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Abstract

Coastal ecosystems can be degraded by poor water quality. Tracing the causes of poor water
quality back to land-use change is necessary to target catchment management for coastal zone
management. However, existing models for tracing the sources of pollution require extensive
data-sets which are not available for many of the world’s coral reef regions that may have
severe water quality issues. Here we develop a hierarchical Bayesian model that uses freely
available satellite data to infer the connection between land-uses in catchments and water
clarity in coastal oceans. We apply the model to estimate the influence of land-use change on
water clarity in Fiji. We tested the model’s predictions against underwater surveys, finding
that predictions of poor water quality are consistent with observations of high siltation and
low coverage of sediment-sensitive coral genera. The model thus provides a means to link
land-use change to declines in coastal water quality.

Keywords: Remote sensing, coral reefs, Fiji, water quality, sediment, ridge to reef planning.
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Introduction

The management of activities on land to avoid pollution run-off to the ocean is important for
the conservation of many coastal marine ecosystems 1-3. Deforestation and farming increase
run-off of nutrients and sediment that can flow out to the ocean 4. In the ocean, sediment and
nutrient pollutants can decrease water clarity and shade or smother habitats, reducing
diversity of benthic organisms 5, habitat complexity and fish diversity ¢7. Thus, in places
where coastal waters are strongly influenced by freshwater run-off the management of
marine ecosystems requires actions in connected terrestrial and freshwater habitats.

Management of run-off to coastal marine ecosystems requires identifying the source of
impacts to ecosystems, so that appropriate actions can be taken to reduce threats. Between
the land-use change and changes in marine ecosystems, multiple processes are operating
across space and time that affect marine sediment concentrations: for instance, deforestation
causes increased sedimentation in rivers and floodplains e.g. 89, rivers transport sediments
to the ocean e.g. 10 and in the ocean sediments are dispersed to reefs e.g. 11. Given that the
ocean can disperse sediments widely, water quality at a single location in the marine
environment may be influenced by rivers that drain multiple catchments. Thus, attributing
declines in coastal water quality to its cause on land is difficult, which hinders identifying
priorities for management actions on land, like the best locations for re-vegetation *.

The methods used to trace the source of water quality issues to their causes on land are
generally data-intensive. For instance, on the Great Barrier reef, millions of dollars and years
of research have been in invested to trace the source of poor water quality 12. Satellite remote
sensing products, in situ water quality measurements and river discharge measurements have
been used to trace the extent of influence of river flood plumes 13 and estimate potential
improvements in water clarity from acting to reduce river sediment loads 4. However, the
investment of time and resources required to implement these approaches is not feasible in
many developing countries, where run-off can have severe negative impacts on the
livelihoods of people that rely on coastal ecosystems 15. For instance, people in Fiji are reliant
upon coral reefs for fisheries and tourism, an ecosystem that is threatened by land-use change
16, There is limited historical data, funding and capacity to undertake additional science to
support a new government initiative for integrated coastal zone management. Capitalizing on
political opportunities for coastal planning requires methods that can be implemented with
existing and freely available data-sets 17.

Three approaches offer hope for data limited regions. The first uses soil erosion equations,
such as in those in the INVEST toolbox 18, to inform land areas contributing the greatest
sediment and nutrient loads to river mouths. The second approach relies on simple models of
reef exposure to river flood plumes based on Geographic Information Systems analysis (GIS)
e.g. 1119.20. A weakness of these modeling approaches is that they are not quantitatively
validated against local datasets, and parameters are estimated using expert opinion or
extrapolated from other study areas, often with very different climates and soil conditions 8. A
third approach, the analysis of satellite data for indices of water quality offers a way to obtain
quantitative measurements even in data-limited regions e.g. 13. However, satellite
measurements should be corrected locally for biases, for instance from benthic reflectance 21.
Further, satellite measurements cannot be used on their own to trace the source of poor
water quality back to land. An appropriate statistical modeling framework could integrate
these three approaches, drawing strengths from each, is required.

