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ABSTRACT 
Enhancers are DNA regulatory elements that influence gene expression. There is 
substantial diversity in enhancers’ activity patterns: some enhancers drive expression in a 
single cellular context, while others are active across many. Sequence characteristics, 
such as transcription factor (TF) binding motifs, influence the activity patterns of 
regulatory sequences; however, the regulatory logic through which specific sequences 
drive enhancer activity patterns is poorly understood. Recent analysis of Drosophila 
enhancers suggested that short dinucleotide repeat motifs (DRMs) are general enhancer 
sequence features that drive broad regulatory activity. However, it is not known whether 
the regulatory role of DRMs is conserved across species. We performed a comprehensive 
analysis of the relationship between short DNA sequence patterns, including DRMs, and 
human enhancer activity in 38,538 enhancers across 411 different contexts. In a machine-
learning framework, the occurrence patterns of short sequence motifs accurately 
predicted broadly active human enhancers. However, DRMs alone were weakly 
predictive of broad enhancer activity in humans and showed different enrichment patterns 
than in Drosophila. In general, GC-rich sequence motifs were significantly associated 
with broad enhancer activity; consistent with this enrichment, broadly active human TFs 
recognize GC-rich motifs. Our results reveal the importance of specific sequence motifs 
in broadly active human enhancers, demonstrate the lack of evolutionary conservation of 
the role of DRMs, and provide a computational framework for investigating the logic of 
enhancer sequences. 
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INTRODUCTION 
Enhancers are DNA regulatory elements distal to promoters that bind transcription 
factors (TFs) to drive tissue-specific gene expression. They control patterns of gene 
expression during development, allowing diverse tissues to differentiate from a single cell 
and continue functioning properly in maturity (1,2). Because enhancers play a central role 
in regulating essential transcriptional programs, genome-wide association studies 
(GWAS) often implicate non-coding variation in enhancer regions as associated with risk 
for numerous complex diseases (3,4). Several in-depth experimental analyses of loci 
identified by GWAS have revealed that the causal mutations in these regions disrupt 
enhancer activity (5-8). However, the function of many of these variants is unknown, and 
it can be unclear in what cell types they alter activity. Better understanding of how 
enhancer sequences drive activity patterns across cellular contexts would enable more 
accurate interpretation of the effects of non-coding mutations. 
 Enhancers harbor binding motifs recognized by TFs; thus the information 
encoded in enhancer sequences provides valuable information about regulatory 
specificity (2,9). Technological advances in high-throughput sequencing have enabled the 
development of genome-scale assays to identify sequences with putative enhancer 
activity. Several large-scale efforts have applied methods such as chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) (10), identification of DNaseI-
hypersensitive sites (DHS) via sequencing (DNase-seq) (11), and identification of 
enhancer RNA (eRNA) transcription via cap analysis of gene expression (CAGE) (12) to 
map putative enhancers over many tissues and cell lines (13-16).  

