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 2 

Abstract  21 

 The ability to predict microbial community dynamics lags behind the quantity of data 22 

available in these systems. Most predictive models use only environmental parameters, although 23 

a long history of ecological literature suggests that community complexity should also be an 24 

informative parameter. Thus, we hypothesize that incorporating information about a 25 

community’s complexity might improve predictive power in microbial models. Here, we present 26 

a new metric, called community “cohesion,” that quantifies the degree of connectivity of a 27 

microbial community. We validate our approach using long-term (10+ year) phytoplankton 28 

datasets, where absolute abundance counts are available. As a case study of our metrics’ utility, 29 

we show that community cohesion is a strong predictor of Bray-Curtis dissimilarity (R2 = 0.47) 30 

between phytoplankton communities in Lake Mendota, WI, USA. Our cohesion metrics 31 

outperform a model built using all available environmental data collected during a long-term 32 

sampling program. The result that cohesion corresponds strongly to Bray-Curtis dissimilarity is 33 

consistent across the five lakes analyzed here. Our cohesion metrics can be used as a predictor 34 

for many community-level properties, such as phylogenetic diversity, nutrient fluxes, or 35 

ecosystem services. We explain here the calculation of our cohesion metrics and their potential 36 

uses in microbial ecology.   37 

38 
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 3 

Introduction 39 

Most efforts to model microbial communities primarily use environmental drivers as 40 

predictors of community dynamics (Patterson 2009, Hambright et al. 2015). However, despite 41 

the vast quantities of data becoming available about microbial communities, predictive power in 42 

microbial models is often surprisingly poor (Blaser et al. 2016). Even in one of most well-studied 43 

microbial systems, the San Pedro Ocean Time Series (SPOT), there are sampling sites where 44 

none of the 33 environmental variables measured are highly significant (P < 0.01) predictors of 45 

community similarity (Cram et al. 2015). Thus, there may be room to improve predictive models 46 

by adding new parameters; ecological literature has long suggested that the degree of complexity 47 

in a community should inform community dynamics (MacArthur 1955, Cohen and Newman. 48 

1985, Wootton and Stouffer 2016). We hypothesize that incorporating information about the 49 

complexity of microbial communities could improve predictive power in these communities. 50 

Here, we present a workflow to generate metrics quantifying the connectivity of a 51 

microbial community, which we call “cohesion.” We show how cohesion can be used to predict 52 

community dynamics (e.g. rate of compositional turnover, phylogenetic diversity, ecosystem 53 

services provided by the community). As an application of our metrics, we present a case study 54 

using our newly developed cohesion variables as predictors of the compositional turnover rate (a 55 

common response variable in microbial ecology) in phytoplankton communities.  56 

Our cohesion metrics overcome two barriers that often preclude using information about 57 

community complexity in microbial analyses. First, the large number of taxa in microbial 58 

datasets makes it difficult to use information about all taxa in statistical analyses. Although 59 

methods exist to analyze microbial community interconnectedness (e.g. Local Similarity 60 

Analysis, artificial neural networks), this often involves constructing networks with many 61 
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parameters that are difficult to interpret. Second, microbial community data are often 62 

“relativized” or “compositional” datasets, where the abundance of each taxon represents the 63 

fraction of the community it comprises. This creates several problems in downstream analysis 64 

(Weiss et al. 2016). For example, taxon correlation values are different in absolute versus 65 

relative datasets (Faust and Raes 2012, Friedman and Alm 2012), and it is unclear how using 66 

relative abundances influences the apparent population dynamics of individual taxa (Lovell et al. 67 

2015). Thus, these two features (many taxa and relative abundance) have previously proven 68 

problematic when analyzing microbial community connectivity.  69 

Here, we describe and test a method to quantify one aspect of microbial community 70 

complexity. Our resulting “cohesion” metrics quantify the connectivity of each sampled 71 

community. Thus, our cohesion metrics integrate easily with other statistical analyses and can be 72 

used by any microbial ecologist interested in asking whether community interconnectedness is 73 

important in their study system. We demonstrate how to obtain these cohesion metrics from time 74 

series data and, as a case study, show how cohesion relates to rates of compositional turnover in 75 

long-term phytoplankton datasets. We develop this workflow with datasets where raw abundance 76 

data are available and use these raw abundances to validate our methods when working with 77 

relativized datasets. Thus, our approach was designed to overcome known challenges of 78 

analyzing microbial datasets.     79 

 80 

Methods and Results  81 

Description of datasets 82 

We restricted our search for datasets to those measured in absolute abundance that 83 

spanned multiple years, as to cover a wide range of environmental conditions. We found several 84 
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datasets hosted on the North Temperate Lakes Long Term Ecological Research (NTL LTER) 85 

database that were over 10 years in length and contained counts of phytoplankton in absolute 86 

abundance. The datasets are from the following lakes in Wisconsin, USA:  Lake Mendota (293 87 

samples with 410 taxa over 19 years), Lake Monona (264 samples with 382 taxa over 19 years), 88 

