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Abstract

Tissue differences are one of the largest contributors to variability in the human DNA methy-
lome. Despite the tissue specific nature of DNA methylation, the inaccessibility of human brain
samples necessitates the frequent use of surrogate tissues such as blood, in studies of asso-
ciations between DNA methylation and brain function and health. Results from studies of
surrogate tissues in humans are difficult to interpret in this context, as the connection between
blood-brain DNA methylation is tenuous and not well documented. Here we aimed to provide
a resource to the community to aid interpretation of blood based DNA methylation results in
the context of brain tissue. We used paired samples from 16 individuals from three brain re-
gions and whole blood, run on the Illumina 450K Human Methylation Array to quantify the
concordance of DNA methylation between tissues. From these data we have made available
metrics on: the variability of CpGs in our blood and brain samples, the concordance of CpGs
between blood and brain, and estimations of how strongly a CpG is affected by cell compo-
sition in both blood and brain through the web application BECon (Blood-Brain Epigenetic
Concordance; https://redgar598.shinyapps.io/BECon/). We anticipate that BECon will enable
biological interpretation of blood based human DNA methylation results, in the context of brain.
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Introduction

Research exploring the associations and underlying mechanisms of complex traits such as brain
function and health have primarily focused on genetic variation, with some success1–4. Inter-
individual variation in brain function and health emerges as a result of both genetic variation
and environmental influences. Enduring effects of environmental exposures on brain function
are of particular interest for our understanding of the origins of brain disorders and for the
development of effective biomarkers. Epigenetic signals are an attractive candidate mediator of
enduring environmental effects on cellular function. Indeed, there is now considerable evidence
for the idea that environmentally-regulated epigenetic states might form the biological basis for
gene x environment interactions5–11. DNA methylation (DNAm) is a relatively stable epigenetic
mark that is amenable to genome-wide assessment in biosamples from human subjects in studies
of complex traits. The model of DNAm as a mediator of complex traits has produced a surge
of DNAm-based, epigenome-wide association studies (EWAS) in brain research with promising
results. Studies of mammalian models of stress, anxiety, addiction and brain cell composition
support the hypothesis that DNA methylation patterns are associated with brain function and
health12–17. Moreover, there is evidence from human samples of specific patterns of DNAm
linked to schizophrenia, autism, bipolar disorder and major psychosis18–22.

Tissue type is one of the strongest contributors to changes in methylation seen in EWAS23–25,
and therefore an important consideration in designing EWAS. Blood is a commonly used sur-
rogate for brain in human studies due to accessibility and potential for direct relation to dis-
ease through hormonal and immune regulation26–29. However, due to the highly tissue specific
nature of DNAm it is important to consider the concordance between tissues in order to in-
terpret findings derived from surrogate tissues23–25. Indeed, previous work has demonstrated
that genome-wide DNAm profiles are highly tissue-specific, both in terms of inter-individual
variability and absolute measures24,30–33. In blood and brain specifically, using a Illumina 450K
Human Methylation Array (450K) dataset of matched blood and brain tissues, we have shown
that tissue identity, followed by cell type heterogeneity within a tissue, represent the largest
contributors to DNAm variance31. Moreover, while human tissues share some common DNAm
patterns associated with biological variables like aging34, tissues also show unique patterns in re-
lation age31. Despite these findings, it remains largely unknown to what degree DNAm changes
at individual CpGs found in blood can serve as biologically relevant indicators of human brain
biology.

To enable the interpretation of DNAm results from blood based EWAS we aimed to quantify
to what degree blood is informative of brain DNAm. Using genome wide analysis from paired
human blood and brain run on the 450K we measured the level of concordance in DNAm across
the methylome. Using variability and correlation thresholds on all CpGs, our results showed
varying degrees of blood-brain concordance between CpGs. As we found concordance to be
highly CpG dependent, blood based studies do indeed need to be carefully interpreted in the
context of tissues specific DNAm differences. Therefore, as a tool for the community we have
built a user friendly web application Blood-Brain Epigenetic Concordance (BECon) to explore
blood based DNAm findings in the context of human brain

Materials and Methods

Data Collection

Using data from a previously published cohort, a total of 16 subjects were included in this
study31 (one subject from the original cohort of 17 did not have a blood sample and therefore
could not be used) (GSE).

