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 10 

Recent advances in genome resequencing have led to increased interest in prediction of the functional 11 

consequences of genetic variants. Variants at phylogenetically conserved sites are of particular 12 

interest, because they are more likely than variants at phylogenetically variable sites to have 13 

deleterious effects on fitness and contribute to phenotypic variation. Numerous comparative genomic 14 

approaches have been developed to predict deleterious variants, but they are nearly always judged 15 

based on their ability to identify known disease-causing mutations in humans. Determining the 16 

accuracy of deleterious variant predictions in nonhuman species is important to understanding 17 

evolution, domestication, and potentially to improving crop quality and yield. To examine our ability 18 

to predict deleterious variants in plants we generated a curated database of 2,910 Arabidopsis thaliana 19 

mutants with known phenotypes. We evaluated seven approaches and found that while all performed 20 

well, the single best-performing approach was a likelihood ratio test applied to homologs identified in 21 

42 plant genomes. Although the approaches did not always agree, we found only slight differences in 22 

performance when comparing mutations with gross versus biochemical phenotypes, duplicated 23 
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versus single copy genes, and when using a single approach versus ensemble predictions. We 24 

conclude that deleterious mutations can be reliably predicted in A. thaliana and likely other plant 25 

species, but that the relative performance of various approaches can depend on the organism to which 26 

they are applied. 27 

 28 

 29 

Dramatically increased number of reference genomes, whole genome resequencing, and gene 30 

annotations have facilitated the discovery of sequence variants and increased interest in annotation of 31 

functional variants in many organisms. Functional annotation can yield insight into the genetic basis 32 

of phenotypic variation and is often a critical step in the identification of genes and variants 33 

underlying human disease (Ahituv et al. 2007; Cooper and Shendure 2011). In particular, interest in 34 

identifying putatively deleterious variants has increased, because these variants may contribute 35 

substantially to phenotypic variation (Manolio et al. 2009; Thornton et al. 2013). Most approaches 36 

assume that variants that disrupt a phylogenetically-conserved site are more likely to be deleterious 37 

(Ng and Henikoff 2006). Single nucleotide polymorphisms (SNPs) are the most abundant class of 38 

sequence variants.  SNPs that alter amino acid sequences are more often associated with phenotypic 39 

variation than other classes of variants (1000 Genomes Project Consortium 2012; Fay 2013; Stenson et 40 

al. 2014). Amino acid substitutions in protein coding sequences are also the most readily identifiable 41 

class of variants that are likely to have biological impact; thus they have been the primary focus of 42 

variant annotation efforts.  43 

Annotation of deleterious alleles is also relevant to understanding the genetic basis of 44 

phenotypic variation in other species. Complementation of recessive deleterious variants between 45 
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haplotypes is thought to be one of the primary mechanisms underlying heterosis (Charlesworth and 46 

Willis 2009). This suggests that identification of deleterious alleles may be applied to hybrid breeding 47 

strategies (Yang et al. 2016). Annotation of deleterious variants improves prediction accuracy of 48 

complex traits (Dudley et al. 2012). Elevated proportions of deleterious relative to neutral variants in 49 

domesticated species suggest a cost of domestication (Cruz et al. 2008; Liu et al. 2017; Lu et al. 2006; 50 

Rodgers-Melnick et al. 2015). Studies of the genomic distribution and genetic contribution of 51 

deleterious variants can contribute both to understanding the origin and domestication of crop species 52 

and to advancing breeding and crop improvement strategies (Morrell et al. 2012). 53 

Accurate prediction of deleterious variants is a key component of assessing their contribution 54 

to phenotypic variation. Numerous approaches for predicting deleterious variants have been 55 

developed (Ng and Henikoff 2006). The performance of an approach is typically assessed using the 56 

proportion of known, human disease causing variants that are accurately classified as deleterious. 57 

