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ABSTRACT  16 

Coxiella burnetii is an obligate intracellular bacterial pathogen and a causative agent of culture-17 

negative endocarditis. While C. burnetii initially infects alveolar macrophages, it was also found 18 

in lipid droplet (LD)-containing foamy macrophages in the cardiac valves of endocarditis 19 

patients. In addition, transcriptional studies of C. burnetii-infected macrophages reported 20 

differential regulation of the LD coat protein-encoding gene perilipin 2 (plin-2). To further 21 

investigate the relationship between LDs and C. burnetii, we compared LD numbers in mock-22 

infected and C. burnetii-infected alveolar macrophages using fluorescence microscopy. 23 

Compared to only 10% of mock-infected cells, 50% of C. burnetii-infected cells had more than 24 

50 LDs/cell as early as 24 hours post-infection, indicating a significant increase in LDs in 25 

infected cells. Increased LDs required the C. burnetii Type 4B Secretion System (T4BSS), a 26 

major virulence factor that manipulates host cellular processes by secreting bacterial effector 27 

proteins into the host cell cytoplasm. To determine the importance of LDs during C. burnetii 28 

infection, we assessed the effect of manipulating LD homeostasis on C. burnetii intracellular 29 

growth. Surprisingly, blocking LD formation with the pharmacological inhibitors triascin C or 30 

T863, or knocking out acyl-CoA transferase-1 (acat-1) in alveolar macrophages, increased C. 31 

burnetii growth at least 2-fold. Conversely, preventing LD lipolysis by inhibiting adipose 32 

triglyceride lipase (ATGL) with atglistatin almost completely blocked bacterial growth, 33 

suggesting LD breakdown is essential for C. burnetii. Together these data suggest that LDs are 34 

detrimental to C. burnetii and maintenance of LD homeostasis, possibly via the T4BSS, is 35 

critical for bacterial growth.  36 

 37 

 38 
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IMPORTANCE  39 

Host neutral lipid storage organelles known as lipid droplets (LDs) serve as a source of energy, 40 

nutrients, or signaling lipids during infection with intracellular bacteria, such as Mycobacterium 41 

spp., and Chlamydia spp. LDs have also been associated with infection of the intracellular 42 

bacterial pathogen Coxiella burnetii, a significant cause of culture-negative infectious 43 

endocarditis. Although C. burnetii was found in LD-rich foam macrophages in endocarditis 44 

patients, little is known about the host LD-C. burnetii relationship. We demonstrated a C. 45 

burnetii Type 4B Secretion System (T4BSS)-dependent LD accumulation in macrophages, 46 

suggesting that the T4BSS plays a key role in regulating host cell LD formation or breakdown. 47 

Further, manipulation of LD homeostasis significantly affected C. burnetii intracellular growth, 48 

indicating LDs play an important role during C. burnetii infection. Since C. burnetii endocarditis 49 

has a 19% mortality rate even in treated patients, exploring the LD-C. burnetii association might 50 

identify novel therapeutic targets.  51 

 52 

INTRODUCTION 53 

Lipid droplets (LDs) are dynamic cytoplasmic organelles which store cellular lipids in 54 

eukaryotic cells. LDs are uniquely comprised of a phospholipid monolayer surrounding a 55 

hydrophobic core of neutral lipids, primarily sterol esters and triacylglycerols. LD assembly 56 

begins with neutral lipid synthesis, where fatty acyl CoA synthetases generate long chain fatty 57 

acids which are converted to sterol esters and triacyglycerols by acyl-CoA:cholesterol 58 

acyltransferase (ACAT) and acyl-CoA:diacylglycerol acyltransferase (DGAT), respectively. 59 

Progressive accumulation of neutral lipids in the ER leads to budding of the lipid ester globule, 60 

surrounded by the ER membrane cytoplasmic leaflet (1, 2). Hormone sensitive lipase (HSL) (3) 61 
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and adipose triglyceride lipase (ATGL) (4) mediate LD breakdown and release of free 62 

cholesterol and fatty acids. Functionally, LDs serve as intracellular lipid reservoirs for membrane 63 

synthesis or energy metabolism. In addition, LDs are linked to a range of cellular functions 64 

including protein storage, protein degradation and signaling (2, 5). 65 

 LDs are emerging as important players during host-pathogen interactions. During 66 

infection of host cells, Hepatitis C virus (HCV) (6) and Dengue virus (7) co-opt LDs as 67 

platforms for viral assembly and replication. Even though pharmacological manipulation of LD 68 

content reduced viral numbers, the importance of LDs during viral infection still remains elusive 69 