Analyses of these and smaller-scale enhancer datasets have enabled identification 
of the unique sequence and chromatin properties of enhancers active in different tissues, 
which can then be used to predict enhancers in other contexts (17-19). Indeed, enhancer-
finding algorithms based solely on sequence information have successfully predicted 
active enhancers in many tissues (20-24). These algorithms usually perform better than 
enhancer-finding algorithms built only on the occurrence profiles of known TF motifs, 
suggesting that the algorithms detect previously unidentified functional sequence 
characteristics that, if interpreted, could fill gaps in current knowledge about TF binding 
specificities and other enhancer sequence properties. For example, a recent study 
proposed a model in which short repetitive sequences—dinucleotide repeat motifs 
(DRMs)—promote general enhancer activity and play an essential role in driving broad 
enhancer activity across many cell types (16). In spite of these successes, we still lack a 
comprehensive understanding of how enhancer sequences drive their activity across 
tissues and development.  
 In this study, we comprehensively analyzed the of ability of short DNA sequence 
patterns, including DRMs, to predict the breadth of activity of tens of thousands of 
human enhancers across hundreds of human tissues. First, we computed the enrichment 
of DRMs among broadly active enhancers, and unlike in Drosophila, we consistently 
observed significant enrichment of GC DRMs and depletion of TA DRMs. To evaluate 
the ability of DRMs to predict broadly active enhancers, we trained a support vector 
machine (SVM) classification algorithm on the occurrence patterns of DRMs. In further 
contrast to results in Drosophila, we found that DRMs alone were only weakly predictive 
of broadly active enhancers versus context-specific enhancers or random regions from the 
genomic background. However, when trained on all possible 6-bp sequences, the 
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algorithm could readily distinguish between broadly active, context-specific, and 
genomic background regions. The 6-mer sequence patterns most enriched—and therefore 
most predictive—of broadly active enhancers were GC-rich, suggesting that DRM 
contributions to enhancer activity are part of a larger trend seen among other 6-mers that 
is driven by GC content. Furthermore, we show that broadly active human TFs are more 
likely to bind GC-rich sequences than tissues-specific TFs. Thus, we conclude that, 
DRMs are not unique drivers of human enhancer activity, but broadly active human 
enhancers exhibit distinct sequence properties.  
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METHODS 
Enhancer Data 
We focused our analyses on enhancers identified by CAGE from the FANTOM 
Consortium across 411 different tissues and cellular contexts, which by definition 
exclude regions near known transcription start sites and exons of mRNAs (both protein-
coding and noncoding) and lncRNAs (13). We subdivided their 38,538 robust enhancers 
based on the number of contexts in which an enhancer was found to be active. We 
defined the top 5% most active enhancers as the “broadly active” set; this corresponded 
to enhancers with activity in greater than 45 contexts. 

We generated several sets of random non-enhancer regions for each enhancer set, 
using shuffleBed (25) to obtain length-matched regions for each input set of genomic 
regions. We also generated negative regions matched on GC content and chromosome as 
well as length using a custom script. We excluded locations in the positive set as well as 
all enhancers from the full permissive CAGE enhancer dataset (43,011 total sequences), 
ENCODE blacklist regions, genome (hg19) assembly gaps, and experimentally verified 
VISTA enhancers (downloaded in March 2014) (26) from the negatives. Further 
excluding regions near known transcription start sites and exons in addition did not 
materially change overall prediction performance (Figure S1), and there was a strong 
correlation between the weights assigned each 6-mer between the two classifiers 
(Spearman’s ρ = 0.91, p ≈ 0), suggesting that they learned similar models of sequence. 

To enable comparison with the fold enrichment analyses carried out by Yáñez-
Cuna et al. (2014), we analyzed two additional human enhancer sets. We obtained DNase 
I hypersensitivity peaks and enhancer-associated histone modification data (15) from 
ENCODE (https://genome.ucsc.edu/ENCODE). Using intersectBed (25), we defined 
13,069 broadly active DHS peaks found in at least 120 cell types, and 1,449 regions 
containing both H3K27ac and H3K4me1 marks that were active in at least 10 cell lines: 
GM12878, H1hesc, Hmec, Hsmm, Huvec, K562, Nha, Nhlf, Nhek, and Osteoblast. We 
also filtered both sets to exclude regions overlapping CpG islands from the CpG Islands 
track in the UCSC Genome Browser. Many of the DHS peaks are expected to be 
enhancers, but this set includes other regulatory regions as well. We generated matched 
negative regions for these sets using the criteria described above for CAGE enhancers.  
	
DRM Definition and Identification 
We searched for DRMs using PWMs with probability of one for the appropriate 
nucleotide in each position: CACACA, GAGAGA, GCGCGC, and TATATA. We 
identified and counted DRM occurrences using the python package MOODS, which 
searches input DNA sequences on both strands for occurrences of motifs defined by 
PWMs (27,28), with a pseudocount of 0.001 and a match cutoff of P < 1/1024. 
Considering both strands meant that instances of the GC and TA repeats were counted 
twice, as they are their own reverse complements. We used the human genomic 
nucleotide frequencies for the background probabilities when calculating match scores 
and P-values, since the human genome is 42% GC.  