Here we combined satellite measurements with GIS models and catchment models to resolve
the contributions of different catchments to water quality, specifically turbidity, at coral reefs
using a hierarchical Bayesian model. We applied our model to estimate catchment
contributions to turbidity around Vanua Levu, Fiji, where information on sediment run-off is
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needed to inform coastal planning 22. Because field data are often poorly controlled and there
are inherent errors in satellite measurements of water quality 1314, we further tested our
model under idealistic conditions to suggest further scope for improvement in the model and
priorities for collecting empirical data. Our approach required freely available data on water
quality and land-use (from satellite imagery) and rainfall, making it broadly applicable for
linking catchments to water quality, even in data-limited regions, for use in integrated land-
sea management plans.

Methods
Overview

We approach the problem of determining the contribution of different catchments to satellite
measurements of turbidity in the ocean by developing a Bayesian hierarchical model. The
model simultaneously estimates the dispersion of sediments from sources (e.g. river mouths)
and the relative influence of different sources on ocean turbidity. The model was hierarchical
because the influence parameters were scaled by independently derived estimates of
sediment loadings. Sediment loadings themselves were calculated from catchment land-use
and rainfall data using a simple model of sediment run-off. To test Bayesian model’s
predictions of turbidity, we related model estimated turbidity values to observed benthic
habitat data. Finally, we perform a power analysis where we test the Bayesian model’s ability
to recover known parameter values for a simulated coastline.

Bayesian model

The core of our model was a function that described the influence of different sediment
sources on ocean turbidity at different distances from each source. In all equations below we
use Greek letters to represent parameters that were estimated. The likelihood of the satellite
observing turbidity value y; at location i was specified:

y = (2 z,, ]esf Equation 1
j

where the summation is over m sediment sources, j, €; are normally distributed error terms
with precision Ty and z;;was a latent variable representing the influence of source j (e.g. a
river mouth) on ocean location i. We rescaled the turbidity measurements by subtracting the
minimum value then adding a small number so that estimation of an intercept parameter was
unnecessary 23.

The model described the declining influence of a source j on turbidity at an ocean site (z;;)
using a power function:

_ Olj .
z,, = ﬁjdi,j Equation 2

where [3; was the influence of source j on turbidity at a distance of zero (e.g. at a river mouth),
a; was a scaling parameter that controls the dispersion of sediment, and d;; was a matrix of
distances (in kilometres) from ocean sites to sources. The parameters @; were expected to be
negative if turbidity declines at greater distance from sources. We let the dispersion
parameter vary by sources, however, in practice allowing each source to have a unique «
would result in issues with parameter identification. Thus we suggest that a values are
restricted to one or just a few values. We also tested the model by replacing equation 2 with
an exponential function, which assumes diffusion of sediments across space. However, model
fits from the exponential function were poor, so we proceeded with the power function.
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We included a second hierarchical level in the model to allow for source influences () to
scale with estimates of sediment yield from catchments:

ﬁj = GSjev" Equation 3

Where the parameter 6 can take values >0 and rescaled estimates of sediment loadings
coming from rivers, S, into the units of the satellite measurement and v; were normally
distributed errors with precision t,. Sediment loadings themselves are estimated according to
land use and rainfall patterns within each catchment, outlined below.

The hierarchical level was an important strength of this modeling approach. The problem of
attributing the contribution of multiple catchments to ocean turbidity is underdetermined,
because there is no one unique solution. Constraining catchment influences to scale with their
sediment loadings effectively requires the relative order of catchment influences to remain
similar to the order of their sediment loadings. This constraint helps constrain the plausible
parameter space.

We used vague priors for all parameters and priors were specified as follows: 1y, Ty and @; had
uninformative gamma priors, and 6 had an uninformative log-normal prior (See appendix B
for further details).

We used Markov-Chain-Monte-Carlo (MCMC) sampling to numerically simulate posterior
distributions of the modeled parameters 23. To implement numerical simulations, we used
JAGS version 3.3.0 24, controlled from the R programming language 23, using the Coda package
26 to evaluate model fits (Supplementary Material Appendix A). For all model runs, we used
the Gelman-Rubin statistic 27 to evaluate convergence and only accepted models where this
statistic was <1.05 for all variables.

The model could be applied to different water quality variables (e.g. turbidity, salinity) over
different time-scales, provided the estimates of catchment size and the water quality variables
are measured at consistent time-scales. For instance, the model could be applied to a pulse
event, such as a tropical storm, to estimate the contribution of different rivers to sediment
pollution in the ocean. The model could also be applied to time-integrated measures of
pollutant exposure e.g. 19, which is the approach we take here.