(8). Increased LD numbers in host cells is observed upon infection with several pathogens 70 

including HCV (6) and Dengue virus (7), as well as the protozoan parasites Trypanosoma cruzi 71 

(9), Plasmodium berghei (10), Toxoplasma gondii (11), Leishmania amazonensis (12) and 72 

Leishmania major (13). In addition, the intracellular bacterial pathogens Chlamydia spp. (14), 73 

Mycobacterium spp. (15-18), Orientia tsutugamushi (19), and Salmonella typhimurium (20) also 74 

increase LD numbers in infected cells. C. trachomatis (14, 21) and M. tuberculosis (15) are 75 

thought to use triacylglycerol and cholesterol esters stored in LDs as a major source of energy 76 

and nutrients. Furthermore, in cells infected with M. leprae (22), M. bovis (16), T. cruzi (23), and 77 

Leishmania infantum chagasi (24), LDs serve as a source of prostaglandin and leukotriene 78 

eicosanoids, important signaling lipids which modulate inflammation and the immune response. 79 

These LD-derived eicosanoids potentially favor intracellular pathogen survival by 80 

downregulating the immune response (25).  81 

  LDs have been implicated during infection by Coxiella burnetii, a gram-negative 82 

intracellular bacterium and the causative agent of human Q fever. Primarily spread through 83 

aerosols, C. burnetii acute infection is characterized by a debilitating flu-like illness, while 84 
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chronic disease results in endocarditis. Although in vitro and in vivo C. burnetii can infect a wide 85 

range of cells including epithelial cells and fibroblasts, the bacterium first infects alveolar 86 

macrophages during natural infection. Inside the host cell, C. burnetii directs formation of a 87 

specialized lysosome-like compartment called the parasitophorous vacuole (PV) which is 88 

essential for C. burnetii survival. PV biogenesis requires the C. burnetii type 4B secretion system 89 

(T4BSS), which secretes effector proteins into the host cell cytoplasm where they manipulate a 90 

wide range of cellular processes. While not established to be T4BSS-dependent, C. burnetii is 91 

thought to manipulate LDs and other components of host cell lipid metabolism (26-29). C. 92 

burnetii-containing LD-filled foam cells were found in heart valves of an infected patient (30), 93 

and LDs were observed in the C. burnetii PV lumen of infected human alveolar macrophages 94 

(31). Further, two separate microarray analyses reported differential regulation of the LD coat 95 

protein plin-2 in C. burnetii-infected human macrophage-like cells (THP-1) (28, 29), suggesting 96 

C. burnetii induced changes in host cell LDs. Intriguingly, siRNA depletion of the phospholipase 97 

involved in LD breakdown, PNPLA2 (also known as ATGL), increased the number of C. 98 

burnetii PVs in HeLa epithelial cells (32). In addition, treatment of monkey kidney epithelial 99 

cells (Vero cells) with a broad spectrum antiviral molecule ST699, which localizes to the host 100 

cell LDs, inhibited C. burnetii intracellular growth (33). Despite these observations, the 101 

importance of LDs during C. burnetii infection is not known. In this study, we further examined 102 

the relationship between host LDs and C. burnetii. We observed a T4BSS-dependent increase in 103 

LD numbers in infected alveolar and monocyte-derived macrophages. Furthermore, 104 

manipulation of LD homeostasis significantly altered C. burnetii intracellular growth, thus 105 

strongly indicating that LDs play an important role during C. burnetii infection. 106 

 107 
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RESULTS AND DISCUSSION 108 

C. burnetii infection results in host cell LD accumulation.  109 

To examine the role of LDs in C. burnetii pathogenesis, we first quantitated LDs in infected 110 

cells. Previously, two separate microarray studies reported differential regulation of the LD coat 111 

protein-encoding gene plin-2 in C. burnetii-infected cells (28, 29), generally indicating changes 112 

in LD numbers. As C. burnetii preferentially infects alveolar macrophages during natural 113 

infection, we utilized a mouse alveolar macrophage cell line (MH-S) previously shown as a 114 

model for C. burnetii infection (34). Cells were stained by immunofluorescence for the LD coat 115 

protein PLIN2, and LD number per cell determine by fluorescence microscopy. During a 4-day 116 

mock infection, the majority of macrophages (~80%) had less than 50 LDs per cell, irrespective 117 

of the time point (Figure 1). In contrast, we observed a significant increase in LDs per cell at 1, 2 118 

and 4 days after C. burnetii infection, with >60% of infected cells having more than 50 LDs. 119 

