get access to nectar if its proboscis is of a length

compatible with the depth of the �ower. Rather than relying on natural history, these “linkage

rules” (Bartomeus 2013) can be uncovered statistically, by modelling an interaction Lij as a function

f (xi , yj ) of the traits involved, wherein xi and yj are sets of traits for species i and j respectively.

Procedures akin to variable selection will identify the traits involved in the interaction, and

model selection can identify the shape of the relationship between trait values and interactions.

There are two reasons for which this work is an important milestone in the modern analysis of

ecological networks. First, it places interactions within the context of community ecology, by

showing how they build upon, and in�uence, trait distributions. In particular, it draws attention to

how structure of networks results both from the linkage rules and from the distribution of traits

in the locality where the network is measured (Gravel et al. 2016a). Second, it does away with the

necessity of topological models to generate random networks: identifying matching rules is the

only step needed to generate random networks based on functional, biological hypotheses, thereby

solving some of the concerns we identi�ed with generative null models. We argue that this

approach should be expanded to accommodate, e.g. phylogenetic relationships between species.

The ideal framework to study networks, and the one we should strive for, avoids considering

interactions in isolation from other aspects of community structure – instead, it is explicit about
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the fact that none of these aspects are independent. Although this will come with additional

mathematical and statistical complexity, this cost will be more than o�set by the quality and the

re�nement of the predictions we will make.

Although documenting species, traits, and interactions seems like a daunting e�ort, there are

novel approaches to accelerate the generation of data in some systems. For example, Bahlai &

Landis (2016) show that passive measurement based on citizen science (using Google Images)

allows users to accurately document phenological matches and species interactions between

�owers and bumblebees. Similarly, Evans et al. (2016) show that sequencing of diet gives access to

phylogenetic and interaction history within a single experiment. Addressing novel questions

will require a diversi�cation of the methodological toolkit of network ecologists, as well as an

improved dialog between empiricists and theoreticians.

2.6.3 Networks of networks

An additional frontier for methodological development has to do with the fact that networks

can be nested. A network of species–species interactions is the addition of interactions at the

population level (Poisot et al. 2015), themselves being aggregates of interactions at the individual

level (Dupont et al. 2011, 2014; Melián et al. 2014). This is also true when moving from single-site

to multi-site network analysis (Poisot et al. 2012; Canard et al. 2014; Carstensen et al. 2014;

Trøjelsgaard et al. 2015). Local interaction networks exist in meta-community landscape (Gravel et

al. 2011; Trøjelsgaard & Olesen 2016), and their structure both locally and globally, is constrained

by, but is also a constraint on, co-occurrence (Araújo et al. 2011; Cazelles et al. 2015).

Analyzing networks in a meta-community context might require a new representation. Most of the

challenge comes from two sources. First, species are shared across locations; this means that two

nodes in two networks may actually represent the same species. Second, networks are connected

by species movement. Both the dynamics and the structure of networks are impacted by the fact

that species move across the landscape at di�erent rates and in di�erent ways. The implication is

that every species in the landscape potentially experiences its own version of the metacommunity

(Olesen et al. 2010). These issues have seldom been addressed, but would allow a more potent

examination of the spatial structure and dynamics of ecological networks (Trøjelsgaard & Olesen

2016). Gravel et al. (2016b) recently introduced spatially explicit Jacobian matrices, allowing the

formal consideration of coupled dynamics of several networks in a meta-community.

3 what are species interactions networks, revisited?

The above analyses bene�t from access to (context-enhanced) data on ecological interactions. An

important point to raise is that the format expected for the analysis (i.e. when data are actively

being processed) is di�erent from the format suitable for storage, archival, mining, and linking.

From an information management perspective, this puts the question of What are ecological
networks? in a new light.
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Table 1 Comparison of software packages. A + indicates that the feature exists. A question mark indicates

that it is possible to implement a feature, but it is not built-in. In addition to their language of choice,

these packages di�er in the license they use. GPL, notably, can be more di�cult to use in governments

/industrial settings. Functionalities marked with a ≈ indicate that they are either not fully supported, or

not working out of the box. Note that igraph has both R and Python interfaces. EcologicalNetwork is

the only package to support probabilistic networks, and BiMat is the only one to support multi-scale

network analysis.