We settled on these parameters after evaluating different combinations of 
thresholds and background frequencies with respect to the number and sequence diversity 
of DRMs we found. Using P < 1/4096 resulted in no perfect matches to the TA DRM 
passing the significance threshold, due to the higher genomic background frequency of 
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TA bases (Figure S2). Thus, we chose P < 1/1024 as it minimized the number of inexact 
matches included, while still allowing all perfect matches to pass the cutoff. Results were 
similar when identifying only exact matches (Figure S3). We explicitly controlled for 
length in most analyses, because length is positively associated with activity in the 
FANTOM dataset. This step was unnecessary for relative fold enrichment analyses, as we 
compared relative occurrences in length-matched positive and negative sets.  
 Our parameters for defining DRMs differ from those used in the previous study, 
where they assumed an equal background probability for each nucleotide and used a 
PWM match cutoff of P < 1/256 (16,29). In addition, we used an invariant CA repeat 
motif, rather than the more variable motif inferred from STARR-seq data (Figure S2). 
We believe that considering the background human genome nucleotide frequencies is 
necessary, due to the non-uniform GC content genome-wide and in enhancers. We also 
chose to use a stricter threshold (P < 1/1024) for identifying matches to DRM motifs, 
because lower thresholds, such as 1/256, allowed many diverse, non-repetitive motifs to 
match. This is a partial cause of the lower DRM density we observed compared to Yáñez-
Cuna et al. (2014). Additionally, using invariant motifs of consistent length and 
information content for all four DRMs facilitated direct comparison of the results for 
different DRMs. We felt that these settings best captured the notion of a “dinucleotide 
repeat motif.” Other than these differences, the parameters used were the same as in 
Yáñez-Cuna et al. as best as we could determine.  
 
Fold Enrichment Analyses 
We calculated motif fold enrichment by dividing the mean count of the occurrence of the 
sequence in question for the enhancer set by that in the negative set, which was either the 
matched non-enhancer regions from the genomic background or the context-specific 
enhancers. When we were comparing enhancers to genomic backgrounds, we analyzed 
four independent negative sets separately, and then plotted the mean and standard 
deviation. P-values were calculated for the distribution of counts in broadly active 
enhancers vs. a negative set by the Wilcoxon rank sum test. 
 
Enhancer Prediction 
To predict whether occurrence patterns of short DNA sequence motifs were sufficient to 
distinguish broadly active enhancers from the genomic background and from context-
specific enhancers, we trained 6-mer spectrum kernel SVMs (30). The spectrum kernel is 
a string kernel that defines the similarity of two DNA sequences based on the occurrence 
of all possible short DNA sequence patterns of a given length, k, within them. We 
computed the weight given to each possible 6-mer by each SVM (31) and averaged the 
weights across training runs vs. four independent negative sets. For predictions using 
DRMs, we used the counts per base pair for each DRM as training features. To predict 
enhancers based on counts of motifs of known transcription factors, we used position 
weight matrices (PWMs) from the JASPAR 2016 vertebrate database (32) to count the 
occurrences of each motif in our genomic regions using FIMO under default settings 
(33). We then used the motif counts per base pair as features for the classifier. 

Performance of all SVM classifiers was evaluated using 10-fold cross-validation, 
which limits overfitting by only training the classifier on a subset of the data at any given 
time. Receiver Operator Characteristic (ROC) and Precision Recall (PR) curves were 
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calculated by averaging over the 10 cross-validation runs. All SVM analyses were 
performed using the SHOGUN Machine Learning Toolbox v4.0.0 (34). For the 
predictions of broadly active regions versus context-specific regions, we took a random 
subset of the larger set to maintain the number of regulatory regions considered across 
analyses. We controlled for length differences by expanding or contracting enhancers in 
each set to be 600 bp long while maintaining their original centers. 
 