Notably, LD accumulation occurred as early as 1 day post-infection, when the PV has not 120 

expanded and the bacteria are not in log growth. This suggests that LD accumulation is not a host 121 

response to a large PV, but could be a result of C. burnetii directly manipulating host LDs.  122 

  123 

 Host cell LD accumulation is dependent on the C. burnetii Type 4B Secretion System 124 

(T4BSS). 125 

  Previously, based on microarray analysis of C. burnetii-infected cells where bacterial 126 

protein synthesis was blocked, Mahapatra et al. identified 36 host cell genes specifically 127 

regulated by C. burnetii during early stages of infection. These genes were predominantly 128 

involved in the innate immune response, cell death and proliferation, vesicular trafficking, 129 

cytoskeletal organization and lipid homeostasis. Interestingly, changes in plin-2 expression level 130 
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in infected cells was dependent on C. burnetii protein synthesis (28). Together with our data, this 131 

suggests that C. burnetii actively manipulates host LDs as early as day 1 post-infection, possibly 132 

through C. burnetii T4BSS effector proteins secreted into the host cytoplasm. The C. burnetii 133 

T4BSS detectably secretes effector proteins beginning 1 hour post-infection in bone marrow-134 

derived macrophages and 8 hours post-infection in HeLa cells (35). To test if the C. burnetii 135 

T4BSS was responsible for LD accumulation in murine alveolar macrophages, LD numbers were 136 

analyzed at 1, 2, and 4 days after infection with a T4BSS dotA mutant. While at least 75% of the 137 

wild-type C. burnetii-infected cells had >50 LDs at all time points, only 40% cells infected with 138 

T4BSS mutant had >50 LDs per cell, similar to mock-infected cells (Figure 2A and B). This 139 

suggests the T4BSS is involved in increased LDs in C. burnetii-infected alveolar macrophages.  140 

To confirm this finding, we analyzed LD numbers in human macrophage-like cells (THP-141 

1). Similar to murine alveolar macrophages, when compared to mock- or T4SS mutant-infected 142 

cells, wild-type C. burnetii-infected THP-1 cells had increased LD numbers at 1 and 4 days post-143 

infection (Figure 2C). Interestingly, we did not observe T4BSS-dependent LD accumulation at 2 144 

days post-infection. However, these results demonstrate that the C. burnetii-induced increase in 145 

LDs in both human and mouse macrophages is species-independent and dependent on the C. 146 

burnetii T4BSS.  147 

The requirement for the C. burnetii T4BSS suggests that one or more C. burnetii T4BSS 148 

effector proteins may actively manipulate LDs. Other bacteria have been shown to target host 149 

LDs via effector proteins. For example, the C. trachomatis secreted protein Lda3 localizes to the 150 

LD surface and is involved in LD translocation into the Chlamydia-containing inclusion (21). 151 

The Salmonella Typhimurium type 3 secretion system (T3SS) effector protein SseJ esterifies 152 

cholesterol and increases LD numbers when expressed in epithelial and macrophage cells (20). 153 
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Thus far, none of the identified C. burnetii T4BSS secreted effector proteins localize to host 154 

LDs. While C. burnetii effectors might directly target proteins involved in LD formation or LDs 155 

themselves, it is also possible that fission of preexisting LDs, and not de novo formation, is 156 

responsible for increased numbers of LDs (36). As observed in Figure 2A, the LD size in C. 157 

burnetii-infected macrophages appeared smaller than the mock- or T4BSS mutant-infected 158 

macrophages. Smaller, more numerous LDs might result from C. burnetii T4BSS-mediated 159 

fission of the existing LDs. 160 

While C. burnetii T4SS effector proteins might directly target LDs or LD pathways, LD 161 

accumulation may also be a host innate immune response. In other diseases, LD accumulation 162 

occurs during the inflammatory response in macrophages in atherosclerotic lesions (37), 163 

leukocytes from joints of patients with inflammatory arthritis (38), and eosinophils in allergic 164 

inflammation (39). Thus, an innate immune response to the T4BSS apparatus or T4BSS effector 165 

