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In the adult hippocampus, neural stem cells (NSCs) continuously produce
new neurons that integrate into the neuronal network to modulate learning
and memory. The amount and quality of newly generated neurons decline
with age, which can be counteracted by increasing intrinsic Wnt activity
in NSCs. However, the precise cellular changes underlying this age-related
decline or its rescue through Wnt remain unclear. The present study
combines development of a mathematical model and experimental data to
address features controlling stem cell dynamics. We show that available
experimental data fit a model in which quiescent NSCs can either become
activated to divide or undergo depletion events, consisting of astrocytic
transformation and apoptosis. Additionally, we demonstrate that aged
NSCs remain longer in quiescence and have a higher probability to become
re-activated versus being depleted. Finally, our model explains that high
NSC-Wnt activity leads to longer time in quiescence while augmenting the
probability of activation.

1. Introduction
The subgranular zone of the hippocampal dentate gyrus (DG) is one of the two major
regions in the adult brain where neural stem cells (NSCs) continuously produce new
neurons involved in the process of learning and memory [1]. The age-associated
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impairment of learning and memory has awaken much interest in understanding
the cellular and molecular mechanisms underlying the accompanying decline of NSC
numbers in the hippocampus [2, 3, 4, 5, 6, 7]. Hence, interpretations of the dynamics
of NSCs in homeostasis have led to many recent studies [8, 9, 10, 11, 12, 13].
To decipher the cellular dynamics behind hippocampal neurogenesis, we apply an

interdisciplinary approach combining mathematical modeling with experimental data.
These data consist of already published studies [11, 8, 9, 12, 6] as well as novel data
specifically designed to reveal age-related changes during hippocampal neurogenesis.
Our approach of combining modeling with data was successfully applied for other stem
cell-based systems [14, 15, 16, 17, 18], in which mathematical models were used to
identify and quantify stem cell-related processes such as self-renewal and differentiation.
The developed mathematical model describes the evolution of the hierarchical cell

production system of adult hippocampal neurogenesis and incorporates basic cell
properties such as quiescence, proliferation, self-renewal and apoptosis. Since the exact
regulatory feedbacks in neurogenesis are not well understood, we follow a top-down
approach in which we start with a basic model with constant rates and then apply it
to experimental data in order to identify which parameters are changing during aging.

Our study shows that the data are consistent with a model in which NSCs reside in a
quiescent phase from which they can either become activated to proliferate or undergo
depletion events. By applying our model to novel data displaying an age-related
accumulation of astrocyte numbers, we demonstrate that about 40% of NSC depletion
can be attributed to direct transformation into astrocytes with the remaining part
being likely a result of apoptosis.

Finally, we use our model to uncover the response of the neurogenesis system upon
Dickkopf-1 (Dkk1) deletion [6]. We show that the best explanation for the effects upon
Dkk1 knockout is that stem cells spend longer time in quiescence but are also more
likely to become re-activated versus being depleted from the quiescent phase.

2. Results

2.1. Stem Cell Model Fits Population-level and Clonal Data
Our model is based on a compartment of quiescent NSCs, corresponding to the G0

phase of the cell cycle (Figure 1). Those quiescent NSCs have the ability to enter the
cell cycle and perform a symmetric self-renewing or asymmetric division, followed by
NSCs returning to quiescence after division [8]. Although Bonaguidi et al. [8] do not
address a mechanism leading to NSC disappearance, they find an increased number of
NSC-depleted stem cell clones in their data and conclude that there are NSC depletion
events. Accordingly, we assume an outflow from the quiescent NSCs compartment
not only due to cell cycle entry but also due to depletion. As shown later, our results
suggest that NSC depletion consists of apoptosis as well as astrocytic transformation.
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Accordingly, our model is given by the set of equations

d

dt
c0(t) = −(r + q)c0(t) + 2apc1(t),

d

dt
c1(t) = rc0(t)− pc1(t),

(2.1)

where c0 represents quiescent NSCs and c1 cycling NSCs. The parameter p denotes
the proliferation rate, q is the depletion rate and r the activation rate (see Figure 1
for a graphical representation). Moreover, since we consider experimentally observed
symmetric and asymmetric NSC divisions [8], we introduce the parameter a as the
fraction of self-renewal, which is the probability of a daughter cell to have the same
fate as a mother cell [19].
We investigate the proposed model by comparison to experimental data. For this,

we measure the number of NSCs and the fraction of 5-bromo-2-deoxyuridine (BrdU)
incorporating NSCs at several time points during adulthood (Figure 2). Our data
agree with those reported by Encinas et al. [9], as we as well observe a decline of the
NSC pool (Figure 2e) and a constant fraction of BrdU incorporating NSCs of about
1% during aging (Figure 2f). By estimating model parameters, we find that the model
can be fitted to these population-level data (Figures 2e and 2f, black line).

In contrast to population level data which account for large cell numbers and admit
inferences about the collective behavior of a whole cell population, clonal data reflect
single-cell level behavior by tracking the progeny of individual cells. To assess the
clonal dynamics of NSCs, Bonaguidi et al. [8] labeled individual NSCs at the age of
8-12 weeks and evaluated their clonal progeny one month, two months and one year
later. This led to a classification of NSC clones in three categories: quiescent, consisting
of exactly one NSC; activated, including one NSC and at least one additional cell; and
depleted, containing no NSCs.