Paul Lake (197 samples with 209 taxa over 12 years), Peter Lake (197 samples with 237 taxa 89 

over 12 years), and Tuesday Lake (115 samples with 121 taxa over 12 years). These lakes vary 90 

in size, productivity, and food web structure. Peter Lake and Tuesday Lake were also subjected 91 

to whole-lake food web manipulations during the sampling timeframe (detailed in Elser and 92 

Carpenter 1988 and Cottingham et al. 1998). We present the workflow using results from the 93 

Lake Mendota dataset, as it is the dataset of the longest duration with the largest number of taxa. 94 

Details about datasets can be found at https://lter.limnology.wisc.edu/.  95 

Data curation 96 

 Phytoplankton densities in Lake Mendota varied by more than 2 orders of magnitude 97 

between sample dates. Densities of cells in these samples ranged from 956 cells/mL to 272 281 98 

cells/mL. We removed individuals that were not identified at any level (e.g. categorized as 99 

Miscellaneous). For each sample date, we converted the raw abundances to relative abundances, 100 

such that all rows summed to 1. We removed taxa that were not present in at least 5% of 101 

samples, as we were not confident that we could recover robust connectedness estimates for very 102 

rare taxa. This cutoff retained an average of 98.9% of the identified cells in each sample. Results 103 

of our analyses using other cutoff values can be found in the SOM.  104 

Overview 105 

The input of our workflow is the taxon relative abundance table, and the outputs are 106 

measurements of the connectivity of each sampled community, which we call community 107 
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“cohesion” (Fig. 1). In the process, our workflow also produces metrics of the connectedness of 108 

each taxon. Briefly, our workflow begins by calculating the pairwise correlation matrix between 109 

taxa, using all samples. We use a null model to account for bias in these correlations due to the 110 

skewed distribution of taxon abundances (i.e. many small values and a few large values) and 111 

relativized nature of the dataset (i.e. all rows sum to 1). We subtract off these “expected” 112 

correlations generated from the null model to obtain a matrix of corrected correlations. For each 113 

taxon, the average positive corrected correlation and average negative corrected correlation are 114 

recorded as the connectedness values. As previously noted, our goal was to create a metric of 115 

connectivity for each community; thus, the next step in the workflow calculates cohesion values 116 

for each sample. Cohesion is calculated by multiplying the abundance of each taxon in a sample 117 

by its associated connectedness values, then summing the products of all taxa in a sample. There 118 

are two metrics of cohesion, because we separately calculate metrics based on the positive and 119 

negative relationships between taxa. Within each section (1, 2, and 3), we alternate between 120 

presenting an analysis step and showing a validation of these techniques.   121 

 122 

1. CONNECTEDNESS METRIC 123 

Analysis 124 

It is difficult to directly observe interactions within microbial communities, so 125 

correlations are often used to infer relationships between taxa or between a taxon and the 126 

environment. Thus, we used a correlation-based approach for determining the connectedness of 127 

taxa. However, when using correlation-based approaches with relativized microbial datasets, it is 128 

necessary to use a null model to evaluate how the features of the dataset (skewed abundances and 129 

the fact that all rows sum to 1) contribute to correlations between taxa (Weiss et al. 2016). The 130 
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purpose of a null model is to assess the expected strengths of correlations when there are no true 131 

relationships between taxa (Ulrich and Gotelli 2010).  132 

Our null model was used to calculate how strongly the features common to microbial 133 

datasets contribute to taxon connectedness estimates, so that this structural effect could be 134 

subtracted from the connectedness metrics. While testing various null models, it became clear 135 

that a taxon’s pairwise correlation values were strongly related to its mean abundance and 136 

persistence (fraction of samples when present) across the dataset. Thus, these features (mean 137 

relative abundance and persistence) were retained in the null model by only randomizing 138 

abundance values within each taxon. Details about alternate null models investigated are given in 139 

the SOM.  140 

The objective of the null model was to calculate the strength of pairwise correlations that 141 

would be observed if there were no true relationship between taxa. During each iteration, one 142 

taxon was designated as the “focal taxon” (Fig. 2). For each taxon besides the focal taxon, 143 

abundances in the null matrix were randomly sampled without replacement from their abundance 144 

distribution across all samples. Then, we calculated Pearson correlations between the focal taxon 145 

and the randomized other taxa. We iterated through this process of calculating pairwise 146 

correlations between the focal taxon and all other taxa 200 times. The median correlations from 147 

these 200 randomizations were called the “expected” correlations for the focal taxon. We 148 

repeated this process for each taxon as the focal taxon, which resulted in a matrix of expected 149 