proteins may increase LD numbers in C. burnetii-infected macrophages. While our data 166 

demonstrate that the C. burnetii T4BSS is involved in LD accumulation in both mouse and 167 

human macrophages, the bacterial effector proteins and the specific LD processes involved 168 

remain unknown. 169 

 170 

Blocking LD formation increases C. burnetii growth. 171 

 Given our finding that the C. burnetii T4BSS may manipulate host LD accumulation, we 172 

next assessed the importance of LDs during C. burnetii infection. We first blocked LD formation 173 

using triascin C, a long chain fatty acyl CoA synthetase inhibitor (40). Compared to vehicle 174 

control, triascin C significantly reduced macrophage LDs, with <5 LDs per cell (Figure 3A). We 175 

next treated macrophages with triascin C during C. burnetii infection, and quantitated bacterial 176 
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growth using a fluorescent infectious focus-forming unit (FFU) assay. At various times post-177 

infection, we recovered bacteria from MH-S cells, replated onto a monolayer of Vero cells, and 178 

incubated for 5 days. After staining for C. burnetii, we counted the number of fluorescent foci, 179 

with 1 focus equivalent to 1 viable bacterium. Surprisingly, compared to vehicle-treated cells, 180 

triascin C treatment increased C. burnetii growth 5-fold at 4 days post-infection (Figure 3B). 181 

 To further validate these results, we used CRISPR/Cas-9 to knockout acat-1 (Figure 3C), 182 

the enzyme responsible for sterol esterification. While acat-1-/- LDs lack sterol esters, 183 

fluorescence microscopy revealed similar LD numbers in wild-type and acat-1-/- cells (Figure 184 

3D). Compared to wild-type cells, C. burnetii growth in acat-1-/- cells increased 2-fold at 4 days 185 

post-infection (Figure 3E), indicating that blocking sterol esterification favors C. burnetii 186 

growth. To further deplete both triacylglycerol-and sterol ester-containing LDs, we treated acat-187 

1-/- cells with the DGAT1 inhibitor T863, which specifically blocks formation of triacylglycerols 188 

(41). T863 treatment significantly reduced LDs in acat-1-/- macrophages, compared to untreated 189 

wild-type or acat-1-/- macrophages (Figure 3D). C. burnetii growth increased 2-fold in T863-190 

treated acat-1-/- cells compared to vehicle-treated acat-1-/- cells (Figure 3F), demonstrating that 191 

blocking both sterol ester- and triacylglycerol-containing LDs improves C. burnetii growth.  192 

These studies demonstrate that both pharmaceutical and genetic approaches to blocking 193 

LD formation increases C. burnetii fitness in macrophages. Interestingly, Mahapatra et al. 194 

observed an increase in plin-2 transcript levels after transiently blocking C. burnetii protein 195 

synthesis, suggesting that wild-type C. burnetii downregulates LD formation (28). It is not clear 196 

why inhibiting LD formation is advantageous to C. burnetii. While it is not known if C. burnetii 197 

uses host fatty acids, unesterified free fatty acids or sterols in LD-deficient cells may support C. 198 

burnetii growth. 199 
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 200 

Inhibiting LD breakdown blocks C. burnetii growth.  201 

Because blocking LD formation appeared to benefit C. burnetii, we next examined C. 202 

burnetii growth after inhibiting LD breakdown and increasing LD numbers. When cells or 203 

tissues need fatty acids or cholesterol, cytosolic lipases such as hormone sensitive lipase (HSL) 204 

(2, 3) and adipose triglyceride lipase (ATGL) (4) hydrolyze triacylglycerols and sterol esters 205 

stored in LDs. To block LD breakdown in murine macrophages, we inhibited ATGL with the 206 

selective and competitive inhibitor atglistatin, which binds the ATGL patatin-like phospholipase 207 

domain (42). To eliminate the possibility of ATGL inhibiting a C. burnetii phospholipase, we 208 

first measured viability of axenic C. burnetii cultures in the presence or absence of atglistatin 209 

(Figure 4A). Treatment for 4 days had no effect on axenic bacterial growth, indicating atglistatin 210 

does not directly affect C. burnetii.  211 

We next tested the effect of atglistatin on intracellular bacteria. After atglistatin treatment 212 

of wild-type MH-S cells, we observed larger LDs by immunofluorescence microscopy, although 213 

the number did not significantly increase (Figure 3A). Interestingly, C. burnetii intracellular 214 

growth in atglistatin-treated wild-type MH-S cells decreased 5-fold, with essentially no growth 215 