Name ref Lang. Lic. Unip. Bipart. Quant. NHST

EcologicalNetwork Poisot et al. (2016b) Julia MIT + + + +

LightGraphs Julia BSD2 + + ≈

networkx Hagberg et al. (2008) Python BSD3 + + + ≈

igraph Csardi & Nepusz (2006) C GPL + + ≈

bipartite Dormann et al. (2008) R GPL + + +

BiMat Flores et al. (2016) Octave BSD2 + +

cheddar Hudson et al. (2013) R BSD2 + ≈

Most of the measures mentioned above, and therefore most software, expect networks to be

represented as matrices; every row/column of the matrix is an object, and the value at row i and

column j is a measure of the interaction between i and j. It can be a Boolean value, a measure of

interaction strength, or a probability of interaction. This approach is used by databases such as

IWDB, Web-of-Life.es, and World of Webs (Thompson et al. 2012). Although this approach has

the bene�t of being immediately useful, it lacks the easy addition of metadata. In the context of

species interaction networks, metadata is required at several levels: nodes (species, individuals),

interactions, but also the overall network itself (date of collection, site environmental data, and

so on). Most research has so far been constrained to the adjacency matrix representation of

networks. However, ontologically richer representations (graphs with built-in metadata) may

o�er themselves to a larger and di�erent tool set: multi-graphs, and hyper-graphs, capture a

wider picture of ecosystems where all types of interactions are considered simultaneously. Food

webs, or other networks, stored as binary or weighted matrices may not be the most relevant

representation for these questions.

There are two initiatives that remedy this shortcoming by providing meta-data-rich information

on ecological interactions. globi (Poelen et al. 2014) is a database of interactions, extracted from

the literature, and available through GBIF. It relies on an ontology of interaction types, and on

unique taxonomic identi�ers for species. mangal.io (Poisot et al. 2016a) is a database of networks,

that can be fed and queried openly through several packages; it relies on a custom data format,

and can be linked to other databases through the use of taxonomic identi�ers.

Networks formatted as raw matrices may well be immediately usable, but supplementing them

with external information is hard. On the other hand, granular databases with rich metadata can

always be converted to raw matrices, while retaining additional information. It is important that

we maintain a distinction between the formats used for storage (in which case, relational databases

are the clear winner) from the formats used for analysis (that can be generated from queries of

databases). In order to facilitate synthesis, and draw on existing data sources, it seems important

that the practice of depositing interaction matrices be retired, in the pro�t of contributing to

the growth of context-rich databases. In table 1, we provide an overview of the main software

packages available for the analysis of ecological networks.
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4 conclusions

In this contribution, we have attempted a summary of the measures from graph theory that are

the most frequently used in, or the most relevant for, the analysis of species interaction networks.

Even though species interaction networks are ubiquitous in community ecology, biogeography,

macroecology,and so on, there is no clear consensus on how to analyse them. We identi�ed a

number of areas that would bene�t from more methodological development.

First, there is a pressing need to accommodate hypergraphs and multigraphs within our framework,

so as to work on a larger variety of ecological situations. Pilosof et al. (2015) identi�ed these

systems as having a high relevance when predicting community change, and the emergence of

zoonotic diseases, and this is a clear example of an area in which ecology and applied mathematics

can have a fruitful interaction.

Second, the information we use on networks needs be expanded. Far from being a collection of

species and their interactions, networks are structured by environmental forces, species trait

distribution, species phylogeny, and random chance. Replicated datasets with extensive metadata

and additional information would most likely boost our power to describe, explain, and predict

network structure (Poisot et al. 2016d).

Third (and this ties in to the previous point), we need to establish stronger standards for the

manipulation of network data. The usual representation of “networks as matrices” is not powerful

enough to perform the sort of analyses hinted at in this contribution. Networks are di�cult to

manipulate, and the lack of a robust software suite to analyse them is a very worrying trend –

our knowledge of ecological networks is only as good as our implementation of the analyses, and

academic code is not known for its high quality or robustness.

Finally, there is a need to compare the alternative measures of a single property. We tried as

much as possible to frame these measures in the context of their ecological meaning. But this can

only properly be done by strengthening the ties between network analysis and �eld or lab based

community ecology.
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