Case-study

We estimated catchment influences on ocean turbidity in the waters around Vanua Levu, the
second largest island of Fiji. Integrated Coastal Management (ICM) plans are currently being
developed at the provincial level for Vanua Levu. In Vanua Levu, there is concern from
government and communities that accelerating economic development on land, including
mining agriculture, road building and forestry will impact fisheries, tourism and the ecological
integrity of marine protected areas 28. To address these concerns, coastal communities in
Vanua Levu’s Bua province are currently working with government and a non-governmental
organization (The Wildlife Conservation Society, WCS) to design and implement an ICM plan
based on national ICM frameworks for Fiji 22. The ICM plan will aim to balance terrestrial
economies, marine economies and ecological health. Therefore, the ICM plan requires
information on where development on land can have minimal impacts to marine ecosystems
and economies. However, there are limited data on the influence of land-use change on
coastal water quality to support this decision process and limited funding and time to support
further data collection. Thus, the ICM process would benefit from rapid advice on where
development may have the greatest impact on water quality.

Data for Vanua Levu
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We fitted the Bayesian model to remotely sensed turbidity measurements from the coastal
waters around Vanua Levu. We used satellite data from the Medium Resolution Imaging
Spectrometer (MERIS), part of the European Space Agency’s Envisat platform 2°. We
downloaded images for the Level 2 products for turbidity for the years 2003-2011 (data
provided in Formazin Turbidity Units). The turbidity product has been empirically validated
for other regions with similar water types 1330, The satellite pixels were summarized onto a
standardized grid of 402 by 402 metres, removing any pixels with a low quality reading
(quality flag <0.01). We also masked pixels on reefs, in shallow water and all pixels next to
reefs or shallow water to minimize the confounding influence of benthic reflectance 21. Reefs
were identified using a global reef database 31.

Turbidity measurements were summarized as the geometric mean of values across all years
in the wet season (119 images, November to April) and standardized by the mean value.
Standardization was performed because turbidity has not been validated against local in situ
data, and we were interested in the spatial patterns, not the absolute values. We also created
summaries using the maximum, minimum and frequency of high (>2S5D) turbidity events,
however these all had similar spatial patterns, so we focus our analyses on the means
summary. The summary was resampled to a resolution of 3.12km by 3.14 km, resulting in
1250 pixels with turbidity measurements in the study region. Resampling was performed
because convergence of the MCMC algorithm was slow using the full resolution data.
Resampling to a lower resolution preserved spatial patterns in turbidity and exploratory
analysis indicated there was little bias in parameter estimates when resolution was reduced.
The pixels that were not used in model fitting were retained for evaluating model fit. Model fit
was evaluated using the residual mean square error. Parameters, priors and model code are
provided in Supplementary Material Appendix B.

Sediment yield from each river mouth was estimated for each catchment as:
S, = Zs[pl‘krkfllk Equation 4
1

Where Sk in mg is the summed product over the landuses |, s; is the sediment yield of a land-
use (per mg/L of rainfall), p;x is the proportion of rainfall that runs off a landuse (L-1), rx is the
total rainfall (L) in a catchment in the wet-season and fjk is the proportion of area under a

landuse in a catchment (2 f,,=1). The proportion of rainfall that ran off a given catchment
increased with increases in that catchments spatially averaged wet season rainfall 32.

We consider two land-uses: forested versus deforested (including farmland, bare soil and
settlements). There were 74 catchments in the study region and for model fitting we scale the
Sk relative to the largest catchment. Delineation of catchment boundaries and data to calculate
source sediment contributions (Equation 4) were derived using freely available GIS products
and programming routines (Supplementary Material Appendix C).

Catchments with river mouths within 5km of each other were aggregated together before
fitting the Bayesian model. Aggregation was necessary because the influence of nearby river
mouths on turbidity was not identifiable by the model. For aggregated river mouths distance
from the rivers to each ocean pixel was taken as the mean distance from the river mouths.
River sediment loadings, Sk were summed over the groups to obtain 28 grouped river mouths,
Sj. Aggregation of river mouths meant we could only discriminate sediment contributions
from groups of neighboring catchments, however simulating testing indicated that the
aggregation procedure significantly reduced bias in parameter estimates (see below).