(Figure 4B). Further, atglistatin-treated acat-1-/- cells, which contain triacylglycerol-containing 216 

LDs, also showed reduced bacterial growth (Figure 4C). Together, these data demonstrate that 217 

blocking LD breakdown significantly inhibits intracellular C. burnetii growth, regardless of LD 218 

composition.  219 

Our data suggest that LD breakdown is essential for C. burnetii intracellular growth in 220 

macrophages. Previously, siRNA knockdown of ATGL in HeLa cells increased the number of C. 221 

burnetii PVs, although the effect on C. burnetii growth was not determined (32). LDs are less 222 
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abundant in HeLa cells compared to macrophages, and LDs and LD breakdown may play a 223 

larger role during C. burnetii infection of macrophages. LD breakdown liberates fatty acids, 224 

which can be reesterified or serve as signaling cofactors, building blocks for membranes, or 225 

substrates forβ-oxidation to generate energy (2). Several intracellular bacteria use LD-derived 226 

fatty acids as a source of energy and carbon. M. tuberculosis, which can make its own LDs, 227 

converts host-derived fatty acids into triacylglycerol, which is then deposited in bacterial LDs 228 

(15). The M. tuberculosis lipase is hypothesized to release stored bacterial fatty acids, but can 229 

also degrade host LD-derived triacylglycerol (43). Host LDs translocated into the C. trachomatis 230 

inclusion may be broken down to provide lipids for bacterial growth (14). We did not observe 231 

LDs in the C. burnetii PV lumen in murine macrophages or THP-1 macrophage-like cells, in 232 

contrast to reports in human alveolar macrophages (31). It is not known if free fatty acids or 233 

sterols liberated from LDs, either in the cytosol or possibly the PV lumen, support C. burnetii 234 

growth.   235 

In addition to serving as a source of free fatty acids and sterols, macrophage LDs are rich 236 

in substrates and enzymes that generate prostaglandins and leukotrienes, which are arachidonic 237 

acid-derived inflammatory lipid mediators (44, 45). In M. leprae-infected Schwann cells and M. 238 

bovis BCG-infected macrophages, increased LD biogenesis correlates with increased production 239 

of prostaglandin E2 (PGE2), linking LDs to the production of innate immunity modulators (17, 240 

46). Thus, LDs can serve as a source of inflammatory mediators in response to pathogen 241 

infection. Interestingly, elevated levels of PGE2 were observed in C. burnetii endocarditis 242 

patients and linked to C. burnetii-mediated immunosuppression. Koster et al. reported 243 

lymphocytes from chronic Q fever patients being unresponsive to C. burnetii antigens, an effect 244 

reversed by PGE2 suppression with indomethacin (47). In addition, after stimulation with C. 245 
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burnetii antigens, monocytes from Q fever patients produced PGE2, which in turn 246 

downregulated T lymphocyte-mediated IL-2 and IFNγ production. Interestingly, PGE2 synthesis 247 

inhibitor Piroxicam reversed this downregulation of pro-inflammatory cytokine production (48). 248 

Thus, while PGE2 appears to play a role in Q fever patients, the relationship between C. 249 

burnetii-induced LDs and PGE2 production is not known. Considering that LD breakdown can 250 

serve multiple functions, C. burnetii could use LDs either as a source of nutrients or for 251 

production of lipid immune mediators like PGE2, which could then modulate the host cell 252 

response to promote C. burnetii intracellular growth.  253 

In summary, our data demonstrate that LD homeostasis is important for C. burnetii 254 

intracellular survival. Because the C. burnetii T4BSS is involved in LD accumulation, 255 

characterizing bacterial T4BSS effector proteins that target host LD homeostasis will help further 256 

understand the role of LDs in C. burnetii pathogenesis.  257 

 258 

MATERIALS AND METHODS 259 

Bacteria and mammalian cells 260 

C. burnetii Nine Mile Phase II (NMII; clone 4, RSA439) were purified from Vero cells (African 261 

green monkey kidney epithelial cells, ATCC CCL-81; American Type Culture Collection, 262 

Manassas, VA) and stored as previously described (49). For experiments examining T4BSS-263 

dependent accumulation of LDs, NMII and the dotA mutant (50) were grown for 4 days in 264 

ACCM-2, washed twice with phosphate buffered saline (PBS) and stored as previously described 265 