taxon correlations. Finally, we subtracted the expected taxon correlations from their paired 150 

observed taxon correlations, thereby producing a matrix where each value was an observed 151 

minus expected correlation for the given pair of taxa.  152 
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We calculated taxon connectedness values from the corrected (observed minus expected) 153 

correlation matrix. For each taxon, we separately averaged its positive and negative correlations 154 

with other taxa to produce a value of positive connectedness and a value of negative 155 

connectedness. We kept positive and negative values separate, because converting the dataset to 156 

relative abundance should affect positive and negative correlations differently, since an increase 157 

in the relative abundance in one taxon must result in the decrease in the relative abundances of 158 

other taxa. 159 

The averaging step in this workflow was intended to overcome the issue that individual 160 

correlations between taxa can be influenced by many factors and may be spurious (Fisher and 161 

Mehta 2014). However, assuming that correlations often (but not always) reflect complexity in a 162 

community, the average of many correlations should be a more robust metric of complexity than 163 

any single correlation. In other words, we assume only that highly connected taxa have stronger 164 

correlations on average. Invoking the law of large numbers, these average correlations should be 165 

increasingly accurate measures of a taxon’s connectedness as the number of pairwise correlations 166 

increases (i.e. as the number of taxa in the dataset increases).  167 

 168 

Validation 169 

As discussed previously, there are inherent limitations of using correlation-based 170 

methods with relative abundance data instead of absolute counts (Fisher and Mehta 2014). Thus, 171 

we examined whether a measure of connectedness based on absolute abundance would show the 172 

same pattern observed using the relativized data. However, we needed a different approach for 173 

calculating correlations in order to account for the following properties of count data: 1) 174 

variance-mean scaling, which results in very large population variances of abundant taxa (Taylor 175 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 28, 2017. ; https://doi.org/10.1101/112391doi: bioRxiv preprint 

https://doi.org/10.1101/112391
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

1961) and 2) the fact that individual population sizes are strongly related to overall community 176 

densities, which causes positive correlations among all taxa (Doak et al. 1998). As noted 177 

previously, phytoplankton densities in Lake Mendota samples varied by more than 2 orders of 178 

magnitude among sample dates. Therefore, using correlations between raw abundances would 179 

inflate the positive relationships between taxa as a result of changing overall community density. 180 

Thus, we first detrended the count data to account for changing community density (on different 181 

sampling dates) and drastically different variances of taxon populations (which are expected as a 182 

result of mean-variance scaling).  183 

We used a hierarchical linear model to estimate the effects of overall community density 184 

and mean taxon abundance on individual taxon observations (sensu Jackson et al. 2012), so that 185 

these effects could be removed when calculating correlations. We modeled the abundance of 186 

each taxon at each time point as a function of sample date and taxon, assuming a quasipoisson 187 

distribution (which accounts for increases in population variances when population means 188 

increase). The residuals of this analysis represent the normalized (transformed) deviations of 189 

taxon abundances after accounting for overall community density on the sample date and taxon 190 

abundance/variance. We created a pairwise correlation matrix for the phtoplankton taxa using the 191 

correlations between these residuals. We calculated connectedness metrics from the pairwise 192 

correlation matrix using the same technique that we applied to the corrected correlation matrix 193 

from the relativized data: we used the average positive and negative taxon correlations as their 194 

connectedness values. 195 

We validated our workflow for the relative abundance dataset using the estimates of 196 

taxon connectedness obtained from the absolute abundance dataset. Comparing the 197 

connectedness values from these two methods shows strong agreement between the two sets of 198 
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connectedness metrics (correlation for positive connectedness metrics  = 0.820; correlation for 199 

negative connectedness metrics = 0.741, Fig. 3). Although two taxa deviate from the linear 200 

relationship between the negative connectedness metrics (appearing as outliers in Fig. 3B), both 201 

metrics rate these taxa as having strong connectedness arising from negative correlations. Thus, 202 

the two methods are qualitatively consistent for these two anomalous points.  203 

 204 

2. COHESION METRIC 205 

Analysis 206 

Many researchers seek to detect differences in community connectivity across time, 207 

space, or treatments. Thus, it would be useful to have a metric that quantifies, for each 208 

community, the degree to which its component taxa are connected. We used a simple algorithm 209 

to collapse the connectedness values of individual taxa into two parameters representing the 210 

connectivity of the entire sampled community, termed “cohesion.” Again, one metric of cohesion 211 

stems from positive correlations, and one metric stems from negative correlations. To calculate 212 

each cohesion metric, we multiplied the relative abundance of taxa in a sample by their 213 

associated connectedness values and summed these products. This cohesion index can be 214 

represented mathematically as the sum of the contribution of each of the n taxa in the 215 

community, after removing rare taxa (Eq. 1). Thus, communities with high abundances of 216 

strongly connected taxa would have a high score of community cohesion. We note that this index 217 

is bounded by -1 to 0 for negative cohesion or from 0 to 1 for positive cohesion. 218 