While tissues consisting of many cells can be modeled using a deterministic approach
based on averaging over the population, modeling of clonal data requires a stochastic
approach taking into account cellular heterogeneity. Therefore, to fit our model to the
clonal data (Figure 3), we made use of the Gillespie method Gillespie [20] to convert
model (2.1) into a corresponding stochastic process.

However, the population-level and clonal dataset cannot be explained simultaneously
but reflect a different dynamics, i.e. requires different parameters to reproduce the two
datasets. Moreover, to simulate the clonal dynamics, it is necessary to additionally
consider a population of resilient NSCs, cells that never become depleted or activated.
The corresponding dynamics of resilient cells is outlined further on when discussing
age-related effects (equation (2.3)). Assuming the existence of such subpopulation,
which accounts for about 10% of all NSCs in a ten weeks old mouse, allows avoiding a
rapid extinction of quiescent clones. Otherwise, the fraction of quiescent clones would
approach zero and consequently the one year time point could not be matched by the
model.

For a detailed description of the model quantification procedure, we refer the reader
to the Materials and Methods section.
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Figure 1: Graphical representation of the proposed model
Quiescent NSCs are either activated to enter the cell cycle and subsequently perform a
symmetric or asymmetric division, or vanish from the NSC pool by a depletion event.
Moreover, cycling NSCs re-enter the quiescent phase after division.

2.2. Aged Stem Cells Spend Longer Time in Quiescence but also
Have a Higher Probability to Become Activated

The age-related decline of the NSC pool is a central characteristic of adult hippocampal
neurogenesis. We asked whether the decline occurs uniformly with age or if the dynamics
of NSCs change during adulthood. In case of a uniform dynamics, NSCs numbers are
expected to drop exponentially, corresponding to a constant decay rate. As outlined in
our previous study [21], the decline of NSC numbers saturates during aging, resulting in
an underestimation of the total number of NSCs at old age (Figure 2e). This indicates
that the dynamics of NSCs changes during aging. Using mathematical modeling, we
evaluate different scenarios for their ability to explain this saturation.

2.2.1. Decreasing Depletion

The depletion process is the integral part of the NSC decline. Without it, the number
of NSCs would not decrease. One possibility to explain the saturation of NSC’s decline
is that the depletion rate of NSCs declines during aging, leading to a decreased fraction
of depleting stem cells at old age. Accordingly, we modify model (2.1) by assuming

q = q(t) = qmaxe
−βqt. (2.2)

As can be seen from Figure 4a, the discussed mechanism is a very good explanation for
the data.

2.2.2. Existence of Resilient NSCs

Our preceding analysis of the clonal data set of Bonaguidi et al. [8] points towards a
possible second population of resilient NSCs, cells that can neither become activated
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Figure 2: GFAP-YFP-Expressing Cells in the DG and Population-Level Dynamics of Hip-
pocampal Neural Stem Cells
(a) & (c) GFAP-YFP-positive cells in 8-weeks-old (a) and 56-weeks-old (c) GFAP-YFP
reporter mice. Scale bar 100 µm.
(b) & (d) Representative confocal images of immunostaining for GFP (green) and S100β
(red). Shown are examples of a GFAP+/S100β− neural stem cell (b) and a GFAP+/S100β+

astrocyte (d). Scale bar 20 µm.
(e) & (f) Fit of the proposed model to the total number of NSCs (e) and the fraction of
BrdU incorporating NSCs (f).
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Figure 3: Fit of the proposed model to the clonal data of Bonaguidi et al. [8]
Results are obtained by simulating 100 NSC clones for 1000 times. Simulation data are
represented as mean (solid black line) and (gray) band containing 95% of all simulated
trajectories. Black error bars correspond to the clonal data.

nor deplete. The additional population cres is implemented with

d

dt
cres(t) = 0,

cres(0)

c0(0) + c1(0)
=

ρ

1− ρ
,

(2.3)

where ρ is the fraction of resilient NSCs on all NSCs at the start of adulthood. However,
the existence of such population in combination with the decline of NSCs leads to
a decrease of the fraction of cycling NSCs (Figure 4b), contradicting the observed
constant fraction of BrdU incorporating NSCs at old age [9].

2.2.3. Lengthening of the Cell Cycle

If NSCs take progressively longer during aging to complete the cell cycle, the number
of stem cells entering the quiescent phase declines with time, leading to a decreasing
net depletion of stem cells residing in quiescence. Accordingly, we assume a decline of
the proliferation rate given by

p = p(t) = pmaxe
−βpt.

A comparison of the suggested mechanism with the data shows a lack of fit, because
lengthening the cell cycle dramatically increases the fraction of cycling NSCs and
alongside the fraction of BrdU incorporating NSCs (Figure 4c).

2.2.4. Increasing Self-Renewal

The saturation of the NSC decline could also indicate that NSCs increase their self-
renewal to counteract the depletion. The corresponding modification takes the form

a = a(t) = amin + αat.

An analysis of this scenario shows that in order to explain our population level data,
NSC numbers would start to increase after about 1 year of age (Figure 4d). However,
this implication contradicts the fact that NSCs and other downstream compartments
such as neural progenitors and immature neurons decline in numbers even at later time
points than one year of age [9, 4].
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Figure 4: Evaluation of different scenarios to explain the saturation of the stem cell de-
cline.
Model fit to the population-level data of Figure 2, assuming (a) a decreasing NSC depletion
rate during aging, (b) an additional population of resilient NSCs, (c) age-related lengthening
of NSC’s cell cycle, (d) that stem cells increase their self-renewal during aging, (e) that stem
cells stay progressively longer in quiescence during aging, (f) that the fraction of activated
stem cells increases during aging.
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2.2.5. Increasing Quiescence

An increase of NSC’s quiescence, corresponding to an age-related lengthening of the
G0 phase, could also explain the decline pattern of NSCs. Since leaving the quiescent
phase is associated with a higher tendency to deplete than to maintain or expand the
pool of NSCs—otherwise it could not be explained why this pool declines—remaining
in quiescence would neutralize the decline. The modification takes the form

q = q(t) = qmaxe
−βqrt

and
r = r(t) = rmaxe

−βqrt.