Transcription factor binding motif and expression analysis 
We obtained transcription factor binding motifs from the JASPAR 2016 vertebrate 
database (32). We obtained tissue specificity scores (TSPS) for 332 TFs from the 
FANTOM Consortium (35). A TF with uniform expression across all tissues is assigned a 
TSPS equal to zero, while a TF expressed in only a single tissue receives a maximum 
TSPS of ~5. Following the original analysis of TSPS, we classified 157 TFs as “specific” 
(TSPS ≥ 1) and 175 as “broad” that are expressed in a wider range of contexts (TSPS < 
1). We compared the motif GC content distributions of the specific and broadly expressed 
TF groups using the Wilcoxon rank sum test.  
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RESULTS 
 
DRMs are enriched (GC) and depleted (TA) in human enhancers, but the patterns 
do not match those in Drosophila 
Recent work in Drosophila suggested that DRMs are a general feature of enhancers and 
that presence of many DRMs in an enhancer is a main driver of broad regulatory activity 
across diverse tissues (16). To test the hypothesis that high DRM occurrence drives broad 
enhancer activity across tissues in humans (16), we analyzed sequence patterns in 
putative enhancers across diverse human cells and tissues. We considered 38,538 
transcribed enhancers identified via CAGE for 411 contexts by the FANTOM consortium 
(13). We defined the 1961 enhancers in the top 5% of the breadth of activity distribution 
(active in more than 46 contexts) as broadly active. 

As a first step in investigating the contribution of DRMs to human enhancer 
activity, we computed the relative enrichment of DRMs in broadly active enhancers 
compared to context-specific enhancers and length-matched background regions using 
position weight matrices (PWMs). Drosophila enhancers exhibit enrichment for all 
DRMs except TA, and also show a positive association between DRM frequency and 
breadth of activity most strongly with GA and CA repeats, and GC to a lesser extent. 
Thus, under the Drosophila DRM model, we would expect CA, GA, and GC DRMs to be 
enriched in broadly active human enhancers compared to the other sets.  

In humans, the CA, GA, and GC DRMs were all significantly enriched in broadly 
active enhancers compared to the genomic background (Figure 1A; P = 4.1E–16, P = 
2.0E–14, and P < 2.2E–16, respectively). However, the magnitude of the enrichments for 
CA (1.2x) and GA (1.7x) were modest compared to GC (11.8x), and when compared to 
context-specific enhancers, significant enrichment remained only for the GC DRM 
(Figure 1B). The TA DRM, on the other hand, was significantly depleted compared to 
both the genomic background (–3.9x, P = 3.0E–7) and context-specific enhancers (–2.9x, 
P = 2.2E–16). 

Furthermore, GC DRM density (DRM/bp) significantly increased as breadth of 
activity increased (Figure S4; Spearman’s ρ = 0.12, P ≈ 0), indicating that this is a 
general trend across enhancers. Similarly, TA DRM density significantly decreased with 
breadth of activity (Spearman’s ρ = –0.020; P = 9.72E-05). There was not a significant 
trend for GA and CA DRMs (Figure S4). 
 To confirm that the observed trends in DRM patterns were not unique to the 
transcribed enhancers defined by CAGE, we also analyzed DRM patterns in a “histone-
derived set” of 1,449 enhancers, consisting of regions with overlapping H3K4me1 and 
H3K27ac histone marks from 13 contexts (36), and a “DHS set,” of 13,069 DNaseI 
hypersensitive peaks across 126 contexts from ENCODE (15). The DRM enrichment 
patterns were similar in these enhancer sets to those observed for CAGE enhancers: GC 
was significantly enriched and TA significantly depleted (Figure S5).  