Benchmarking of various approaches using uniform test sets has shown substantial variability among 58 

approaches and improved performance is often achieved through the use of ensemble predictions 59 

based on multiple predictions (González-Pérez and López-Bigas 2011; Grimm et al. 2015; Olatubosun 60 

et al. 2012; Thusberg et al. 2011). However, the causes of performance differences across approaches 61 

are not well understood. While all approaches rely on sequence conservation at the phylogenetic level 62 

to identify deleterious variants, some approaches also incorporate protein structure, physical or 63 

biochemical properties of amino acid changes, or other attributes of protein sequence when they are 64 

available. The earliest conservation metrics used heuristic measures, sometimes including filtering or 65 

weighting to account for phylogenetic distance (Ng and Henikoff 2003). More recent approaches have 66 

incorporated evolutionary models that account for phylogenetic distance based on putatively 67 
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neutrally evolving nucleotide sites (Davydov et al. 2010; Chun and Fay 2009). Reference bias and the 68 

alignments used to calculate conservation metrics are not often emphasized, but are important to 69 

accurate predictions and may account for some of the variability among predictions (Adzhubei et al. 70 

2013; Chun and Fay 2009; Hicks et al. 2011). The accuracy of predictions is particularly dependent on 71 

the availability of annotated genomes among related species and the potential to generate sequence 72 

alignments, particularly for protein coding regions of the genome.   73 

Studies of deleterious variants in non-human species are limited to a small subset of 74 

approaches that are not human-specific. Even so, there is a growing body of research that uses 75 

predicted deleterious variants to understand genomic patterns of variation and their contribution to 76 

complex traits, especially in plants. Patterns of deleterious variation have been examined in 77 

Arabidopsis thaliana (Cao et al. 2011), rice (Günther and Schmid 2010; Liu et al. 2017), maize (Mezmouk 78 

and Ross-Ibarra 2014; Rodgers-Melnick et al. 2015), sunflower (Renaut and Rieseberg 2015), poplar 79 

(Zhang et al. 2016), barley, and soybean (Kono et al. 2016). However, the accuracy of predictions in 80 

plants has only been examined for a small number of known variants (Günther and Schmid 2010) and 81 

only in the past few years have a diverse set of plant genomes and protein homologs become available 82 

(Goodstein et al. 2012). Furthermore, plants are known to have a larger number of multi-gene families 83 

and a higher frequency of polyploidy than occurs in mammals (Lockton and Gaut 2005). These 84 

genome-specific factors influence whether a sequence variant is truly deleterious (Charlesworth 2012). 85 

The model system A. thaliana is a particularly attractive plant species for evaluating approaches that 86 

predict deleterious variants because decades of basic research in development, physiology, cell 87 

biology, and plant-pathogen interactions have identified large numbers of amino acid altering 88 

mutations with phenotypic consequences. 89 
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To evaluate various tools to predict deleterious variants in plants, we generated a curated 90 

database of 2,910 A. thaliana mutants with known phenotypic alterations. We identified seven 91 

approaches that can predict deleterious variants outside of humans. Among these approaches, SIFT 92 

(Ng and Henikoff 2003), PolyPhen2 (Adzhubei et al. 2013) and PROVEAN (Choi et al. 2012) generate 93 

their own alignments using non-redundant protein databases, whereas MAPP (Stone and Sidow 94 

2005), GERP++ (Davydov et al. 2010), and two versions of a likelihood ratio test (Chun and Fay 2009) 95 

make predictions using pre-specified alignments as input. For these latter cases we used the 96 

BAD_Mutations pipeline for identifying homologs and alignments based on 42 plant genomes (Kono 97 

et al. 2016). We found that while all approaches performed better than similar assessments in humans, 98 

the relative ranking and the highest performing approach differed from previously reported 99 

comparisons using human data. We did not find factors that are major determinants of differences 100 

among approaches. Our results demonstrate that reliable prediction of deleterious variants can be 101 

achieved in A. thaliana and likely other plant species, expanding the potential value of using 102 

deleterious variants to better understand naturally occurring variation and to improve crop breeding 103 

strategies. 104 

 105 

Results 106 

 107 

A database of literature curated Arabidopsis thaliana mutants 108 

To evaluate approaches that predict deleterious variants, we generated a database of A. thaliana amino 109 