The justification for these equations is that leaving the quiescent phase c0 is driven
by a joint decay process [22], which consists of activation (with rate r) and depletion
(with rate q). The mean time of NSCs to sojourn in quiescence is thus given by

1

q(t) + r(t)
=

1

qmax + rmax
eβqrt.

However, in order to explain the saturation of NSC’s decline in this scenario, the strong
increase of quiescence reduces the fraction of cycling NSCs (Figure 4e), contradicting
the observation of a constant fraction of BrdU incorporating stem cells up to even 20
months of age [9].

2.2.6. Increasing Activation

Another possibility to explain the saturation of the NSC decline is that the fraction
of quiescent NSCs that become activated per time unit increases during aging. Since
activation is associated with maintenance or expansion of the NSC pool, increasing
activation could counteract the NSC decline at old age. The increasing activation
scenario is implemented with

r = r(t) = rmin + αrt.

However, comparing the above mechanism to our population level data shows that an
increase of activation fails to explain the saturation of NSC’s decline (Figure 4f).

2.2.7. Model Selection

In conclusion, the only biologically plausible scenario by visually comparing the model
fit to the data is that of a decreasing depletion rate. To also evaluate each of the
above model modifications from a statistical perspective, we compute for each scenario
the corresponding Akaike information criterion (AIC) score. This model selection
score quantifies the trade off between the complexity of a model, i.e. number of
parameters, and the goodness of fit to the data [23]. Using this score, the only two
considerable mechanisms besides the decreasing depletion mechanism are the scenario of
increasing self-renewal and the existence of a population of resilient NSCs (see Materials
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Figure 5: Predicted age-related changes of (a) the average time a stem cell stays in the quiescent
phase and (b) the probability a stem cell becomes activated rather than depleted from the
quiescent phase.

and Methods). However, as outlined previously, the former scenario contradicts the
observation of a decline of NSCs and downstream cell types at old age [4], while the
latter contradicts the observation of a constant fraction of BrdU incorporating NSCs
up to 20 months of age [9]. These considerations lead to the conclusion that among
the contemplated mechanisms, the decreasing depletion scenario is the only plausible
explanation for the saturation pattern of the NSC decline.

2.2.8. Biological Interpretation

Only a decreased depletion rate of NSCs is able to reproduce the data without making
biologically implausible predictions. A further quantification of this scenario suggests
that aged stem cells stay longer in the quiescent stage (Figure 5a), but also have a
higher probability of reactivation (Figure 5b). Although the two statements may seem
contradictory, our model assumes that leaving quiescence can be achieved through
activation or depletion. Thus, the latter assertion merely states that the probability of
exiting the quiescent stage through activation versus depletion increases during aging.

Stem Cell Depletion is Driven by Astrocytic Transformation and
Apoptosis
In order to explain the decline of NSC numbers during aging, Encinas et al. [9] suggested
that NSCs deplete by transforming into astrocytes. To test this theory, we counted
the total number of astrocytes during aging to see whether astrocytes accumulate
in the DG due to stem cell depletion. We also checked whether newborn astrocytes
migrate away from the granule cell layer and escape counting. To this end, we used
sparse labeling of Nestin-YFP reporter mice that exclusively marked NSCs within the
subgranular zone. We did not observe any YFP positive cells outside the dentate gyrus
90 days after the last tamoxifen injection. Since we find an increasing progression of the
astrocyte count (Figure 6), we use our model to test whether the increase in astrocyte
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Figure 6: Age-related accumulation of astrocyte numbers. Dashed line represents expected number of
astrocytes, assuming that 100% of the NSC decline is caused by astrocytic transformation.
Solid line results from fitting the fraction of transformation events to the data, indicating
that ∼ 40% of the NSC decline is caused by astrocytic transformation.

numbers corresponds to the observed stem cell decline. For this, we take model (2.1)
together with our best explanation of the saturation of the NSC decline (2.2) and add
a new compartment c2 of astrocytes satisfying

d

dt
c2(t) = θq(t)c0(t). (2.4)

Here, θ ∈ [0, 1] is the fraction of NSC depletion events where depletion occurs via
astrocytic transformation. An estimation of this parameter yields θ = 0.391. Thus,
modeling reveals that astrocytic transformation only partially contributes to about
40% of the stem cell decline. If every NSC (100%) depletes through transformation
into astrocytes, the final astrocytic yield would be much higher than what is observed
(Figure 6). The remaining 60% of the NSC decline are likely a result of apoptosis
and further modeling laid out in the appendix shows that NSC apoptosis is almost
non-detectable due to rapid phagocytosis by microglia [11].

It is also possible that the accumulation of astrocyte numbers can be explained with
a higher transformation probability θ, if additionally astrocytes are allowed to undergo
apoptosis, thus counteracting the total astrocytic yield. We also analyzed this scenario
in the appendix and find that apoptosis cannot account for a higher transformation
probability.