The majority of the broadly active histone-mark-defined enhancers contained at 
least one DRM (Figure S5); this is in contrast to their relative rarity in the CAGE and 
DHS sets. The increased counts are likely due to the greater length (and presumably 
lower resolution) of the histone-derived set: average enhancer length of 5,797 bp vs. 200 
and 297 bp for the DHS and CAGE sets, respectively. In contrast, the Drosophila 
enhancers were 500 bp long and had median DRM counts between 1 and 6, which is 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2017. ; https://doi.org/10.1101/111955doi: bioRxiv preprint 

https://doi.org/10.1101/111955
http://creativecommons.org/licenses/by-nc-nd/4.0/


more similar to the histone set despite being an order of magnitude smaller (16,37).  
Overall, DRM patterns in human enhancers do not match the patterns observed 

for Drosophila enhancers. However, it is possible that DRMs in general maintain 
importance in driving broad enhancer activity between these diverse species, but the 
specific motifs are not conserved. 
 
DRMs alone are weakly predictive of broadly active human enhancers 
To directly evaluate the ability of DRMs to identify broadly active human enhancers, we 
used a support vector machine (SVM) learning framework (17). We trained a linear SVM 
classifier to distinguish broadly active enhancers from context-specific enhancers and the 
genomic background using patterns of DRM occurrence. Using only DRM counts as 
features yielded poor performance at each classification task (Figures 2A and S6A). We 
first trained the SVM to distinguish broadly active enhancers from a set of length-
matched genomic background regions that excluded all putative enhancers, gaps in the 
genome assembly, and ENCODE blacklist regions (Methods). In 10-fold cross validation, 
the classifier achieved an area under the receiver operating characteristic curve (ROC 
AUC) of 0.61 and a precision recall (PR) AUC of 0.64. Enhancers are known to have 
greater GC content compared to the genomic background (mean 46% vs. 42%), so to 
determine whether DRM sequence patterns held predictive value independent from 
overall GC content, we repeated the previous analysis training the classifier on negative 
training sets generated from random background regions matched to broadly active 
enhancers for both length and GC content. This classifier had a drop in PR AUC 
compared to the non-GC-matched classifier (ROC AUC = 0.55, PR AUC = 0.54), 
suggesting that GC content was important for some for the predictive ability of DRMs. 
 Next, we evaluated the ability of DRMs to distinguish broadly active enhancers 
from 1961 context-specific enhancers (Figure 2A). Since the context-specific enhancers 
were shorter on average (Figure S7), we controlled for length by expanding or 
contracting all enhancers in both sets to be 600 bp long, approximately the mean length 
of the most active enhancers. This DRM-based classifier trained vs. context-specific 
enhancers had a ROC AUC of 0.56 and PR AUC of 0.61. Because DRMs were rare in 
broadly active enhancers (median occurrence of zero for all DRMs; Figure 2B), the poor 
performance of the DRM-based SVM is not surprising. This suggests that DRMs are not 
major drivers of enhancer activity in humans.  
 
Comprehensive analysis of short DNA sequence motif occurrence accurately 
identifies broadly active human enhancers 
Given that DRMs by themselves were only weakly predictive of broadly active human 
enhancers, we evaluated the ability of additional short DNA sequence motifs to predict 
the breadth of enhancer activity. Using the occurrence patterns of all 4,096 possible 6-
mers in the enhancer sequence as features in a spectrum kernel SVM (30), we repeated 
the classifications performed for the DRMs. The classifier trained on broadly active 
enhancers vs. random background regions performed very well (Figure 3A; ROC AUC = 
0.93, PR AUC = 0.92). When classifying GC-matched regions, the performance of this 
classifier decreased, but was still strong (Figure 3A; ROC AUC = 0.87, PR AUC = 0.86). 
Furthermore, the classifier performed as well at distinguishing between broadly active 
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and context-specific enhancer classes as it did distinguishing broadly active enhancers 
from genomic background (Figures 3A and S6B; ROC AUC = 0.87, PR AUC = 0.88). 