 219 

cohesion = abundancei * connectednessii=1

n
∑       Eq. 1 220 

 
221 
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 222 

Validation 223 

 We had hypothesized that our cohesion metrics could be significant predictors of 224 

microbial community dynamics. Thus, a natural question to ask was whether our metrics of 225 

cohesion outperform environmental variables when analyzing the Lake Mendota data. 226 

Fortunately, the NTL LTER program has collected paired environmental data for the Lake 227 

Mendota phytoplankton samples. We obtained these environmental datasets to use as alternative 228 

predictors of community dynamics in Lake Mendota. The environmental datasets available (11 229 

variables) were: water temperature, air temperature, dissolved oxygen concentration, dissolved 230 

oxygen saturation, Secchi depth, combined NO3 + NO2 concentrations, NH4 concentration, total 231 

nitrogen concentration, dissolved reactive phosphorus concentration, total phosphorus 232 

concentration, and dissolved silica concentrations. Protocols, data, and associated metadata can 233 

be found at https://lter.limnology.wisc.edu/. We use these environmental data to build an 234 

alternate model in our case study below. 235 

 236 

3. CASE STUDY OF UTILITY 237 

Analysis 238 

To demonstrate their utility, we applied our new metrics to the Lake Mendota 239 

phytoplankton dataset. We tested whether community cohesion could predict compositional 240 

turnover, a common response variable in microbial ecology. We used multiple regression to 241 

model compositional turnover (Bray-Curtis dissimilarity between time points) as a function of 242 

community cohesion at the initial time point. That is, Bray-Curis dissimilarity was the dependent 243 

variable, while positive and negative cohesion were the independent variables. Because time 244 
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between samples influences Bray-Curtis dissimilarity (Nekola and White 1999, Shade et al. 245 

2013), we only included pairs of samples taken within 36 to 48 days of each other. These criteria 246 

included 186 paired communities across the 19 years. Cohesion values (both positive and 247 

negative) were calculated at the first time point for each sample pair. We chose this timeframe 248 

because it was sufficiently long for multiple phytoplankton generations to have occurred, and 249 

because this timeframe was compatible with the sampling frequency. 250 

Community cohesion was a strong predictor of compositional turnover (Fig. 4). The 251 

regression using our cohesion metrics explained 46.5% of variability (adjusted R2 = 0.465) in 252 

Bray-Curtis dissimilarity. Cohesion arising from negative correlations was a highly significant 253 

predictor, whereas cohesion arising from positive correlations was not significant (negative 254 

cohesion: F1, 183 = 6.81, p < 1* e -20; positive cohesion: F1, 183 = 0.735, p = 0.405).  255 

For the purpose of model comparison, we used the associated environmental data to 256 

model Bray-Curtis dissimilarity as a function of environmental drivers. We included as 257 

predictors the 11 variables previously mentioned, as well as 11 additional predictors that 258 

measured the change in each of these variables between the two sample dates. Finally, because 259 

many chemical and biological processes are dependent on temperature (Brown et al. 2004), we 260 

included first order interactions between water temperature and the 21 other variables. We first 261 

included all 43 terms in the model, then used backward selection (which iteratively removes the 262 

least significant term in the model, beginning with interaction terms) until all remaining terms in 263 

the model were significant at p < 0.1, as to maximize the adjusted R2 value. Although this 264 

analysis does not represent an exhaustive list of possible environmental drivers, it includes all 265 

available paired environmental data from the long-term monitoring program. Twenty-nine values 266 

of Bray-Curtis dissimilarity were excluded from this analysis (leaving 157 of the 186 values), 267 
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because they lacked one or more associated environmental variables. Additional details about 268 

this analysis can be found in the SOM.  269 

In the final model after backward selection, 16 variables were retained as significant 270 

predictors (see SOM). The adjusted R2 of this model was 0.229. The non-adjusted R2 value of 271 

the full model (all 43 variables) was 0.393.  272 

To address the generality of the relationship between cohesion and community turnover, 273 

we calculated cohesion metrics and Bray-Curtis dissimilarity for the four other phytoplankton 274 

datasets (Monona, Peter, Paul, and Tuesday lakes). Community cohesion was a significant 275 

predictor of Bray-Curtis dissimilarity in all datasets. In each instance, stronger cohesion resulting 276 

from negative correlations was related to lower compositional turnover. Table 1 presents the 277 

results of these analyses and associated workflow parameters. Additional information about the 278 

sensitivity of model performance to varying parameters can be found in the SOM.  279 