2.3. Upon Dkk1 Deletion, Stem Cells Spend Longer Time in
Quiescence but Are More Likely to become Re-Activated

We apply our quantified model of NSC dynamics to the study of Seib et al. [6], in
which the Wnt antagonist Dickkopf-1 (Dkk1) was deleted in NSCs. The deletion led
to a larger NSC pool that even counteracted the age-related decline [6]. In view of

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2017. ; https://doi.org/10.1101/112128doi: bioRxiv preprint 

https://doi.org/10.1101/112128
http://creativecommons.org/licenses/by-nc-nd/4.0/


published studies [24, 25], we previously hypothesized that NSC numbers expand by
increasing the fraction of self-renewal in response to increased Wnt activity. Now, we
used the developed model to identify the most likely change in cellular dynamics that
explains Wnt-induced expansion of the pool of NSCs.

First, we extend our stem cell model (2.1) including aging effects (2.2) and astrocytic
transformation (2.4) by adding all cell types necessary to simulate hippocampal neuro-
genesis. In particular, we assume that (i) NSCs generate progenitors and astrocytes
via asymmetric divisions [8], (ii) progenitors perform a sequence of symmetric divisions
followed by differentiation into neuroblasts [9] and (iii) neuroblasts undergo apoptosis
as well as neuronal differentiation [11]. Thus, the full model of wild type neurogenesis
is given by the set of equations

d

dt
stemQ(t) = −(r + qmaxe

−βqt) stemQ(t) + 2apstem stemA(t),

d

dt
stemA(t) = r stemQ(t)− pstem stemA(t),

d

dt
progN (t) = −pprog progN (t) + κ2(1− a)pstem stemA(t),

d

dt
progk(t) = 2pprogprogk+1(t)− pprogprogk(t),

d

dt
nblast(t) = 2pprog prog0(t)− (d+ f) nblast(t),

d

dt
nblastA(t) = d nblastA(t)− δphag nblast

A(t),

d

dt
neuron(t) = f nblast(t),

d

dt
astro(t) = θqmaxe

−βqt stemQ(t) + (1− κ)2(1− a)pstem stemA(t),

(2.5)

where stemQ denotes quiescent stem cells, stemA active (cycling) stem cells, progi
progenitors with i remaining divisions (1 ≤ i ≤ N), nblast neuroblasts, nblastA apoptotic
neuroblasts, neuron mature neurons and astro astrocytes.
Next, we use the full model to simulate the protocol of the Dkk1 study (Figure

7a). In the experiment, adult mice were injected with Tamoxifen (TAM) to induce
deletion of Dkk1. Following a 5 week period, BrdU was administered and chased for 24
hours and 4 weeks. The number of BrdU labeled cells among the different populations
following Dkk1 deletion was quantified and compared to numbers in wildtype animals.
In order to explain the effects of Dkk1 deletion, we first reproduced the wild-type

(WT) part of the data using our model. As can be seen from Figure 7b, the model
displays a very good fit to the WT data. Interestingly, a prediction of this fit is that
38% of the neuroblasts mature into neurons and about 62% undergo apoptosis. This
finding is consistent with experimental observations stating that the major part of
immature neurogenic progenitors undergoes apoptosis rather than differentiating into
neurons [11], thus further supporting our modeling approach.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2017. ; https://doi.org/10.1101/112128doi: bioRxiv preprint 

https://doi.org/10.1101/112128
http://creativecommons.org/licenses/by-nc-nd/4.0/


We then focus on explaining the effects of Dkk1 knockout (KO). To model the effects
of Dkk1 deletion, we introduced additional parameters into the wild type model (2.5).
Since Dkk1 was selectively deleted in NSCs, we assume that knockout effects were the
result of changes in the value of stem cell parameters. We thus consider the parameters
a, pstem, qmax and r as possible candidates for being changed upon Dkk1 deletion. In
addition, the data indicates an increased death rate d of neuroblasts after the knockout.
For each candidate parameter

p ∈ {a, pstem, qmax, r, d},

we introduce a change ∆p such that the corresponding wild-type and knockout param-
eters are related via

pKO = (1 + ∆p)pWT.

Hence, ∆p denotes the relative change of the WT parameter p. Moreover, since the
model fit to the WT part of the data is not perfect, instead of considering the KO data
we consider KO effects, defined as the ratio of the KO data to the corresponding WT
data, i.e. KO effect = (KO data)/(WT data).