To test whether considering all possible 6-mers increased performance compared 
to using current knowledge of TF binding preferences, we evaluated the performance of 
classifiers trained using counts of matches to 332 known TF binding motifs. All three 
classifiers performed slightly worse in these analyses than when considering all 6-mers 
(Figure 3A vs. 3B); however, the difference was most pronounced when distinguishing 
broadly active enhancers from context-specific enhancers (Figures 3B and S6C; ROC 
AUC = 0.84, PR AUC = 0.85).Thus, limiting the training features to current knowledge 
of TF specificity modestly decreased performance.  

Since the relative performance of the classifiers indicates that DRMs only 
contribute modestly to enhancer sequence activity patterns, we evaluated their 
contribution to human enhancer activity in the context of all possible 6-mers (Figure 1C). 
The enrichment of the GC DRM in broadly active enhancers was more than two standard 
deviations (SDs) above the mean over all 6-mer enrichments for all three comparisons. 
The TA DRM was more than 1 SD less than the mean for the broadly active enhancers 
vs. genomic background and context-specific enhancers (Figure 1C). The CA and GA 
DRMs were both within 1 SD of the mean for all three comparisons.This suggests that 
the GC DRM, and to a lesser extent the TA DRM are enriched and depleted, respectively, 
in broadly enhancers compared to the enrichment of 6-mers in general. Despite this 
enrichment, the rarity of DRMs in broadly active enhancers (Figure 2B) reduced their 
predictive ability overall. Collectively, these results show that DRMs alone are not nearly 
as informative about enhancer activity and breadth as models that include additional short 
sequence patterns or known TF binding motifs.  
 
GC-rich motifs are predictive of broadly active enhancers 
Given the elevated GC content of enhancers and the enrichment and depletion of the GC 
and TA DRMs (the two DRMs with unequal GC content), we quantified the relationship 
between GC content and 6-mer enrichment in broadly active enhancers. In comparisons 
with the genomic background, the correlation was significantly positive (Figure 4A; 
Spearman’s ρ = 0.87, P ≈ 0). This is not surprising given that enhancers have high GC 
content compared to the genomic background. As expected, this trend was strongly 
attenuated in the GC-matched comparison (Figure 4B; Spearman’s ρ = 0.045, P = 0.004). 
 We previously observed that enhancer GC content varied in different tissues’ 
enhancers (17), and here we found that GC content is positively correlated with breadth 
of activity among the enhancers (Figure S8; Spearman’s ρ = 0.25, P ≈ 0). Similarly, GC 
content showed a high correlation with enrichment in broadly active vs. context-specific 
enhancers (Figure 4C; Spearman’s ρ = 0.88, P ≈ 0). This mirrors the patterns shown by 
the GC and TA DRMs. 
 The classification function learned by a trained spectrum kernel SVM implicitly 
assigns weights to each 6-mer that indicate its contribution to the classifier’s prediction. 
Repeating the GC content analyses using these 6-mer weights rather than their 
enrichment resulted in similar correlations (Figure S9; Spearman’s ρ = 0.31, 0.014, 0.29, 
P ≈ 0 for genomic background, GC-matched, and context-specific enhancers 
respectively).  This argues that, in terms of both individual motif enrichment and 
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importance to trained classifiers, high GC content is characteristic of broadly active 
enhancers, regardless of status as a DRM.  
 