Validation 280 

Strong correlations between predictor variables are known to influence the results of 281 

statistical analyses (Neter et al. 1996). Thus, we wondered whether strong correlations between 282 

taxa would necessarily generate the observed relationship where greater cohesion is related to 283 

lower compositional turnover. We conducted simulation studies to investigate whether our 284 

significant results might be simply an artifact of strong inter-taxon correlations. We generated 285 

datasets where taxa were highly correlated in abundance, as if they were synchronously 286 

responding to exogenous forces. We calculated cohesion metrics and Bray-Curtis dissimilarities 287 

for the simulated datasets to analyze whether strong taxon correlations was sufficient to produce 288 

results similar to those we observed in the real data.  289 
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Here, we briefly describe the process used to simulate datasets, while additional details 290 

can be found in SOM. First, we generated four autocorrelated vectors to represent exogenous 291 

forces, such as environmental drivers. Taxa were artificially correlated to these external vectors, 292 

thereby also producing strong correlations between taxa. We manipulated the taxon abundances 293 

to mimic other important features of the microbial datasets, including skewed taxon mean 294 

abundances and a large proportion of zeroes in the dataset. We calculated cohesion metrics and 295 

Bray-Curtis dissimilarities for the simulated datasets, and we used a multiple regression to model 296 

Bray-Curtis dissimilarity as a function of positive cohesion and negative cohesion. We recorded 297 

the R2 value and parameter estimates of this multiple regression. We repeated this simulation 298 

process 500 times to generate distributions of these results.  299 

Our cohesion metrics had a very low ability to explain compositional turnover (Bray-300 

Curtis dissimilarity) in the simulated datasets. The median model adjusted R2 value was 0.022, 301 

with 95% of adjusted R2 values below 0.088 (Fig. 5). Although the community cohesion metrics 302 

were highly significant predictors (p < 0.001) of community turnover more commonly than 303 

would be expected by chance (1.0% of simulations for positive cohesion and 8.6% for negative 304 

cohesion), the proportion of variance explained by these metrics was comparatively very low. 305 

For comparison, across the five phytoplankton datasets from Wisconsin lakes, model adjusted R2 306 

values ranged from 0.36 to 0.50. Thus, there was comparatively little ability to explain 307 

compositional turnover in the simulated datasets using our cohesion metrics. 308 

 309 

Discussion 310 

 The ability to predict microbial community dynamics lags behind the amount of data 311 

collected in these systems (Blaser et al. 2016). Here, we present new metrics, called “cohesion,” 312 
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which can be used as additional predictor variables in microbial models. The cohesion metrics 313 

contain information about the connectivity of microbial communities, which has been previously 314 

hypothesized to influence community dynamics (MacArthur 1955, May 1972, Nilsson and 315 

McCann 2016). Our cohesion metrics are easily calculated from a relative abundance table (R 316 

script provided online) and might be of interest to a variety of microbial ecologists and modelers.  317 

 In the Lake Mendota phytoplankton example, our two cohesion parameters outperformed 318 

the available environmental data at predicting phytoplankton community changes. The two 319 

cohesion parameters explained 46.5% of variability (adjusted R2 = 0.465) in community turnover 320 

over 19 years of phytoplankton sampling, in comparison to the final environmental model using 321 

16 predictors, which explained 22.9% of community turnover (adjusted R2 = 0.229). Although 322 

there are almost certainly important predictors missing from the environmental model (e.g. 323 

photosynthetically active radiation, three-way interactions), the environmental model represents 324 

a commonly applied approach to explaining microbial compositional turnover (Tripathi et al. 325 

2012, Chow et al. 2013) that uses all associated environmental data from a long-term sampling 326 

program. Although we still strongly advocate for the collection of environmental data, we note 327 

that cohesion was a much better predictor of compositional turnover than any available 328 

environmental variable.   329 

 Our workflow overcomes many challenges associated with using correlation-based 330 

techniques in microbial datasets. The validations we conducted indicated that our connectedness 331 

metrics are robust for relativized datasets, because connectedness metrics from relative and 332 

absolute datasets showed strong correspondence. Additionally, our cohesion metrics address a 333 

common problem of techniques describing community complexity (such as network analyses), 334 

which is that they do not quantify the connectivity of individual communities. For instance, the 335 
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“hairball” generated from a network analysis has no parameters that are associated with each 336 

sample, and therefore the network cannot be used as a predictor variable. Thus, existing methods 337 

to quantify connectivity do not pair easily with other analyses. Our cohesion metrics quantify 338 

sample connectivity using only two parameters, which can be used as predictors in a variety of 339 

further analyses (linear regression, ordinations, time series, etc.). Finally, our simulations showed 340 

that strong inter-taxon correlations were not sufficient to reproduce the observed result that 341 

cohesion was a strong predictor of Bray-Curtis dissimilarity. In the simulations, cohesion had 342 

low explanatory power, even though taxa were highly correlated. From this result, we infer that 343 

correlations between taxa in real communities are an important aspect of complexity that is 344 

captured by our cohesion metrics. 345 

 Our cohesion metrics explain a significant amount of compositional change in all five 346 

phytoplankton datasets. Yet, it is not immediately clear what cohesion is measuring. There are 347 

two broad factors that could cause correlations between taxa: biotic interactions and 348 

environmental drivers. Thus, at least one of these two factors must underlie our connectedness 349 

and cohesion metrics. Here, we discuss the evidence supporting either of these interpretations: 350 