We then apply statistical measures to analyze different combinations of the candidate
parameters for their plausibility of being altered simultaneously by Dkk1 deletion using
AIC scores. We find that the most plausible explanation of the observed changes is a
decreased depletion rate qmax in combination with increased neuroblast apoptosis d
(Figure 7c). In contrast, statistical analysis shows that alternative scenarios such as
increased NSC self-renewal (Figure 7d) can be discarded as explanation of the KO data
(see Materials and Methods). To quantify the above mentioned explanation of decreased
NSC depletion rate qmax and increased neuroblast apoptosis rate d, we calculate the
average time a stem cell remains quiescent (Figure 7e) and the probability that leaving
quiescence is driven by activation, i.e. cell cycle entry, rather than depletion (Figure
7f). In young individuals, stem cells remain about ten days longer quiescent and have
a 20 percentage points increased activation probability in the case of Dkk1 deletion,
while those differences diminish during aging. Moreover, Dkk1 knockout increases the
probability that neuroblasts undergo apoptosis rather than neuronal differentiation
from about 60% to about 80% (Figure 7g). Interestingly, Dkk1 deletion impacts the
production rate of new neurons (Figure 7h): In young individuals, neuron production is
decreased due to increased NSC quiescence. The latter leads to increased NSC numbers
in old individuals, that in turn results in increased neuron production.
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Figure 7: Evaluation of the Dkk1 Knockout Study [6]
(a) Graphical representation of the experimental protocol
(b) Comparison of the wildtype part of the data and the mathematical model
(c) Observed KO effects versus model, assuming decreased NSCs depletion rate. KO
effects are defined as ratio of the KO data to the corresponding WT data, i.e. KO effect =
(KO data)/(WT data)
(d) Observed KO effects versus the model, assuming increased NSCs self-renewal
(e) Mean time of a stem cell to remain in the quiescent stage. In the case of Dkk1 deletion,
this time is increased.
(f) Age-dependent activation probability of stem cells. In the KO case, NSCs have a higher
activation probability.
(g) Probability of a neuroblast to die rather than maturing into a neuron. In the case of
Dkk1 knockout, a higher fraction of neuroblasts dies.
(h) Production rate of new neurons. Dkk1 deletion alters the number of newborn neurons
and results in higher neuron production at old age.
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3. Discussion
To obtain insights into the control mechanisms of stem cell dynamics and age-related
effects during hippocampal neurogenesis, we have applied an interdisciplinary approach
based on mathematical modeling and experimental data. This approach allows investi-
gating normal and perturbed neurogenesis by quantifying cell dynamics that cannot be
measured experimentally.
Our stem cell model (2.1) was motivated by the experimental observations of

Bonaguidi et al. [8] and subsequently extended combining data on NSCs cell cy-
cle properties [12], astrocytic transformation (newly generated), progenitor dynamics
[9] as well as neuroblast dynamics and phagocytosis [11]. Thus, our modeling framework
integrates data describing neurogenesis on different levels in a coherent manner.

Although the original stem cell model (2.1) can reproduce the available population-
level and clonal data, it should be noted that both datasets reflect different dynamics
corresponding to different cell parameters. There might be several reasons for such
discrepancy. Different morphological and genetic features used to define NSCs may
correspond to distinct sub-populations of stem cells or conversely, to slightly different
differentiation stages within a continuum between a stem cell and a neural progenitor.
In addition, the clonal data account for relatively few cells collected from multiple
individuals. Thus, averaged clonal data as in the case of Bonaguidi et al. [8] could
be biased due to biological variability among animals or certain cell fate choices
stochastically dominating due to the paucity of analyzed clones.

We next addressed for possible mechanisms that can explain the saturation pattern
of the age-related decline in NSC numbers—an observation that confirms previous data
by Encinas et al. [9]. After evaluating several stem-cell features, the only explanation
left is that stem cells spend a progressively longer time in quiescence during aging.
At the same time, a greater fraction of aged NSCs becomes re-activated from the
stem cell pool rather than being depleted. Our reasoning is coherent from a modeling
perspective, since we have ruled out several alternative scenarios.
Another question related to age-related changes during hippocampal neurogenesis

is that of the mechanism leading to the decline of NSC numbers. Here, we were
able to partially confirm the astrocytic transformation hypothesis of Encinas et al.
[9] by observing an age-related accumulation of astrocyte numbers. Mathematical
modeling revealed that these transformation events account for about 40% of the NSC
decline. Interestingly, our calculations showed that even if the remaining 60% of the
decline is caused by NSC apoptosis, detection of apoptotic cells is not possible due to
rapid phagocytosis [11]. Similarly high estimates of apoptosis have been obtained in a
modeling study of neurogenesis based on a stochastic branching process approach [26].

One of the main aims of mathematical modeling is to develop model-based predictions
which can be tested experimentally. Such model validation is an important step within
the scientific method [27]. We thus applied our model to the study of Seib et al. [6],
in which the Wnt inhibitor Dkk1 was deleted. The very good fit to the wild-type
data, which results from accurate simulation of the experimental protocol, confirms
that our model accounts for key aspects of hippocampal neurogenesis. Moreover, the
fitting procedure has led to the prediction that the major part of neuroblasts undergoes
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apoptosis instead of neuronal differentiation, a prediction which has already been
validated [11]. Moreover, we have analyzed multiple scenarios to reveal the effects of
Dkk1 deletion. Originally, Seib et al. [6] hypothesized that Dkk1 knockout increases the
self-renewal of NSCs. This reasoning was based on previous studies showing that Wnt
signaling induces self-renewal of radial glia progenitors in the embryonic brain [25] and
that Wnt ligands were reported to increase the proliferation and self-renewal of NSCs
[28, 29, 30, 24]. However, modeling shows that the only considerable scenario is that
of an increased NSC quiescence in conjunction with an increased probability to exit
the quiescent phase through activation rather than depletion. In contrast, increased
self-renewal of NSCs can not explain the effects upon Dkk1 knockout. The reason for
this is that increasing the self-renewal of NSCs would increase the fraction of quiescent
NSCs on all NSCs, since our model assumes NSCs return to quiescence after division
[8], and alongside a decreased fraction of BrdU positive downstream cell compartments
would be observed. Taken together, our results indicate that regulating the rate of
activation vs. depletion into astrocytes seems to represent a central hub to fine-tune
neurogenesis.
Our study shows that mathematical modeling is a powerful tool to investigate

complex cell systems such as the neurogenic niche of the hippocampus. It is possible
to describe the dynamics of stem cell systems using both deterministic [31, 32, 33] and
stochastic models [34, 35, 16]. While the former usually have the form of linear or
nonlinear differential equations, the latter are of at least two possible kinds. One is the
system of master equations (Chapman-Kolmogorov forward equations if the model is
Markovian), which allow computing probability distributions of the state variables as a
function of time. If it is desirable to obtain longitudinal information, i.e. information
concerning the possible time trajectories of the process, the most common practical
solution is simulation. A fusion of deterministic and stochastic simulation approaches,
as conducted in this study by employing the Gillespie algorithm [20], is very effective
to integrate population-level and single cell-level data. The initial deterministic stem
cell model consists of linear differential equations, featuring constant rates. Such linear
models have been successfully applied before to processes close to homeostasis [36]
or uncontrolled growth in cancer [37, 33]. In our case, using a linear model allowed
identifying time-dependent parameters necessary to explain age-related changes during
neurogenesis. This, in turn, suggests which parameters are subject to a nonlinear
regulation.