(51). Vero, mouse alveolar macrophages (MH-S; ATCC CRL-2019) and human monocytes 266 

(THP-1; ATCC TIB-202) were maintained in RPMI (Roswell Park Memorial Institute) 1640 267 

medium (Corning, New York, NY, USA) containing 10% fetal bovine serum (Atlanta 268 
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Biologicals, Norcross, GA, USA) at 37°C and 5% CO2 and human embryonic kidney 293 269 

(HEK293T; ATCC CRL-3216) in DMEM (Dulbecco’s Modified Eagle Medium) (Corning, New 270 

York, NY, USA) containing 10% fetal bovine serum at 37°C and 5% CO2. THP-1 cells were 271 

differentiated with 200 nM of phorbol 12-myristate 13-acetate (PMA) for 24 hours. PMA was 272 

removed, and the cells rested for 48 hours prior to infection. The multiplicity of infection (MOI) 273 

was optimized for each bacterial stock, cell type and infection condition for a final infection of 274 

~1 internalized bacterium/cell at 37oC and 5% CO2.  275 

 276 

Generating acat-1-/- MH-S cell line  277 

The guide RNA sequence 5′TCGCGTCTCCATGGCTGCCC3′ to mouse acat-1 was selected 278 

using the optimized CRISPR design site crispr.mit.edu. Oligonucleotides were synthesized (IDT, 279 

Coralville, IA, USA), annealed, and cloned into the lentiCRISPRv2 plasmid (a gift from Feng 280 

Zhang, Addgene # 52961, Cambridge, MA, USA) (52), at the BsmBI restriction site to generate 281 

plentiCRISPRv2-acat-1. To generate lentivirus, HEK293T cells were co-transfected with 282 

plentiCRISPRv2-acat-1 and packaging plasmids pVSVg (Addgene # 8454), pRSV-Rev 283 

(Addgene # 12253), and pMDLg/pRRE (Addgene # 12251) using FuGENE6 reagent (Promega, 284 

Madison, WI, USA). At 48 hours post-transfection, supernatant was collected and centrifuged at 285 

3000xg, and then filtered with 0.45µm filter to remove cells and debris. Supernatant was 286 

concentrated using the Lenti-X concentrator (Catalog # PT4421-2, Clontech, USA) and viral 287 

RNA isolated using Viral RNA isolation kit (Catalog # 740956, Macherey-Nagel, Germany) to 288 

determine viral titer using Lenti-X qRT-PCR titration kit (Catalog # PT4006-2, Clontech). Viral 289 

titers were optimized for transduction of MH-S cells to generate stable acat-1-/- cells.  290 
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2x105 MH-S cells were plated in a 6 well plate and transduced with 5.8 x 106 viral 291 

particles/ml. 1�µg/ml puromycin was used for selection 48�hours post-transduction and 292 

continued for 24�hours. The puromycin was then removed and the cells allowed to recover 293 

before isolating individual clones by limiting dilution.  294 

To confirm disruption of acat-1, clones were lysed in 2% SDS (Sigma-Aldrich, St. Louis, 295 

MO, USA) for SDS‐PAGE and immunoblotting with 1:1000 rabbit anti-mouse ACAT1-specific 296 

antibody (Catalog # NBP189285, Novus Biologicals, Littleton, CO, USA) and 1:4000 GAPDH 297 

loading control monoclonal antibody (Catalog # MA5-15738, ThermoFisher Scientific, 298 

Waltham, MA, USA). The multiplicity of infection (MOI) was optimized for each bacterial stock 299 

for a final infection of ~1 internalized bacterium/cell.  300 

 301 

LD quantitation  302 

1x105 MH-S cells were plated onto ibidi-treated channel µslide VI0.4 (3x103 cells per channel; 303 

Ibidi, Verona, WI) and allowed to adhere overnight. After infecting with C. burnetii for 1 hour, 304 

cells were gently washed with phosphate buffered saline (PBS) to remove extracellular bacteria, 305 

and incubated in 10% FBS-RPMI. At different times post-infection, infected cells were fixed 306 

with 2.5% paraformaldehyde on ice for 15 min, then permeabilized/blocked for 15 min with 307 

0.1% saponin and 1% bovine serum albumin (BSA) in PBS (saponin-BSA-PBS) and stained 308 

with 1:1000 rabbit anti-mouse PLIN2 primary antibody (Catalog # PA1-16972, ThermoFisher 309 