 Cohesion as a Measure of Biotic Interactions 351 

 Even if shared responses to environmental drivers underlie most pairwise taxon 352 

correlations, cohesion could still indicate biotic interaction strength in a community. This would 353 

occur if taxa were influenced to the same degree by environmental drivers, but differentially 354 

influenced by species interactions. In this case, averaging over all correlations would give larger 355 

connectedness values for strong interactors and smaller connectedness values for weak 356 

interactors. Many studies have indicated that microbial taxa have differential interaction 357 

strengths. For example, some microbial communities contain keystone taxa, which have 358 
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disproportionate effects on community dynamics through their strong taxon interactions (Trosvik 359 

and de Muinck 2015, Banerjee et al. 2016). Similarly, recent work suggests that many taxa 360 

within candidate phyla are obligate symbionts, meaning they must interact strongly with other 361 

taxa for their survival and reproduction (Kantor et al. 2013, Hug et al. 2016). Conversely, there 362 

are many taxa that can be modeled adequately as a function of environmental drivers; this is true 363 

for some bloom forming cyanobacteria, which are known to respond strongly to nutrient 364 

concentrations and temperature (McQueen and Lean 1987, Beaulieu et al. 2013). Taken together, 365 

these studies suggest that there is a wide spectrum of how strongly taxa interact with one 366 

another. These differences in interaction strength would be detected by our connectedness metric 367 

due to averaging over the large number of pairwise correlations. Thus, it is plausible that 368 

connectedness and cohesion are reflecting biotic interactions in communities.   369 

We now examine our phytoplankton analysis results under the assumption that cohesion 370 

measures biotic interactions. The Bray-Curtis dissimilarity regression results would mean that 371 

communities with many strong interactors have lower rates of change, especially when the 372 

interactions create negative correlations between taxon abundances. This finding is in line with 373 

prior work showing that biotic interactions affect microbial community stability (Coyte et al. 374 

2016). Thus, the interpretation that stronger biotic interactions lead to lower compositional 375 

turnover is a plausible explanation for our observed results. However, we specifically refrain 376 

from interpreting positive or negative connectedness values as indications of specific biotic 377 

interactions, such as predation, competition, or mutualism. For example, a positive correlation 378 

between two taxa could be the result of a mutualism between the taxa, or it could be the result of 379 

a shared predator declining in abundance. Further work, both empirical and theoretical, is 380 
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necessary to identify what these positive and negative correlations signify in the context of the 381 

ecology of these organisms.  382 

Cohesion as a Measure of Environmental Synchrony  383 

We now consider the possibility that connectedness and cohesion are simply detecting 384 

environmental synchrony. If a subset of taxa respond to a changing environmental driver, then 385 

these taxa will have strong pairwise correlations. For example, correlations between 386 

phytoplankton species of the same genus (and, therefore, with similar niches) can be upwards of 387 

0.9, indicating strong similarity in abundance patterns. In this case, connectedness would 388 

measure the degree of environmentally-driven population synchrony that a taxon has with other 389 

taxa. A high cohesion value would indicate that a community has many taxa that respond 390 

simultaneously to external forces; then, cohesion would quantify overall community 391 

responsiveness to one or more environmental drivers. Under this assumption, cohesion should 392 

correlate with environmental drivers (e.g. cohesion is high because many taxa are positively 393 

correlated to warm temperatures, but cohesion drops when it gets colder and these taxa senesce). 394 

We tested this prediction with 22 variables from the environmental model (11 for the 395 

environmental variables and 11 for the changes in environmental variables) and found that 396 

negative cohesion in the Lake Mendota phytoplankton dataset generally had weak correlations 397 

with these predictors (absolute correlations < 0.25, SOM). We also looked for a seasonal trend in 398 

cohesion, but found no significant correlation between negative cohesion and Julian Day, or a 399 

quadratic term for Julian Day. Thus, we do not find any evidence that cohesion is simply 400 

reproducing the information contained in environmental data. Finally, our simulations show one 401 

example where taxon abundances could be driven exclusively by external factors (such as the 402 

environment), but this does not necessarily lead to strong predictive power of compositional 403 
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turnover. However, our simulations omitted many features of real ecological communities, and 404 