acid substitutions from i) mutants with described phenotypic alterations and ii) common amino acid 110 

polymorphisms unlikely to affect fitness. Out of 2,910 mutants in 995 genes, 81% were from manually 111 

curated entries in UniProtKB/Swiss-Prot (n = 2,368), 10% were from our own literature curation (n = 112 
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293) and 8.6% were independently identified in both sets (n = 249) (Table S1). Within the same 995 113 

genes, 1,583 common amino acid polymorphisms were identified in 80 accessions (Cao et al. 2011). For 114 

our analyses, we assume mutations that cause a deviation from the wildtype phenotype are likely 115 

deleterious. 116 

 117 

Performance of approaches designed to identify deleterious variants 118 

Using the database of A. thaliana mutations, we assessed seven approaches for their ability to 119 

distinguish deleterious and neutral changes. The approaches were selected because they can generate 120 

predictions in non-human organisms. Comparison of sensitivity to specificity showed that each 121 

approach could reliably distinguish deleterious and neutral substitutions (Figure 1). A likelihood ratio 122 

test (LRT) implemented using the BAD_Mutations pipeline showed significantly higher performance 123 

than all other approaches as measured by the area under the curve (AUC) of sensitivity versus 124 

specificity as well as at thresholds of 95% sensitivity and 95% specificity (Figure 1, Table S1). A 125 

reference masked version of LRT (LRTm), designed to eliminate reference bias (Simons et al. 2014), 126 

was the approach with the second highest performance. PROVEAN and PolyPhen2 showed similar 127 

performance as measured by AUC, significantly higher than SIFT, GERP++ and MAPP. The relative 128 

ranking by AUC was identical when 1,050 mutations with missing predictions for at least one 129 

approach were removed (Table S1). 130 

A second means of assessing performance is through comparing predictions of rare versus 131 

common variants. Common variants are likely neutral or nearly neutral, whereas deleterious alleles 132 

are kept at low frequency (Ewens 2004). Using SNPs identified in a set of 80 A. thaliana strains, we 133 

found each approach identified more deleterious SNPs at low compared to common frequencies 134 
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(Figure 2). At minor allele frequencies between 2/80 (2.5%) and 8/80 (10%) the LRTm and SIFT 135 

predicted a lower proportion of deleterious SNPs compared to the other approaches, indicating that 136 

they are less sensitive to detecting alleles under weak selection. At the lowest frequency 1/80 (1.25%), 137 

which is expected to include many rare and potentially strongly deleterious variants, LRT called the 138 

largest proportion of SNPs deleterious. 139 

 140 

Performance across phenotypic and duplicate gene 141 

categories 142 

To further characterize differences in performance we compared class of variants, including those 143 

identified by genome-wide mutant screens or by directly targeting individual proteins. In general, 144 

mutants identified from screens have gross morphological or easily observable phenotypic effects and 145 

are assigned allele names, whereas directed mutants are typically not given allele names and have 146 

biochemical phenotypes. To compare these two groups, we split the data into those with allele names 147 

(1,910), as a proxy for those with gross phenotypes, and those without allele names (1,000), as a proxy 148 

for biochemical phenotypes. As measured by AUC, some of the approaches performed better and 149 

their performance was more similar for the gross phenotypic class compared to the biochemical class 150 

(Figure 3a). Both SIFT and PolyPhen2 demonstrated the largest increase in performance for predicting 151 

mutations with gross phenotypic alterations. For this type of mutation, the performance of PolyPhen2 152 

was comparable to the LRT. 153 

Gene duplication may reduce prior selective constraints on a protein, enabling variants to 154 

occur at previously conserved sites (Kondrashov et al. 2002). Thus duplicated genes may pose 155 

challenges to predicting deleterious alleles and none of the approaches explicitly distinguish orthologs 156 
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and paralogs. We identified 466 of the 995 genes as duplicated in A. thaliana based on blastp hits with 157 