Initially we fit the model with a single dispersion parameter () for all sources. However,
examination of model fits indicated that this model tended to under-predict turbidity on the
north-west facing coast of Vanua Levu and over-predict turbidity on the south-east coast.
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Winds in Fiji are predominantly easterlies 33, suggesting that sediment dispersion might vary
on the two coasts. Therefore we re-fitted the model allowing unique dispersion parameters
for southern and northern coasts. We report results from both models, including statistics for
model selection: the predictive loss and the deviance information criteria 2324 Lower values
of predictive loss and deviance information criteria indicate a more parsimonious model.

Impact of poor water quality on benthic habitats

We conducted an independent verification of water quality predictions by assessing whether
the composition of benthic habitats was consistent with the Bayesian model’s predicted
gradient in turbidity. We used mean turbidity as predicted by the model with two dispersion
parameters. Surveys of coral reef benthic habitats were conducted by WCS at 168 sites
around Vanua Levu. Point intercept surveys were performed using 2-6 replicates of 50 metre
long transects at each site, recording benthic habitat categories at 0.5 metre intervals
according to a standard classification adapted from Hill and Wilkinson 34.

For each site we calculated change in percent cover of three benthic habitat types that are
most likely to respond to high turbidity: silt, sediment sensitive scleractinian coral genera
(genera and justification are in Supplementary Material Appendix D) and algae. Silt cover and
percent cover of algae (which included macro algae and cyanobacteria) were expected to
increase with increased turbidity, cover of sediment sensitive coral genera was expected to
decline with increased turbidity. For the three habitat types (silt, algae and coral), we fitted
linear models to test for a relationship between predicted turbidity and the cover of each
habitat. For each habitat type, we used linear models and transformations appropriate to the
distribution of residuals (Supplementary Material Appendix D).

Simulation testing

We used a simulation study to test the model’s ability to estimate source contributions to
pollution accurately and precisely for different geographies and data types. We simulated a
100 km long linear coastline with three river mouths. The ocean environment extended out to
100 km from shore and contained 300 (30 by 10) ocean pixels. For each simulation test we
used the power functional form (equation 2) to simulate 25 water quality data-sets with
random measurement errors. We then fit equations 2-3 to each simulated data-set to see if it
could recover the original parameters (see Supplementary Material Appendix E for details of
the MCMC algorithm).

We were particularly interested in the model’s ability to predict turbidity at ocean pixels and
estimate the contribution of each source to water quality. We used two statistics to evaluate
the model’s performance to estimate the source contributions 35. The first was the mean
relative error (MRE), which is a measure of bias in parameter estimation. The second was the
mean coefficient of variation, which quantifies precision. We also evaluated bias in estimation
of ocean turbidity using the residual mean square error comparing model predicted turbidity
to simulation turbidity without observation error (Supplementary Material Appendix E).

Initially, we assumed the source contributions to turbidity were equal and they were position
at 100km, 200km and 300km along the coastline. In the first simulation test, we varied the
standard deviation of the observation error and ocean dispersal a (Supplementary Material
Appendix E). Based on these initial tests, we fixed the error and a at 0.5 and 1.25 for further
testing.

The second simulation test was to explore the model’s ability to partition the contribution of
the sources to water quality. We then ran crossed trials where the southern-most source was
iteratively moved towards the center of the coast. We also iteratively increased the magnitude
of one source’s contribution to water quality.
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Results
Case-study for Fiji

Satellite measurements of turbidity indicated a gradient in the geometric mean of wet-season
turbidity with high values near to river mouths (Fig. 1). Values tended to be higher on the
north-coast of Vanua Levu, where there has been extensive land-clearing.
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Fig 1 Map of the study region, showing grouped catchments (coloured polygons, overlaid on a
hillshade map) with their estimated sediment yield (tons per wet season) and reef survey
sites. White areas were excluded from analysis due to shallow water or being too far from the
catchments. Ocean colour scale shows mean turbidity estimated from satellites. Inset shows
the study region’s location in relation to Fiji’s largest islands.