so we cannot completely rule out the possibility that environmental drivers contributed to our 405 

cohesion metrics in the phytoplankton datasets.    406 

Under the assumption that cohesion measures environmentally driven population 407 

synchrony, we examine our result that stronger cohesion was related to lower Bray-Curtis 408 

dissimilarity. In this scenario, communities that have strong cohesion contain high abundances of 409 

taxa that respond simultaneously to environmental forces. Then, communities with many 410 

synchronous taxa would turn over more slowly than communities with taxa whose abundances 411 

are independent of the environment. This conclusion is counterintuitive, but possible. This 412 

pattern could occur if taxa that are strongly influenced by the environment have lower variability 413 

than taxa that are weakly influenced by the environment; in that case, highly correlated taxa 414 

would have their abundances more tightly regulated than other taxa. Although plausible, this 415 

explanation disagrees with many studies that have found that environmental gradients regulate 416 

which taxa can persist in communities (Fierer and Jackson 2006, Walter and Ley 2011, 417 

Freedman and Zak 2015).  418 

Comparing the two possible signals that cohesion might be detecting, we believe the 419 

evidence points to biotic interaction as the larger contributor. However, we expect that 420 

environmental synchrony is captured to some extent, with the relative importance of 421 

environmental factors depending on the particular communities and ecosystem. Regardless of the 422 

ecological force measured by cohesion, there is a clear result in the five datasets analyzed that 423 

stronger negative cohesion is related to lower compositional turnover. This result suggests that 424 

negative correlations between taxa are arranged non-randomly to counteract one another, thereby 425 

stabilizing community composition. In other words, relationships between taxa appear to form 426 
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negative feedback loops that buffer changes in community composition. This result agrees with 427 

prior theoretical models that propose that feedback loops are integral to modulating food web 428 

stability (Neutel et al. 2007, Brose 2008). The finding that negative cohesion was stabilizing was 429 

not easily replicated in our simulations, where positive and negative correlations were 430 

interspersed with random magnitude throughout the dataset. Thus, the arrangement of 431 

correlations between taxa in the dataset appears to be an important feature of real communities 432 

that may contribute to their stability (Worm and Duffy 2003).  433 

 Guidelines for Using Our Metrics  434 

Although we used long-term time series datasets for the analyses presented here, our 435 

cohesion metrics can be used to predict community dynamics in a variety of datasets. For 436 

example, cohesion could be used with a spatially explicit dataset, where samples were collected 437 

from different locations across a landscape. In the context of phytoplankton samples, this could 438 

be a dataset consisting of samples from different locations in a lake or watershed. Then, the 439 

cohesion metrics could be used to predict community composition change at one location over 440 

time, or to predict differences in community composition between locations. It would also be 441 

interesting to investigate how cohesion is affected by experimental perturbations. Finally, 442 

cohesion could be used as a predictor in of many response variables. Additional applications of 443 

the cohesion metrics could include identifying communities susceptible to major compositional 444 

change (e.g. cyanobacterial blooms, infection in the human microbiome), relating community 445 

cohesion to spatial structure (e.g. how taxon connectedness relates to the dispersal abilities of 446 

different microbial taxa), and investigating how disturbance influences cohesion (e.g. how illness 447 

influences the cohesion of communities in a host-associated microbiome, how oil spills affect 448 

cohesion of marine microbial communities).  449 
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   The critical step in the cohesion workflow is calculating reliable correlations between 450 

taxa. Thus, some datasets will be more suitable for our cohesion metric than others. For example, 451 

a dataset consisting of 20 samples from five lakes over multiple years might be a poor candidate 452 

for the cohesion metrics. In this case, correlations between taxa might be driven mainly by 453 

environmental differences or location, and the sample number would be too low to calculate 454 

robust correlations. Based on the phytoplankton datasets analyzed here, we suggest a lower limit 455 

of 40-50 samples when calculating cohesion metrics, with more samples necessary with more 456 

heterogeneous datasets. We also suggest including environmental variables as covariates when 457 

analyzing heterogeneous datasets. Finally, the persistence cutoff for including taxa should be 458 

adjusted based on the dataset being analyzed. For example, in datasets obtained by DNA 459 

sequencing, the sequencing depth affects taxon persistence (Smith and Peay 2014). Thus, it may 460 

be more effective to implement a cutoff by mean abundance.  461 

 462 

Conclusion 463 

 Our cohesion metrics provide a method to incorporate information about microbial 464 

community complexity into predictive models. These metrics are easy to calculate, needing only 465 

a relative abundance table. Furthermore, across all datasets analyzed in this study, cohesion was 466 

strongly related to compositional turnover. In systems where cohesion is a significant predictor 467 

of community properties (e.g. nutrient flux, rates of photosynthesis), this result could guide 468 

further investigation into the effects of microbial interactions in mediating community function. 469 