Scientific), 1:2000 guinea-pig anti-C. burnetii primary antibody (53) and 1:1000 rat anti-LAMP 310 

(Catalog # 553792, BD Biosciences) primary antibody in saponin-BSA-PBS for 1 hour. THP-1 311 

cells were stained with 1:500 guinea-pig anti-human PLIN2 primary antibody (Catalog # 20R-312 

AP002, Fitzgerald Industries International, Acton, MA), 1:2000 rabbit anti-C. burnetii primary 313 
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antibody and 1:1000 rat anti-LAMP primary antibody in saponin-BSA-PBS for 1 hour. After 314 

three washes with PBS, cells were stained with 1:2000 AlexaFluor 488 anti-rabbit, AlexaFluor 315 

594 anti-guinea pig and AlexaFluor 647 anti-rat secondary antibodies (Invitrogen) for 1 hour. 316 

ProLong Gold mount (Invitrogen) was added to the wells after washing with PBS and slides 317 

visualized on a Leica inverted DMI6000B microscope (100X oil). The number of LDs per cell 318 

was quantitated for 50 cells per condition in three individual experiments, with only bacteria-319 

containing cells counted for C. burnetii-infected cells. Each experiment was done in duplicate.  320 

 321 

Inhibitors 322 

Each LD homeostasis inhibitor used was diluted in DMSO based on manufacturer’s instructions 323 

and optimum inhibitor concentration was determined based on 100% host cell viability 324 

determined by trypan blue staining, and changes in LD numbers per cell. The optimum 325 

concentrations determined for each inhibitor was: Triascin C (Enzo Life Sciences, Farmingdale, 326 

NY, USA) – 10 µM, T863 (Sigma-Aldrich) – 10 µM, Atglistatin (Cayman Chemicals, Ann 327 

Arbor, MI, USA) – 20 µM.  328 

 329 

C. burnetii growth by fluorescent infectious focus-forming unit (FFU) assay.  330 

To measure growth of C. burnetii in wild-type and acat-1-/- MH-S cells, 5x104 cells/well were 331 

infected for 1 hour in a 48 well plate, washed with PBS, and then incubated with media 332 

containing respective vehicle and inhibitors. At the indicated time points, the media was 333 

removed and cells were incubated with sterile water for 5 min, pipetted up and down and the 334 

lysate diluted 1:5 in 2% FBS-RPMI. Serial dilutions were added to 24 well plate containing 335 

confluent monolayers of Vero cells, incubated for 5 days, fixed with methanol and stained with 336 
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rabbit anti-C. burnetii antibody as well as DAPI to confirm monolayer integrity. Four fields per 337 

well were captured on an Evos automated microscope (ThermoFisher) with 4X objective and 338 

fluorescent foci units were quantitated using ImageJ. Each experiment was done in duplicate.  339 

 340 

Atglistatin-treatment of C. burnetii axenic cultures 341 

To test bacterial sensitivity to atglistatin, ACCM-2 was inoculated at approximately 1x105 342 

bacteria/ml with C. burnetii NMII and grown for 3 days as previously described (51). Bacteria 343 

(500 µl) were then incubated with DMSO or atglistatin in 24 well plates under normal C. 344 

burnetii culture conditions. Media was replenished every 24 hours by centrifuging the 345 

supernatant at 20000xg for 10 min, and bacterial pellet resuspended in new media containing 346 

inhibitor. After 4 days, bacteria were diluted 1:10 in 2% FBS-RPMI and serial dilutions were 347 

added to confluent Vero cell monolayers in a 96 well ibidi-treated µplate. At 5 days post-348 

infection, the plate was stained and fluorescent foci were determined as above. Each experiment 349 

was done in duplicate.  350 

 351 

Statistical analysis 352 

 Statistical analyses were performed using ordinary one-way ANOVA or two-way ANOVA with 353 

Tukey’s or Bonferroni’s multiple comparisons test in Prism (GraphPad Software, Inc., La Jolla, 354 