4. Materials and Methods

4.1. Animals
GFAP-CreERT2-YFP and Nestin-CreERT2-YFP reporter mice were housed in the
animal facilities of the German Cancer Research Center (DKFZ) at a 12 h dark/light
cycle with free access to food and water. All animal experiments were performed in
accordance with the institutional guidelines of the DKFZ and were approved by the
Regierungspräsidium Karlsruhe, Germany.
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4.2. Tamoxifen and BrdU Administration
GFAP-CreERT2-YFP mice received an intraperitoneal (i.p.) Tamoxifen (Sigma; T5648)
injection (40 mg/kg) twice a day (morning and evening), for 5 consecutive days. Two
days after Tamoxifen treatment, a single shot BrdU (Sigma; B5002; 150 mg/kg) was
i.p. injected and mice were sacrificed two hours later.

4.3. Long-Term Tracing of NSC-Derived Astrocytes
Nestin-CreERT2-YFP reporter mice received Tamoxifen injections as described above
and were sacrificed 90 days after the last injection. Thereafter the presence of YFP
labeled cells outside the hippocampal region was examined. We did not find any YFP
positive cells outside the DG granule cell layer.

4.4. Tissue Preparation and Staining
Animals were perfused with 1×HBSS (Gibco; 14170-088) and 4% PFA (Carl Roth;
P087.1). Subsequently the brain was postfixed overnight in 4% PFA and tissue was cut
in 50 µm thick coronal brain slices using a Leica VT 1200S vibratome.

4.5. Immunohistochemistry
For each animal, six 50 µm thick coronal brain sections (250 µm distance between
sections) were washed four times, 10 minutes in TBS at room temperature, blocked for
one hour in TBS containing 3% horse serum (Millipore; S9135) and 0.3% Triton X-100
(Sigma; 9002-93-1) at room temperature, followed by an overnight staining at 4°C in
TBS containing 3% horse serum and 0.3% Triton X-100 with the following primary
antibodies: rat anti BrdU (Abcam; ab6326), chicken anti GFP (Aves; GFP-1020),
mouse anti S100β (Abcam; ab66028) and rabbit anti Tbr2 (Abcam; ab23345). The next
day, brain sections were washed four times, 10 minutes in TBS at room temperature,
blocked for 30 minutes TBS containing 3% horse serum and 0.3% Triton X-100 at room
temperature and stained for two hours in TBS containing 3% horse serum and 0.3%
Triton X-100 at room temperature with the following secondary antibodies: donkey
anti rat 405 (Abcam; ab175670), donkey anti chicken 488 (Jackson ImmunoResearch;
703-545-155), donkey anti mouse 549 (Jackson ImmunoResearch; 715-507-003) and
donkey anti rabbit 647 (Jackson ImmunoResearch; 711-605-152). Afterwards sections
were washed four times, 10 minutes in TBS at room temperature and mounted on glass
slides.

4.6. Imaging and Quantification
For each dentate gyrus, confocal z-stacks (2 µm distance between images) were acquired
with a Leica TCS-SP5 confocal microscope with a 20x oil immersion objective and a
resolution of 1024× 1024 at 100 Hz. Obtained images were analyzed using the ImageJ
Cell Counter Plugin to manually count and mark single cells of different cell types.
Different cell populations were defined using the following marker combinations: Neural
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stem cells (YFP+/S100β−/Tbr2−), astrocytes (S100β+/Tbr2−), and cycling cells that
gained the marker BrdU by retaining their markers described above. Determined cell
numbers were quantified as number of cells per cubic millimeter in the DG granule cell
layer. The DG volume was calculated by the area of the DG on the central image of
the z-stack (measured with ImageJ), multiplied with the z-stack size.

4.7. Mathematical Modeling
4.7.1. Quantification

The stem cell model (2.1) contains four parameters p, q, r and a. The value of the
proliferation rate p can be inferred from the literature [12], since the length of the cell
cycle of NSCs was measured as

Tc = 22.8 h

and we can interpret this value as the doubling-time of an exponential growth process,
leading to

p = log(2)/Tc. (4.1)