60% or more identity. We compared the performance of these genes to the remaining single copy 158 

genes. Each approach showed equal or better performance for duplicated versus single copy genes, 159 

with SIFT in particular showing the largest increase in performance (Figure 3b). 160 

 161 

Approach dissimilarity and composite predictions 162 

A reported previously (Chun and Fay 2009; Doniger et al. 2008; González-Pérez and López-Bigas 2011; 163 

Olatubosun et al. 2012), we found substantial disagreement in predictions among the approaches. At a 164 

95% specificity threshold, 93.6% of mutants were predicted deleterious by one or more approach but 165 

only 51.3% were predicted deleterious by six or more of the seven approaches. Similarly, only 0.25% 166 

of common SNPs were predicted deleterious by all approaches but 16.6% were predicted deleterious 167 

by at least one. Comparing the disagreement between approaches we found LRT and LRTm to 168 

produce very similar predictions, but to be distinct from most of the other approaches (Figure 4). We 169 

used five models that combined the predictions of all approaches except for SIFT, which had a higher 170 

proportion of missing calls. Only two of these ensemble models, a linear discriminant analysis and a 171 

generalized linear model with penalized maximum likelihood, performed significantly higher than 172 

LRT based on an AUC (Table S2). 173 

 174 

Discussion 175 

 176 

In this study, we benchmarked the ability of several widely-used approaches to distinguish putatively 177 

deleterious and neutral amino acid substitutions in A. thaliana. Prior evaluations of performance 178 

focused on large sets of mutants for single proteins or known human disease variants (Adzhubei et al. 179 
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2013; Ng and Henikoff 2003). Overall we find high performance across approaches in their ability to 180 

distinguish neutral and deleterious variants, validating their use in plants. The highest performance is 181 

achieved by a likelihood ratio test (LRT) implemented using the BAD_Mutations pipeline, in this case 182 

using alignments from 42 plant genomes. Despite considerable variation among prediction 183 

approaches, no single factor explains differences among performance.  184 

Below, we discuss our results along with characteristics of the approaches and test data that 185 

may contribute to differences in predictions and performance when applied to non-human species. 186 

One important consideration is the distinction between deleterious variants and those that impact 187 

protein function and have phenotypic consequences. While these two groups are overlapping, they 188 

are not identical. Because conservation and divergence between species is directly related to fitness, 189 

we have used the term “deleterious” when referring to the prediction approaches. However, the test 190 

sets used to evaluate approaches are composed of variants known to affect protein function or 191 

phenotype. Thus, regardless of the nomenclature any evaluation of approach performance necessarily 192 

assumes a large overlap between conserved amino acid positions and those that affect protein 193 

function as measured by phenotype.  194 

 195 

Phylogenetic power, alignments, and reference databases 196 

Phylogenetic power is critical to all comparative genomic approaches that predict deleterious variants. 197 

When homologs are too closely related, not enough time has passed for neutral sites to accumulate 198 

amino acid substitutions. When homologs are too distantly related, functional sites may not be 199 

conserved due to compensatory changes or divergence in homolog function (Breen et al. 2012; Jordan 200 

et al. 2015; Marini et al. 2010). The LRT differs from the other approaches examined in that it uses 201 
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synonymous sites as an internal control to account for the expected amount of protein divergence 202 

under a neutral model. As such, even homologs that are nearly identical in their amino acid sequences 203 

are informative, so long as they have accumulated changes at synonymous sites. However, distantly 204 

related homologs are uninformative if divergence at synonymous sites is saturated, thus the LRT 205 

should only be applied to organisms where a sufficient number of related genomes are available. 206 