Comparing the two model fits, the model with unique dispersion parameters for each coast
provided a more accurate fit (lower root-mean square error) and was more parsimonious
despite the extra parameter (lower DIC, Table 1). The estimates of the dispersion parameters
also suggested that the dispersion parameter was significantly different on north and south
coasts (compare overlap of 95% credibility intervals in Table 1). For further analysis we
proceed with the two dispersion parameter model.

Table 1 Fit statistics from the two Vanua Levu models. North coast includes Bua Bay.
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Model Estimate(s) Root-mean Predictive | Deviance
of dispersion | square error on | loss information
parameter data not used in criteria
(95% fitting
Credibility
interval)

Single 1.28 (1.22, 0.14 217 1327

dispersion 1.33)

parameter

Unique South coast: 0.13 191 927

dispersion 0.77 (0.70,

parameters 0.83)

for each North coast:

coasts 2.30 (2.14,

2.47)

The model provided accurate estimates of turbidity. Visualization of modeled turbidity
indicated that the large catchments on the north coast contributed to high turbidity in nearby
coastal waters (Fig. 2A). On the south-coast the degraded catchments around Savusavu,
contributed to moderate levels of turbidity. The moderately sized catchments around western
Bua also had a large influence on coastal waters. In comparison the catchments with high
forest cover on the south-west coast had little influence on south-west coastal waters. There
was some spatial bias in predictions of turbidity when compared to satellite measurements
(Fig. 2B). Turbidity was underestimated in inshore areas of the far north coast, particularly
near the mouth of the Nasauu River.

Estimates of source contributions were generally consistent with the estimates of sediment
loadings (Fig. 3), although the estimates for source contributions deviated significantly from
the linear relationship with sediment loads for several catchments. In particular, the Bua Bay
catchments and Nasauu river and Rukuruku bay catchments were estimated to have a far
greater influence on ocean turbidity than the estimates of their sediment loadings suggested.
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Figure 2 Predicted (A) and residual (B) catchment yields and turbidity values from the model
fit for Vanua Levu. The inset on B show a plot of predicted versus residual values. Sediment
yields in (A) and residual yields in (B) are scaled relative to the maximum yield value.
Residuals for turbidity in (B) are constrained in [-1, 1] to aid visualization, because there were
more negative residuals (-4) at the mouth of the Dreketi river.
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Figure 3 Relative influence of sources on ocean turbidity (A) and logged influence values (B)
estimated from the GIS analysis plotted against posterior estimates for relative influence. The

x and y axis are scaled to the same units by dividing the x-axis by the slope from the mean
estimate of the yield-influence parameter (08). Error bars show 95% credibility intervals.

The verification analyses relating our predicted turbidity values to observed benthic habitat
observations showed some statistically significant relationships, albeit with some uncertainty
(Fig. 4). Modeled turbidity was consistent with spatial variation in cover of silt, which was
estimated to increase from 2% to 19% from the clearest to most turbid water (Fig 4a, p <
0.05). The cover of sediment sensitive corals declined from an average of 21% to an average
of 0.4% with estimated turbidity (Fig 4b, p < 0.05). Algal cover decreased slightly with
turbidity, but the relationship was not statistically significant (Fig 4c, p>0.05). Note that
change in silt cover and coral cover was greater if sites with extreme turbidity values (>1.3)
were removed from analysis.

50

50

40
40 |

30
30

Silt cover (%)
Coral cover (%)
Algal cover (%)

20

0 - esve
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Predicted turbidity (scaled) Predicted turbidity (scaled) Predicted turbidity (scaled)

Figure 4 Turbidity estimates from the Bayesian model predict (A) silt cover (zero inflated log-
linear model), (B) cover of sediment-sensitive scleractinian coral genera (linear model fit with
logit transform) and (C) algal cover (zero inflated logit model). Lines show model fits, where a
solid line is statistically significant (p<0.05).
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Simulation tests for the power functional form

Overall, simulation tests indicated that the model’s estimates of dispersion, source
contributions and predictions of water quality had negligible bias across a broad range of
parameter and catchment configurations settings (Table 2). The primary cause of bias in
estimates was catchment configurations that reduced spatial contrasts in source
contributions to water quality. Weak spatial contrasts occurred in two types of data. First, if
the observation error on the satellite images was large and the gradient of turbidity from
inshore to offshore very weak, the model’s estimates had high bias (>10% difference from the
true value) and predictions of turbidity had a large error. Second, if two sources were close
together, the contribution of the source with the smaller yield was generally over-estimated,
whereas the contribution of the source with the larger yield was underestimated.