For the fraction of self-renewal a we assume that 2a− 1, the corresponding probability
of a division being symmetric [21], is 5%. We justify this choice of a with the suggestion
of Bonaguidi et al. [8] that the fraction of symmetric NSC divisions on all divisions is
relatively small. A different value of a does not affect the drawn conclusions.
The remaining two free parameters q and r are estimated from the population

level data of the total number of stem cells (Figures 2e) and the fraction of BrdU
incorporating stem cells (Figure 2f). To fit the BrdU incorporation data, we use that
the fraction of BrdU incorporating NSCs is the product of the fraction of cycling NSCs
on all NSCs times the relative length of the S-phase in the cell cycle, Ts/Tc, with
Ts = 9.7 h [12]. The reason is that the thymidine analog BrdU can only be incorporated
in cells which are in the stage of DNA synthesis.
In the case of estimating q and r from the clonal data (Figure 3), the model was

converted a into corresponding stochastic processes using the Gillespie method [20].
Afterwards, 100 NSC clones were simulated for 1000 times and the resulting mean
fraction of quiescent, activated and depleted clones was fitted to the clonal data.
In general, model fitting was performed using the NonlinearModelFit procedure

of Mathematica 9 to numerically minimize the weighted sum of squared residuals.
Weights were chosen as inverse squares of the data points standard error of the mean
according to the Mathematica documentation for fitting data with measurement errors.
Estimated parameters for the stem cell model are summarized in the Table 1.
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Table 1: Estimated parameters of model (2.1). Data type indicates whether the model was fitted to
the population-level data (Figures 2e and 2f) or the clonal data (Figure 3).

Data Type Parameters

Population-level q = 0.021 d−1

r = 0.021 d−1

ρ = 0

Clonal q = 0.0057 d−1

r = 0.047 d−1

ρ = 0.11

The full neurogenesis model (2.5) contains 12 parameters, of which 9 are already
estimated or taken from the literature (Table 2). The parameters κ, d and f are not
known prior to the Dkk1 experiment and need to be inferred from fitting the full model
to the WT part of the data.

Table 2: Parameter values of system (2.5), which is used to model the Dkk1 experiment of Seib et al.
[6].

parameter value source

pstem log(2)/(22.8 h) Brandt et al. [12]
qmax 0.0431 d−1 Table 4
r 0.0198 d−1 Table 4
βq 0.009 21 d−1 Table 4
a 0.525 Bonaguidi et al. [8]
θ 0.391 Figure 6

pprog log(2)/(15.6 h) Appendix 1 Figure S2
N 2 Appendix 1 Figure S3
δphag 0.66 h−1 Sierra et al. [11]

Estimating the unknown parameters κ, d and f leads to the values displayed in Table
3. As previously stated, the resulting fraction of surviving neuroblasts,

f

d+ f
≈ 38%,

is consistent with experimental findings [11].
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Table 3: Estimated parameters of the full neurogenesis model (2.5) as a result of fitting the WT part
of the Dkk1 data [6].

parameter value

κ 0.717
d 0.026 d−1

f 0.015 d−1

4.7.2. Model Selection

To assess the plausibility of the different scenarios to explain the saturation of the
NSC decline, we make use of model selection theory. For each scenario, we compute its
corresponding AIC value and compare the resulting Akaike weights ∆ (Table 4), which
penalize overly complex models. The recommendation is that the level of empirical
support of a certain model is substantial if 0 ≤ ∆ ≤ 2, considerably less, if 4 ≤ ∆ ≤ 7
and essentially none, if ∆ > 10 holds [23]. Thus, the only two considerable mechanisms
besides the decreasing depletion mechanism are the scenario of increasing self-renewal
and the existence of a population of resilient NSCs (Table 4). However, as outlined
previously, the former scenario contradicts the observation of a decline of NSCs and
downstream cell types at old age [4], while the latter contradicts the observation of a
constant fraction of BrdU incorporating NSCs up to 20 months of age [9].
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Table 4: Parameters estimated during the analysis of different mechanisms to explain the saturation
of the NSC decline. AICc is the small sample size corrected Akaike information criterion and
∆AICc the corresponding Akaike weight, i.e. the difference to the smallest AICc value.

Mechanism Parameters R2 AICc ∆AICc

Decreasing depletion qmax = 0.043 d−1

r = 0.020 d−1

βq = 0.0092d−1

0.915 242.26 0

Resilient population q = 0.021 d−1

r = 0.026 d−1

ρ = 0.035

0.909 245.96 3.7

Cell cycle lengthening q = 0.020 d−1

r = 0.027 d−1

βp = 0.019 d−1

0.909 246.26 4

Increasing self-renewal q = 0.026 d−1

r = 0.019 d−1

αa = 0.0022 d−1

0.907 247.22 5

Increasing quiescence qmax = 0.031 d−1

rmax = 0.038 d−1

βqr = 0.0071 d−1

0.903 249.62 7.4

Increasing activation q = 0.011 d−1

rmin = 0.019 d−1

αr = 4.5 ×
10−6 d−1

0.865 267.59 25.3
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To find the best explanation for the effects upon Dkk1 KO, we employ a nested
approach by considering simple, i.e. few parameters involving, explanations as well as
more complex scenarios (Table 5). At first, we assume that only one of the stem cell
parameters a, pstem, qmax or r and in addition the neuroblast death rate d changes. The
best fit to the data is achieved by a decrease of the depletion rate qmax or an increase
of the activation rate r. In contrast, the scenario of increased self-renewal a displays a
considerably worse fit. The decreased depletion and increased activation scenario both
lead to a shift of the balance between NSC activation and depletion towards a higher
fraction activation events. We thus also consider a scenario in which both parameters,
qmax and r change simultaneously and find that it improves the fit. It is also possible
that all NSC parameters change, resulting in an even better fit.

Although the fit improves with an increasing number of parameters, we again compute
AIC values to assess if the increased goodness of fit justifies the additional complexity
of the model. Applying the previously mentioned recommendation of 0 ≤ ∆ ≤ 2,
scenarios leading to the discussed shift of the balance between NSC activation and
depletion towards a higher fraction activation events should be considered first (Table 5).
Moreover, the originally suggested increased self-renewal [6] of NSCs can be disregarded
to explain the effects of Dkk1 deletion.