GERP++ is similar to the LRT in that it uses a neutral substitution rate to make its predictions, but 207 

differs in that the neutral rate must be specified rather than being estimated from synonymous sites 208 

within the alignment. GERP++ also does not make use of the genetic code to distinguish synonymous 209 

and nonsynonymous changes. In this regard, GERP++ was not appropriately applied since we used a 210 

fixed neutral rate for all genes rather than an alignment specific neutral rate. Out of the approaches 211 

compared, phylogenetic power cannot explain the differences between the LRT, MAPP and GERP++ 212 

since they used the same alignments.  213 

All approaches studied here use alignments to make their predictions, making the protein 214 

database and choice of homologs to be included in the alignment a critical step. For MAPP, GERP++, 215 

and LRT we used alignments generated using the BAD_Mutations pipeline which queries proteins 216 

from sequenced plant genomes, in this case from 42 Angiosperm species. SIFT and PolyPhen2 use the 217 

UniRef database (2011), whereas PROVEAN uses the most recent non-redundant protein database 218 

from NCBI. Both PROVEAN and PolyPhen2 are known to be sensitive to the choice of the reference 219 

database and criteria for inclusion of homologs (Adzhubei et al. 2013; Choi et al. 2012) . Despite the 220 

choice of homologs being an important step in predicting deleterious substitutions, the use of a plant-221 

specific or entire non-redundant database does not appear to be a major contributor to performance 222 

differences (Figure 1). 223 
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Training and test sets 224 

Performance of an individual approaches depends on both the training and test sets used to measure 225 

it. Because performance is typically measured using common SNPs and known disease variants in 226 

humans, there has been some concern over the lack of independence between training and test sets 227 

(Dong et al. 2015; Grimm et al. 2015). However, another consideration that has not yet been examined 228 

is whether performance in one species translates to other distantly related species, which may not 229 

have the same availability of homologs from sequenced genomes spanning a range of phylogenetic 230 

relatedness. The performance of individual approaches could depend on the study system in that 231 

some approaches may expect homologs at certain phylogenetic distances, low rates of compensatory 232 

change, or low rates of gene duplication.  233 

Previous studies of the accuracy of prediction approaches made use of five human test datasets 234 

(Dong et al. 2015; Grimm et al. 2015). We find better performance across approaches in our A. thaliana 235 

dataset than that reported for humans (Table 1). It is unclear why the approaches uniformly perform 236 

better in A. thaliana, one possibility is that the neutral and deleterious variants in A. thaliana are more 237 

distinct from one another than in humans. The very large proportion of phenotyping changing 238 

variants in our A. thaliana test set that are identified as deleterious means that this test data set is less 239 

useful for approach comparison due to the small number of cases that are difficult to predict correctly. 240 

 241 

Population and gene-specific performance 242 

Because nearly all measures of performance use either common polymorphism or recently fixed 243 

amino acid substitutions as a proxy for neutral SNPs, population and gene-specific factors that 244 

influence neutral polymorphism are expected to influence measures of performance. Humans have a 245 
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small effective population size relative to other mammals (Leffler et al. 2012) and consequently a high 246 

ratio of nonsynonymous to synonymous diversity (Fay et al. 2001; Kosiol et al. 2008). Thus, 247 

distinguishing neutral and deleterious variants may be more difficult in humans than other species, 248 

and approaches trained using human polymorphism may be more conservative with respect to 249 

weakly deleterious variants. In comparison, predicting deleterious variants in A. thaliana may be 250 

facilitated by the fact that it is a selfing species with an effective population size larger than that of 251 

humans (Cao et al. 2011). 252 

It should be noted that both demographic history and the process of local adaptation could 253 

play important roles in the distribution of deleterious. In populations that are colonizing or expanding 254 

into novel environments, the selective coefficients against individual variants may change (Slotte et al. 255 

2013), and locally adaptive variants may become appreciably enriched. Both humans and A. thaliana 256 

are known to have undergone demographic expansion in their recent evolutionary histories 257 

(Hoffmann 2002; Finlayson 2005). While the relative extent of local adaptation in these two species is 258 

difficult to quantify, both exhibit an excess of low frequency amino acid polymorphism characteristic 259 

of deleterious variants (Lohmueller et al. 2008; Henn et al. 2016; Cao et al. 2011).  260 