Broadly active TFs have GC-rich motifs  
The highly weighted/enriched motifs likely serve important biological functions that 
contribute to enhancer activity. Since enhancers function by binding transcription factors, 
we hypothesized that DNA sequence patterns that facilitate the binding of broadly 
expressed transcription factors could drive broad enhancer activity across many contexts. 
To explore this, we analyzed the sequences and breadth of expression of known TF 
binding motifs from the JASPAR database (32). We classified the TFs into broadly 
expressed and tissue-specific classes based on expression data from the FANTOM 
Consortium (35). In support of our hypothesis, the motifs of broadly active TFs have 
significantly higher GC content than those of context-specific TFs (Figure 5; P = 2.4E-8), 
mirroring the trend seen in 6-mers predictive of broad enhancer activity. 
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DISCUSSION 
We analyzed the contribution of DRMs and other short DNA sequence motifs to the 
activity patterns of human enhancers across hundreds of cellular contexts. In contrast to 
the model proposed in Drosophila (16), GC DRMs were enriched in broadly active 
enhancers, while TA DRMs were depleted. Using an unbiased machine learning 
framework, we found that DRM occurrence patterns were only weakly predictive of 
broadly active human enhancers (ROC AUC ranging from 0.55 to 0.61). However, a 
classifier trained on the occurrence of all possible 6-bp sequences very accurately 
distinguished broadly active human enhancers from the genomic background (ROC AUC 
= 0.93), GC-matched background regions (ROC AUC = 0.87), and context-specific 
enhancers (ROC AUC = 0.87). Furthermore, 6-mers highly predictive of broad activity 
tended to be GC-rich, while those with the most negative weights tended to be GC-poor, 
even when classifying GC-matched regions. These results suggest that broadly active 
enhancers have distinct sequence properties, and that the enrichment and depletion of 
DRM sequences is part of a larger pattern in which particularly GC-rich and GC-poor 
sequences are indicative of broad and context-specific activity, respectively. Consistent 
with this pattern, TFs with broad expression have greater affinity for GC-rich motifs than 
TFs with tissue-specific expression patterns.  
 Our findings in human enhancers differ from recent results in Drosophila in 
several respects. Broadly active Drosophila enhancers exhibit enrichment for all DRMs 
except TA, while broadly active human enhancers are consistently enriched only for the 
GC DRM. We also found that DRM counts alone are significantly less predictive of 
enhancer activity than wider sequence patterns or Drosophila models including many 
motifs (16). Other sequences predictive of broad enhancer activity tend to be GC-rich, 
demonstrating that the effects on human enhancer sequence activity are not unique to 
repeat elements.  

There are several possible causes of the observed differences in DRM patterns 
between humans and Drosophila. First, they could be due to differences in the enhancer 
identification strategy used. The main set of human enhancers analyzed was identified 
using CAGE to detect native eRNAs, while the Drosophila enhancer sets were assembled 
using STARR-seq (37). Both methods have potential weaknesses. CAGE-seq is only able 
to identify enhancers that produce bidirectional capped transcripts, while the STARR-seq 
assay isolates potential regulatory sequences in reporter constructs separate from their 
genomic contexts and thus could introduce activity patterns not representative of 
enhancers in their natural chromatin context. To address this concern, we analyzed other 
human sets defined using functional genomics data (histone modifications and DNaseI 
hypersensitivity data). We found patterns consistent with the CAGE enhancers, so this 
suggests that our findings are robust among human enhancers. Second, differences in the 
number of biological contexts considered could influence the comparison. We considered 
enhancer activity across 411 human cellular contexts, while only three cell types were 
considered in the Drosophila study. These cells were from different lineages and 
developmental stages, but further work that considers more cellular contexts in 
Drosophila would be necessary for a more direct comparison. Finally, there were a 
number of technical differences in how DRMs were defined between the studies. For 
example, we used stricter P-value thresholds for calling DRMs and a background model 
tailored to the genome GC content rather than uniform frequencies. We felt that these 
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definitions better reflected the concept of a “dinucleotide repeat motif” and enabled 
comparison between different motifs.  Nonetheless, we found that this and other technical 
differences did not dramatically influence our results (Figures S1-3). 	
 Thus, while technical factors may have contributed, the observed differences were 
likely also influenced by biological differences between the Drosophila and human 
genomes. For example, despite having similar GC content, the Drosophila genome is not 
as CpG-depleted as humans (38). This could influence the roles and dynamics of CpG 
islands in enhancer activity between the species. In addition, while recent studies of 
transcriptional networks and TF binding preferences have revealed remarkable 
conservation of elements of metazoan gene regulation (39-41), there are considerable 
differences in the TF complement and gene expression patterns between these two 
species. It is possible that the differences in DRM enrichments reflect a difference in the 
sets of TFs that bind broadly active enhancers in the two species, or that broadly 
expressed transcription factors in Drosophila do not show the same collectively higher 
GC content compared to context-specific TFs (Figure 5). The differences in the role of 
DRMs and other regulatory sequence motifs between humans, flies, and other animals 
must be explored further, but such studies will require comprehensive catalogs of 
enhancers active across many tissues in additional species.  