The simulation tests also indicated caution must be taken when interpreting the model’s fit. If
rivers differed greatly in their contributions, estimates of water quality were accurate (low
root-mean square error), but estimates of source contributions were likely to be biased,
particularly if the rivers were close together. Accurate water quality predictions may lead to a
false sense of security in extrapolating predictions to other run-off conditions.
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Table 2 Summary of results from varying parameters for simulating testing of the Bayesian

model.

Test Bias in Variance in | Biasin source | Variance in Root mean
estimate of | estimate of | contributions | source square error
alpha alpha contributions | for water

quality
predictions

More negative | <1% forall | <1% forall | <1% for all <1% for all <1% for all

values of a values values values values values

Greater sd Negative High Negative bias if | High High if the sd

obs (sd of ;) | biasifthe sd | variance if the sd was variance if was large and
was large the sd was large and a the sd was a low
and o low largeand a | low large and a

low low

Sources are <1%forall |<1%forall | Over-predicts | Higher

closer values values smaller source | variance for

together and under- sources that

predicts larger | are closer
source together

One source <1% forall |<1% forall | Biaslow,but Negligible, <1% of mean

contributes values values over-predicts | butincreases | turbidity

more than the smaller source | if sources are | value for all
others and under- close parameters
predicts larger | together.
source

Discussion

Our model provides a rapid and effective tool for estimating the influence of multiple
catchments on coastal water quality. The data required to build this model are freely
available, making this model useful for regions with limited funding for development of more
sophisticated models of pollutant sources that rely on detailed in situ data. Further, the model
can be rapidly implemented, so can be used to inform development of environmental policy
during times of political opportunity 7. Model outputs for influence of catchments on water
clarity could be used by planners directly, or integrated into simulation models to evaluate
different future scenarios of land-use change e.g. 33%. For example, the results from the model
for Fiji have provided input into the design of the Bua Province ICM plan for the next 5-10
years. Our modeling was incorporated into the consultation process by informing provincial
government and communities which catchments have had the greatest influence on coral reef
ecosystems, and therefore need to have sound strategies in place to manage those

catchments.

Results indicated that several catchments had a large influence on turbidity. These
catchments are some of the most degraded in the region, with native vegetation removed to
build towns and grow sugar cane, which has resulted in high erosion rates °. Similar high
erosion in other parts of the world has been documented to have substantial impacts on
ocean water quality and marine benthic communities ¢37. Verification of the model against
benthic habitats also demonstrated that turbidity is likely affecting marine benthic habitats,
through an increased cover of silt, the stress and eventual loss of sediment-sensitive coral
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species. Algal cover was not related to turbidity. Multiple processes may drive algal cover,
resulting in non-linear response to turbidity, for instance algae may be excluded at low light,
and outcompeted by corals in very clear waters. Similarly other studies have also found that
algae does not necessarily replace corals on highly turbid reefs 3839, Degradation of fish
habitat and turbid waters over coral reefs are of concern to local communities because
fisheries and tourism are major sources of livelihoods in the region. Actions reduce
deforestation and target catchment restoration in the most degraded catchments may
therefore have the greatest benefits for local coastal marine livelihoods.

Our approach offers several advantages over other GIS models of catchment contributions e.g.
19,20 Using Bayesian estimation to fit parameter estimates to data enabled us estimate the
dispersal of pollutants in the ocean for a given region, rather than using fixed parameters that
have been obtained from other regions that may not be locally appropriate. Further, simple
GIS models rely on point estimates of catchment contributions to water quality, so do not
consider uncertainty in catchment contributions. The Bayesian model estimates uncertainty
in catchment contributions. Estimates of uncertainty are useful for decision-makers, because
they provide a range over which improvements in catchment land-use are expected to benefit
reefs.