In this case, researchers might focus their efforts on understanding the role of highly connected 470 

taxa, which are identified in our workflow. We aim to eventually determine the features that 471 
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distinguish systems in which cohesion is important versus systems in which cohesion does not 472 

predict community properties.   473 
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Figure 1: This diagram shows an overview of how our cohesion metrics are calculated, 585 

beginning with the relative abundance table and ending with the cohesion values. The relative 586 

abundance table shows six samples (S1 indicating “Sample 1”, etc.) and a subset of taxa (A, B, 587 

C, and Z). First, pairwise correlations are calculated between all taxa, which are entered into the 588 

correlation matrix. We then used a null model to account for how the features of microbial 589 

datasets might affect correlations, and we subtracted off these values (null model detailed in Fig. 590 

2). For each taxon, we averaged the positive and negative corrected correlations separately and 591 

recorded these values as the positive and negative connectedness values. Cohesion values were 592 

obtained by multiplying the relative abundance table by the connectedness values. Thus, there 593 

are two metrics of cohesion, corresponding to positive and negative values.  594 

 595 

Figure 2: Microbial data are in the form of relative abundance, and some taxa are much more 596 

abundant than others, which are factors that may cause taxa to be spuriously correlated. Thus, we 597 

devised a null model to account for the bias that these data features introduce into our metrics. 598 

We repeated this process with each taxon as the “focal taxon,” which is A in this figure. For each 599 

of 200 iterations, we randomized all taxon abundances besides the focal taxon. We then 600 

calculated correlations between the focal taxon and all other taxa. We recorded the median value 601 

of the 200 correlations calculated for each pair of taxa in the median correlation matrix.  602 

 603 

Figure 3: Comparing the metrics of connectedness obtained from the absolute abundance dataset 604 

(x-axes) and the relative abundance dataset (y-axes) shows agreement between the two methods 605 

of generating these metrics. Correlations between the metrics are 0.810 (panel A) and 0.741 606 

(panel B). We used separate variables for positive and negative metrics because relativizing the 607 
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dataset is expected to differentially affect positive and negative correlations. Solid lines show the 608 

fit of linear models.  609 

 610 

Figure 4: We used our metrics of community cohesion as predictors of the rate of compositional 611 

turnover (Bray-Curtis dissimilarity) in the Mendota phytoplankton communities. Negative 612 

cohesion was a significant predictor (p < 1*e-20) of Bray-Curtis dissimilarity, and the regression 613 

explained 46.5% of variation in compositional turnover.  614 

 615 

Figure 5: We simulated datasets where correlations between taxa were artificially produced by 616 

forced correlation to external factors. We calculated cohesion values for the simulated 617 

communities to test whether cohesion and Bray-Curtis dissimilarity were strongly related in 618 

simulated datasets. The histogram of model adjusted R2 values from our simulations shows that 619 

the median adjusted R2 was 0.022 (dashed line), with 95% of values falling below 0.088. For 620 

comparison, observed adjusted R2 values ranged from 0.36 to 0.50.  621 

 622 

623 
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Table 1: Cohesion predicts community turnover in five phytoplankton datasets 624 
Lake Taxon 

Pers. 
Cutoff * 

Model 
Adjusted 
R2 

Positive 
Cohesion 
P value 

Negative 
Cohesion 
P value 

Positive 
Cohesion 
Direction + 

Negative 
Cohesion 
Direction + 

Days 
Between
Samples 

Number 
of 
Samples 

Mendota 5% 0.465 0.405 < 1*e-20 n.s. Stronger is 
stabilizing  

36-48 186 

Monona 5% 0.355 0.413 < 1*e-15 n.s. Stronger is 
stabilizing 

36-48 166 

Peter 10% 0.357 0.062 < 1*e-3 n.s. Stronger is 
stabilizing 

39-45 121 

Paul 10% 0.500 < 1*e-11 < 1*e-19 Weaker is 
stabilizing 

Stronger is 
stabilizing 

39-45 125 

Tuesday 10% 0.374 0.355 < 1*e-8 n.s. Stronger is 
stabilizing 

39-45 72 

* Stands for “taxon persistence cutoff,” which was the minimum proportion of presences across 625 

the dataset that we used as a cutoff for including taxa in the connectedness and cohesion metrics. 626 

Other cutoffs may give higher model adjusted R2 values (see SOM), but we wanted to use the 627 

same cutoff for datasets collected within the same sampling program. 628 

+ These columns indicate the direction of a significant relationship between cohesion and Bray-629 

Curtis dissimilarity. For example, “stronger is stabilizing” means that greater cohesion is related 630 

to lower Bray-Curtis dissimilarity. Non-significant relationships are denoted “n.s.”. 631 

 632 
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