Another potentially important factor in predicting deleterious variants is gene duplication. A. 261 

thaliana carries remnants of a whole genome duplication along with numerous single copy 262 

duplications (The Arabidopsis Genome Initiative 2000) more than are present in the human genome 263 

(Lynch and Conery 2000). Gene duplication can lead to relaxed selection during subfunctionalization 264 

or pseudogenization (Ohno 1970), enabling amino acid variants to accumulate in recently duplicated 265 

genes. However, we found very similar performance between duplicate and single copy genes, 266 

consistent with a similar finding in humans using PolyPhen2 (Adzhubei et al. 2013). Because we only 267 
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included genes with known mutant phenotypes, the sample of recently duplicated genes is limited. 268 

Recent duplicates are more likely to accumulate common variants that would appear deleterious and 269 

so may be among those genes where predictions are the most difficult. 270 

 271 

Conclusions and future directions 272 

Most approaches developed to predict deleterious mutations were trained using human data and in 273 

many cases can only be used for human proteins, e.g., Kircher et al. 2014; Li et al. 2009; Schwarz et al. 274 

2010. This study demonstrates that several generalized approaches perform exceptionally well in A. 275 

thaliana, implying that they should also work well for other plant species. Despite the high 276 

performance, it is quite likely further improvements could be achieved. Notably, LRT requires longer 277 

run times than any of the other approaches, typically 5.2 hrs of compute time per gene. Although we 278 

did not investigate whether a faster approach could be implemented without a loss in performance, it 279 

is acknowledged that the long run time of the LRT may limit the application of the approach to large 280 

genomics datasets. One potential avenue to pursue is whether faster heuristic measures of site-specific 281 

conservation based on the BAD_Mutations pipeline of alignments could achieve similarly high 282 

performance. However, further study would be needed to test whether heuristic measures of amino 283 

acid conservation would be robust to the reference species and protein alignments to which they were 284 

applied. A second approach would be to find a more effective means of generating predictions from 285 

the combined output of multiple prediction approaches, as this has been shown to be highly effective 286 

in humans, e.g. (González-Pérez and López-Bigas 2011). Although we did not find an ensemble 287 

predictor that greatly improved performance, this might reflect the relatively small number of 288 

variables used to generate ensemble predictions. 289 
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 290 

Methods 291 

 292 

Mutations with phenotypic effects were obtained from two sources. We generated a manually curated 293 

set of 542 amino acid altering mutations in 155 genes with phenotypic effects that are described in the 294 

literature. These mutations were found by searching the Arabidopsis Information Resource 295 

(http://www.arabidopsis.org) for genes with either dominant or recessive alleles caused by nucleotide 296 

substitutions. We also identified mutations using a literature search in Google Scholar 297 

(http://scholar.google.com). For each variant we recorded the amino acid substitution, position and 298 

link to the published paper (Table S3). We excluded nonsense mutations because they frequently 299 

completely eliminate gene function. We identified a second set of 2,617 amino acid altering mutations 300 

in 960 genes from the manually curated UniProt/Swiss-Prot database (http://www.uniprot.org/, 301 

(Boutet et al. 2016). The two sets were independently generated and had an overlap of 249 mutants. 302 

Using those mutants with named alleles as an indicator of those with gross versus biochemical 303 

phenotypes, 65% of our manually curated set and 33% of the Swiss-Prot set had macroscopic 304 

phenotypes. Duplicated genes were defined by those proteins with a significant blastp hit (E-value < 305 

0.05) to another A. thaliana protein with greater than 60% identity. By this criteria 466/995 proteins 306 

were classified as duplicated. 307 

Single nucleotide polymorphisms (SNPs) without any known phenotype were obtained from a 308 

set of 80 sequenced A. thaliana strains (Ensembl, version 81, “Cao_SNPs”, (Cao et al. 2011)). At the 309 

time of download, these were the only SNP set available with unrestricted use. After filtering out sites 310 

with heterozygous or missing genotype calls, there were 10,797 biallelic amino acid altering SNPs in 311 

the 995 proteins. We used a subset of 1,583 common SNPs (>10%) as those least likely to have 312 
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phenotypic effects. 313 