There were some discrepancies between the estimates of catchment sediment loadings
derived from the GIS analysis and the Bayesian model’s estimates of catchment contributions
to turbidity. Further, catchment influence parameters were highly uncertain for several
catchments. Such discrepancies may arise due to errors in the satellite measurement of
turbidity, processes of erosion that we did not consider in the simple catchment models, or
variation in the dispersal of sediment from across different river mouths. Estimates of
sediment loadings that were much greater than the GIS estimates may indicate erosion
processes we did not consider, such as significant stream bank erosion 4. Likewise, where the
estimated contributions were much smaller than the estimated sediment loadings, sediment
capture and storage processes within hydrological networks may be important 4%. The
discrepancies could also result from oceanographic processes, for instance the effect of some
catchments on ocean turbidity may be low if plumes are rapidly dispersed offshore. Where
data on catchment processes are available, more detailed process models may provide better
estimates of sediment loadings e.g. 1. These discrepancies thus indicate key catchments were
further empirical work to quantify sediment transport may have the greatest benefit for
improving predictions of source contributions to coastal turbidity.

One weakness of our approach is that it does not resolve sub-catchment processes of erosion,
so the model can only inform priorities for land-use management at the catchment scale. More
detailed catchment models have been used to successfully resolve sub-catchment erosion and
thus, can inform on priority areas for restoration within catchments #2. However, the most
common models for sediment sourcing are based on temperate grasslands, so further work is
needed to develop their application to tropical catchments 8. In particular, estimates of
catchment sediment yield could be improved by accounting for erosion of stream banks,
which can be the major source of sediment run-off 443. The contribution of stream bank
erosion to sediment yield could be determined using chemical tracers of sediment sources 44
and then catchment scale estimates could then be estimated by mapping streams and
remnant riparian vegetation e.g. 4. Further development of the model to include stream bank
erosion could thus help managers achieve economic development targets for land-use change
while avoiding the areas that cause the greatest amount of sediment run-off.

Our model is a simplification of both catchment processes and oceanographic dynamics and
several steps could be taken to improve predictions of catchment influences on turbidity at
reefs. First, there were no available in situ measurements of water quality parameters. Ideally

CJ Brown et al. preprint
12


https://doi.org/10.1101/112250
http://creativecommons.org/licenses/by/4.0/

424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449
450
451
452
453
454
455

456

457
458
459
460
461
462

463

464
465
466
467
468
469
470

bioRxiv preprint doi: https://doi.org/10.1101/112250; this version posted February 27, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

satellite images should be validated against in situ water quality data e.g. 1339 or proxies from
coral reef cores e.g. 4>. To address this, we used satellite products that have previously been
validated for other similarly turbid water types 13 and verified our estimates against in situ
data of benthic habitats. Nonetheless, in situ water-quality data should be priority for further
testing of this model. An advantage of this Bayesian framework is its flexibility to incorporate
additional information. For instance, in situ measurements of turbidity and sediment
concentration could be used as prior information for the estimation of the scaling from
sediment loading to turbidity units.

A second caveat is the models of sediment dispersal were simplistic representations of
oceanographic processes, including dispersion, tidal transport and wind-driven transport.
The power function used to estimate turbidity is a phenomenological representation of
sediment dispersion. Thus, bridging the divide between numerical models of sediment
dispersion with sophisticated process descriptions e.g. 46 and the statistical approach we
employed requires further work. The inclusion of additional processes in Bayesian models
will require further development to improve the computational efficiency of the estimation
algorithm, such as employing customized MCMC algorithms 23. One future improvement may
be to include the predominant direction of winds in the Bayesian model and allow sediments
to disperse further in the direction of winds e.g. 1°. For instance, we found that model fit was
improved considerably with different dispersion parameters for north and south coastlines.
The improvement in fit may be due to offshore versus onshore winds on the north versus
south coast. More specific parameterizations to account for bathymetric effects on currents
may help to resolve spatial auto-correlation in the model’s residuals. Despite the model’s
simplistic representation of oceanographyj, it still explained a large amount of the variance
(77%) in the satellite data, suggesting increasing model complexity will provide smaller
incremental gains in explanatory power.

We have developed a Bayesian model for estimating the influence of catchments on coastal
water quality. The model shows utility for rapidly assessing catchment contributions to water
quality in data limited regions and thus may be used to inform planning processes in a timely
and cost-effective manner. Building in sediment sourcing models into land-sea planning
processes is important to ensure that planners properly account for the downstream effects of
actions on land, many of which may impact the livelihoods of coastal people and degrade
ecological integrity.
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