In conclusion, we demonstrate that while short DNA sequence patterns can 
accurately identify broadly active human enhancers, DRMs are not the main drivers of 
activity. This emphasizes the importance of DNA sequence patterns on enhancer biology 
beyond existing knowledge of transcription factor binding motifs, and suggests several 
avenues for future research. Most importantly, more work is needed to understand the 
regulatory logic of enhancer sequences; we suspect that highly predictive sequence 
patterns could be mined to identify novel binding motifs and combinatorial interactions. 
Our results also reveal that we understand relatively little about how enhancer sequence 
and activity evolve. Resolving the evolution and mechanistic functions of these enriched 
sequences will require further statistical and experimental analyses, but the approach 
presented here provides a framework in which to quantify and explore how DNA 
sequence influences gene regulatory activity. 
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FIGURES 
 

 
Figure 1. GC DRMs are enriched and TA DRMs depleted in broadly active enhancers. 
log2(Fold Enrichment) of the occurrence of each DRM in broadly active enhancers vs. 
(A) genomic background and (B) context-specific enhancers. Error bars are standard 
errors over four replicates. (C) log2(Fold Enrichment) of all 6-mers in broadly active 
enhancers vs. genomic background (red), GC-matched background (blue) or context-
specific enhancers (purple).  
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Figure 2. DRMs are not major drivers of human broadly active human enhancers. (A) 
ROC curves for SVM-based classification of broadly active enhancers vs. length-
matched genomic background (red), GC-matched genomic background (blue), and 
context-specific enhancers (purple) using the frequency of the four DRMs as features. (B) 
The distribution of occurrences for each DRM observed over all broadly active 
enhancers. Most enhancers do not contain each class of DRM. The area under each curve 
(AUC) is given in parentheses. Shaded areas are bounded by the maximum and minimum 
observed ROC. Precision-recall curves are given in Figure S6. Box plots show median 
and 1st/3rd quartiles. 
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Figure 3. Short DNA sequence patterns accurately distinguish broadly active human 
enhancers from the genomic background and context-specific enhancers. (A) Classifiers 
trained using all possible 6-mers or (B) density of TF motifs as features. ROC curves 
were calculated using 10-fold cross-validation and averaging the ROC obtained by each 
round of validation. The area under each curve (AUC) is given in parentheses. Shaded 
areas are bounded by the maximum and minimum observed ROC. Precision-recall curves 
are given in Figure S6.  
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Figure 4. Short DNA sequence patterns enriched in broadly active enhancers have high 
GC content. The log2 of the fold enrichment for each 6-mer is plotted against the GC-
content of the 6-mer for comparisons of broadly active vs. (A) non-GC-matched 
background, (B) the GC-matched background, and (C) context-specific enhancers. Means 
were taken over the enrichments compared to four different background sets.  
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Figure 5. Binding motifs for broadly expressed TFs are more GC-rich than motifs for 
context-specific TFs. The median GC content (0.50) of motifs recognized by 175 broadly 
expressed TFs (blue) was significantly (P = 2.4E-8) greater than the motif GC content 
(0.38) of context-specific TFs (green). Box plots show median, and 1st/3rd quartile. 
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