We assessed amino acid substitutions using six approaches: LRT (Chun and Fay 2009), 314 

PolyPhen2 (Adzhubei et al. 2010) , SIFT 4G (Vaser et al. 2016), Provean (Choi et al. 2012), MAPP(Stone 315 

and Sidow 2005) and Gerp++ (Davydov et al. 2010). PolyPhen2 predictions were generated using the 316 

standalone software (v2.2.2) with the PolyPhen2 bundled non-redundant database (uniref100-release 317 

2011_12) and the probabilistic variant classifier using the default HumDiv model. Precomputed SIFT 318 

4G predictions were obtained for A. thaliana (TAIR10.23) (http://sift.bii.a-star.edu.sg) and are based on 319 

the UniRef90 database (2011). SIFT 4G predictions were not available for 855 substitutions, 320 

predominantly because the amino acid change involved more than one nucleotide change within a 321 

codon. Provean predictions (v1.1.5) were generated for all mutations using NCBI's non-redundant 322 

database (04/02/2016). MAPP predictions were generated using BAD_Mutations alignments and trees 323 

(see below). GERP++ generates predictions for single nucleotide positions rather than codons. To 324 

assess GERP++ performance we used the GERP++ score at the first, second or third position of the 325 

codon if the amino acid substitution could occur by a single change at one of those positions and the 326 

average of the GERP++ scores at the first and second positions for all other types of changes. In 327 

addition, because GERP++ did not perform well using neutral substitution rates estimated from each 328 

alignment (default) we used a uniform neutral rate of 10 substitutions per site across all genes. 329 

Predictions using a likelihood ratio test (LRT) were performed with the BAD_Mutations 330 

pipeline (Kono et al. 2016). The pipeline makes use of sequenced and annotated genomes. We used 331 

blast searches of 42 angiosperm genomes and retaining the top hit from each with a blast e-value 332 

threshold of 0.05. Only Angiosperms were used to avoid extensive saturation of synonymous sites. 333 

Pasta protein alignments (Mirarab et al. 2015) were generated using the homologs and the likelihood 334 
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of dN = ωdS compared to dN = dS for each codon of interest was calculated using HYPHY (Pond et al. 335 

2005), where dN and dS are the nonsynonymous and synonymous substitution rate and ω is a free 336 

parameter. Sequences with ‘N’s or other ambiguous nucleotides were discarded prior to the likelihood 337 

ratio test. The LRT differs compared to its original formation (Chun and Fay 2009) in that: i) dS was 338 

estimated using all codons for each gene separately, ii) query sequences were optionally masked in 339 

the likelihood calculation to avoid any reference bias and iii) branches with dS greater than 3 were set 340 

to 3 to avoid spuriously high estimates of dS. Additionally, the original LRT used heuristics to 341 

eliminate sites with dN > dS, the derived allele present in another species, or with fewer than 10 342 

species in the alignment. Rather than eliminating sites, we used logistic regression to provide a single 343 

probability of being deleterious based on the LRT test and these additional pieces of information.  344 

Logistic regression was applied using both the masked and unmasked LRT p-values, where 345 

the masked p-values were generated from alignments without the A. thaliana reference allele. For the 346 

unmasked logistic regression, we used the terms log10(LRT p-value), constraint (dN/dS), Rn and An, 347 

where Rn and An are the number of A. thaliana reference and alternative (i.e., mutant) amino acids 348 

observed in the alignment, respectively. For the masked model we replaced An and Rn with the 349 

absolute value of Rn – An and the maximum of Rn and An, respectively. For both models p-values 350 

less than 1e-16 were set to 1e-16 and constraint values greater than 10 were set to 10. Ten-fold cross 351 

validation was used to assess the fit of the logistic regression. The average area under the ROC curve 352 

based on cross validation was 0.9575 (unmasked) and 0.9471 (masked). Because these values were 353 

nearly identical to the performance of the model fit to the entire dataset, 0.9581 (unmasked) and 0.9471 354 