Table 5: Estimated changes of WT parameters to account for the Dkk1 KO effects. ∆AICc denotes
the Akaike weight of the respective model corresponding to the small-sample-size corrected
Akaike information criterion (AICc).

∆a ∆pstem ∆qmax ∆r ∆d R2 AICc ∆AICc

.20 – – – .69 .860 280.0 28.8
– -.20 – – .75 .819 292.9 41.7
– – -.52 – 1.46 .922 251.2 0
– – – .45 1.50 .915 255.0 3.8
– – -.41 .092 1.49 .922 253.2 2

.055 -.18 -.09 .31 1.39 .924 257.1 6
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Supplementary Information

A. Astrocytic Transformation
We want to give an explanation for the claim that NSC apoptosis is almost non-
detectable in the case of 1− θ = 60.9% of the NSC decline resulting from apoptosis.
Consider the stem cell model (2.1) including aging effects (2.2). To model the dynamics
of NSC apoptosis, we add a new compartment cA accounting for apoptotic, i.e. biologi-
cally dead but physically present stem cells. The dynamics of NSCs at a certain age τ
is thus given by

d

dt
c0(t) = −(r + q(τ))c0(t) + 2apc1(t),

d

dt
c1(t) = rc0(t)− pc1(t),

d

dt
cA(t) = (1− θ)q(τ)c0(t)− δphagcA(t),

where δphag is the rate at which apoptotic cells are cleared via phagocytosis within, on
average, 1/δphag = 1.5 h [11]. At the age of τ = 2 months, there are about n0 = 10000
NSCs in the entire dentate gyrus [9] and the number of apoptotic NSCs can be
calculated by that number times the steady state fraction of apoptotic NSCs on all
NSCs. Accordingly, there are

n0 · lim
t→∞

cA(t)

c0(t) + c1(t) + cA(t)
= 9.3

apoptotic stem cells in the entire dentate gyrus. Considering the usual sampling fraction
of one sixth of the DG, there only remain about two apoptotic stem cells to be detected.

To analyze the scenario that the accumulation of astrocytes could be explained with
a higher transformation rate θ if in addition astrocytes are allowed under go apoptosis,
we consider the modified dynamics

d

dt
c2(t) = θq(t)c0(t)− d2c2(t),

where d2 is the death rate of astrocytes. Estimating θ and d2 simultaneously yields
θ = 0.392 and d2 = 2.6× 10−6 d−1, showing that there is no justification for such
scenario. In addition, assuming θ = 1 and only estimating d2 results in an AICc score
of 178.9, which compared to the AICc of 144.7 for the no-apoptosis model further
indicates that there is no support for this scenario from a model selection viewpoint.

B. Dynamics of Progenitor Cells
To model the dynamics of progenitor cells, we again make use of the study of Encinas
et al. [9]. We consider the data set in which the authors label dividing cells with
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Figure S1: Time course of the dynamics of neural progenitor cells. Two months old mice were injected
with BrdU and sacrificed at several time points after injection. Depicted is the number of
BrdU positive progenitor cells. Data is reproduced from the publication of Encinas et al.
[9].

BrdU and track the number of BrdU labeled progenitors (Appendix 1 Figure S1).
Because of the rapid increase and subsequent decrease of labeled cells, they concluded
that progenitors perform a series of symmetric self-renewing divisions, followed by
subsequent transformation into neuroblasts.
We model the dynamics of progenitors with the equations

d

dt
Pk(t) = 2pPk+1(t)− pPk(t),

d

dt
PN (t) = −pPN (t)

(B.1)

for k = 0, . . . , N − 1. Here, Pi is the number of progenitor cells with i remaining
divisions and p > 0 is the proliferation rate. Moreover, we assume that at the start of
the experiment, all progenitors have N remaining divisions, i.e. PN (0) = n for some
n > 0 and Pk(0) = 0 for k 6= N .

For quantifying p, we consider the corresponding cell cycle length tc, which is linked
to p via (4.1). The cell cycle length of progenitor cells has been measured in different
studies, however with contrasting results ranging from 12− 14 h to about 22 h [38, 39].
We thus employ an unbiased approach for quantification by assuming different cell
cycle lengths tc and compute the R2 of the fit dependent on N , the maximum number
of progenitor divisions (Appendix 1 Figure S2).
The best fit can be obtained for N = 2, 3 or 4, but only N = 2 allows for a cell

cycle length in the range of what is experimentally observed with the maximum R2

at tc = 14.4 h. To achieve a better compromise between our model assumption and
the measured cell cycle lengths, we relax the condition of an optimal R2. A visual
assessment of the fit shows that R2 = 0.95 provides a reasonable fit to the data. For
N = 2, the maximal tc for which R2 = 0.95 can be achieved is tc = 15.6 h (Appendix 1
Figure S3), which we assume for our subsequent analysis.
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Figure S2: Goodness of fit of the progenitor model (B.1) to the data displayed in Appendix 1 Figure
S1. The R2 is calculated solely from the first five time points of the data, which capture
the rapid rise and fall of progenitor numbers.

0 50 100 150 200

0

200

400

600

800

1000

time @hD

ð
o

f
p

ro
g

e
n

it
o

rs

Figure S3: Fit of the progenitor model (B.1) to the data of Appendix 1 Figure S1, assuming N = 2
progenitor divisions and a cell cycle length of tc = 15.6 h.
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