CA). 355 

 356 

FIGURE LEGENDS: 357 

Figure 1: C. burnetii infection results in host cell LD accumulation. 358 
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MH-S macrophages were infected with C. burnetii NMII and at different times post-infection, 359 

cells were stained for PLIN2 (LDs), LAMP1 (PV marker) and C. burnetii. LDs were observed by 360 

fluorescence microscopy and number of LDs per cell was quantitated. The percent of counted 361 

cells containing 0-20, 21-50 and >50 LDs per cell at respective times were plotted. Error bars 362 

show the mean of 3 independent experiments +/- SEM * =p<0.05, ** =p <0.01, *** =p <0.001 363 

compared to respective >50 LDs/cell in mock-infected cells as determined by two-way ANOVA 364 

with Tukey post-hoc test.  365 

 366 

Figure 2: Host cell LD accumulation is dependent on the C. burnetii T4BSS Secretion 367 

System (T4BSS). 368 

A) Representative images of mock, wild-type C. burnetii NMII and T4BSS (dotA) mutant-369 

infected MH-S macrophages stained for PLIN2 (LDs) at day 1 post-infection imaged at 100X. 370 

Scale bar = 10 µm 371 

B) MH-S macrophages and (C) THP-1 monocyte-derived macrophages were infected with wild-372 

type C. burnetii NMII and dotA mutant. At different time points post-infection, cells were 373 

stained for PLIN2 (LDs), LAMP1 (PV marker) and C. burnetii. The number of LDs per cell 374 

were counted by fluorescence microscopy. Percent of cells containing 0-20, 21-50 and >50 LDs 375 

per cell at respective time points were plotted. Error bars show the mean of 3 independent 376 

experiments +/- SEM * =p<0.05 compared to respective >50 LDs/cell in dotA mutant-infected 377 

cells as determined by two-way ANOVA with Tukey post-hoc test.  378 

 379 

Figure 3: Blocking LD formation increases C. burnetii growth. 380 
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C. burnetii NMII growth in infected MH-S cells treated with different inhibitors was measured at 381 

2 and 4 days post-infection by FFU assay.  382 

A) Representative images for wild-type MH-S macrophages treated with inhibitors, fixed, 383 

stained for PLIN2 (LDs) and imaged day 1 post-treatment at 100X. Scale bar = 10 µm 384 

B) Growth in LD formation inhibitor triascin C–treated (10 µM) wild-type MH-S macrophages. 385 

Error bars represent the mean of 4 independent experiments +/- SEM. **= p <0.01 compared to 386 

vehicle treated cells as determined by two-way ANOVA with Bonferroni post-hoc test. 387 

C) ACAT1 protein expression in wild-type and acat-1-/- macrophages. Cell lysates were 388 

immunoblotted and ACAT1 protein levels were compared with GAPDH as loading control.  389 

D) Representative images for vehicle-treated wild-type MH-S macrophages and vehicle and 390 

T863-treated acat-1-/- macrophages fixed, stained for PLIN2 (LDs) and imaged day 1 post-391 

treatment at 100X. Scale bar = 10 µm 392 

E) C. burnetii NMII growth in vehicle-treated wild-type and acat-1-/- MH-S macrophages and (F) 393 

T863-treated wild-type and acat-1-/- MH-S macrophages. Error bars represent the mean of 3 394 

independent experiments +/- SEM., * =p<0.05, *** =p <0.001 as determined by two-way 395 

ANOVA with Bonferroni post-hoc test. 396 

 397 

Figure 4: Inhibiting LD breakdown blocks C. burnetii growth. 398 

Effect of ATGL inhibitor atglistatin on viability of axenic and intracellular C. burnetii was 399 

determined by FFU assay.  400 

A) Direct effect of atglistatin on C. burnetii NMII. Atglistatin was added to axenic C. burnetii 401 

NMII cultures and bacterial viability was determined at day 4 using FFU assay. Error bars 402 
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represent the mean of 3 independent experiments +/- SEM. ns = not significant compared to 403 

vehicle treatment as determined by ordinary one-way ANOVA with Tukey post-hoc test. 404 

B) Growth in atglistatin-treated (20 µM) and vehicle-treated wild-type MH-S macrophages. 405 

Error bars represent the mean of 4 independent experiments +/- SEM. *= p <0.05, **** 406 

=p<0.0001 compared to vehicle-treated cells as determined by two-way ANOVA with 407 

Bonferroni post-hoc test. 408 

C) Growth in atglistatin-treated (20 µM) and vehicle-treated acat-1-/- MH-S macrophages. Error 409 

bars represent the mean of 4 independent experiments +/- SEM. ** =p<0.01 compared to vehicle 410 

treated cells as determined by two-way ANOVA with Bonferroni post-hoc test. 411 
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