(masked), we used the logistic regression coefficients from the full dataset: 355 

 356 
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log(p/(1-p)) = -2.407-0.2139*LRT(unmasked)-0.2056*constraint+0.07368*Rn-0.1236*An 357 

log(p/(1-p)) = -2.453-0.1904*LRT(masked)-0.1459*constraint+0.2199*max(Rn,An)-0.2951*abs(Rn-An) 358 

 359 

Sensitivity, specificity and area under the curve (AUC) were calculated for each approach 360 

using the pROC package in R (Robin et al. 2011). Confidence intervals for each were calculated by 361 

stratified bootstrapping (n = 2000). 362 

Combined predictions were generated based on the combined scores of six approaches: LRT, 363 

LRT-masked, PolyPhen2, Provean, GERP++ and MAPP. Sites with missing predictions from one or 364 

more approach (n = 215) were removed. Combined predictions were generated using: 1) logistic 365 

regression with each approach's score as a predictive variable, 2) support vector machine, 3) random 366 

forest, 4) linear discriminant analysis and 5) generalized linear model with penalized maximum 367 

likelihood implemented by the glmnet package in R (Friedman et al. 2010). The performance of each 368 

model was assessed by AUC values obtained from 10-fold cross-validation. 369 

 370 

Data access 371 

LRT predictions were implemented in the Python package BAD_Mutations which is freely available 372 

from http://github.com/MorrellLAB/BAD_Mutations.git. 373 
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 535 

Tables 536 

 537 

Table 1. Performance measured by AUC of approaches based on different test sets. 

Study Reference species Test set SIFT PPH2 LRT1 GERP++ 

Dong et al. (2015) Human SetI 0.76 0.81* 0.72 0.78 

 Human SetII 0.78* 0.76 0.67 0.67 

Grim et al. (2015) Human VariBenchSelected 0.70* 0.68 0.62 0.59 

 Human predictSNPSelected 0.79 0.79* 0.71 0.67 

 Human SwissVarSelected 0.68 0.71* 0.68 0.65 

This study A. thaliana SwissProt 0.91 0.94 0.96* 0.92 

 A. thaliana Manual curation 0.94 0.96 0.97* 0.94 

* Highest performing approach for a given test set. 538 

1 LRT in this study used a different alignment pipeline than the LRT applied to the human test sets. 539 

 540 

 541 

Figure Legends 542 

 543 

Figure 1. Comparison of approaches that distinguish deleterious and neutral amino acid substitutions. 544 

The fraction of true positives (sensitivity) versus the fraction of true negatives (specificity) is shown 545 

for seven approaches (LRTm is a masked version of LRT, PPH2 is PolyPhen2). Vertical and horizontal 546 
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dashed lines show the cutoff at 95% specificity and 95% sensitivity, respectively. 547 

 548 

Figure 2. The proportion of SNPs called deleterious across frequency classes. The fraction of SNPs 549 

called deleterious by each approach (legend) at its 95% specificity threshold across five frequency 550 

classes, labeled by the number of minor alleles present (n =80). Sample sizes for the five classes are 551 

5303 (1), 1646 (2), 1250 (3-4), 1015 (5-8) and 1583 (>8). 552 

 553 

Figure 3. Performance of approaches across different classes of sites. Performance is measured by the 554 

area under the curve (AUC) of the approach's sensitivity versus specificity. A – comparison of 555 

mutants with biochemical versus gross phenotypes. B – comparison of performance for duplicated 556 

versus single copy genes. 557 

 558 

Figure 4. Dissimilarities among approaches. Dissimilarities were computed by the pairwise number of 559 

disagreements between each approach applied to mutants and common SNPs. Dissimilarities are 560 

represented by a tree based on hierarchical clustering.  561 

 562 

Supplemental Tables 563 

 564 

Table S1. Performance of methods used to distinguish deleterious and neutral substitutions 565 

Table S2. Performance of models based on ensemble prediction methods. 566 

Table S3. 2,617 amino acid altering mutations in 960 A. thaliana genes 567 

 568 
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