Quality Control and Normalization of 450K Data

Within Genome Studio samples were normalized by background subtraction and color correction,
after which data was exported into R version 3.1.1. Sixty-five probes were removed as they
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directly measure SNPs and were not needed in this analysis beyond confirming replicate ID.
Probes with evidence of cross-hybridization to regions other than the probes target in the genome
were removed (41 937 probes)35. In addition, 1 035 probes were filtered as no calls (bead count
less than 3) in 5% of samples and 1 342 probes were filtered as having 1% of samples with a
detection p-value greater than 0.05. In total probe filtering left 441 198 probes in the processed
450K dataset.

Normalization was performed using BMIQ36, as quantro37 determined that quantile normal-
ization would not be appropriate for this data set. The inappropriateness of quantile normal-
ization was expected as our data set consisted of two very distinct tissues, with very different
DNAm beta value distributions (Supplementary Figure S1).

The 63 samples (4 samples from 15 subjects and 3 samples from the one subject missing
BA20), were examined with principal component analysis (PCA) to visualize the presence of
batch effects. In this study the first principal component (PC) is not shown in visualizations
(see Supplementary methods). The loadings of each PC were associated with technical and bio-
logical variables using ANOVA for categorical variables or Spearman correlations for continuous
variables. Array barcode as well as refrigeration delay and sample pH showed strong associations
with the top PCs loadings on samples (Supplementary Figure S2). ComBat was used to remove
the batch effects of array barcode, refrigeration delay and PH from the DNAm data38.

Cell Composition

As the dataset was comprised of blood and brain samples, cell composition was estimated for
each of the two tissue types. Specifically, blood cell type proportions were estimated based on
reference epigenomic profiles for six major sorted cell types39 and normalized between blood
samples40. Similarly, neuron and non-neuronal brain cell type proportions were estimated41

and normalized between brain samples40(Supplementary Figure S3).
As a check of the pre-processing steps, root mean squared errors (RMSE) were calculated

between replicates. Root mean squared errors between replicate pairs remained high across
all stages of quality control and pre-processing, indicating normalization and batch correction
successfully removed noise from the data (Supplementary Figure S4).

Differential DNA Methylation Analysis

Mean DNAm across samples of a tissue were correlated between all tissue pairs using Spearman
correlations as a DNA methylome-wide indicator of general sample similarity. To quantify the
similarity of tissues at individual CpGs, differential DNAm analysis at each CpG was performed
between all tissues pairs. Linear models were run with covariates for subject gender and age,
and to account for the paired structure of the samples, subject ID was included in the model.
Multiple test correction was done on the nominal p values of each tissue pair comparison, using
Benjamini-Hochberg correction42.

Informative CpG selection

The correlation of DNAm level at each CpG was calculated between blood and brain separately
for each brain region brain using Spearman correlations on M values. The variability of a CpG
across individuals was measured as the range between the 10th percentile and the 90th percentile
of blood sample CpG betas43. This reference range is intended to capture variability in the bulk
of the samples while limiting the effect of outlier measures at a CpG, which would otherwise
give a falsely high estimate of variability.

To define informative CpGs we used biologically relevant thresholds for both correlation and
variability. The most highly correlated and variable CpGs observed were the polymorphic CpGs
(CpGs with a known SNP at the cytosine or guanine of the CpG) and those on the X and
Y chromosomes (presumably highly variable because the cohort contains males and females).
While these 32 344 CpGs were not of explicit interest in this study, and later removed from anal-
ysis, the variability and correlation distributions of these 32 344 highly correlated polymorphic
and sex chromosome CpGs were used to guide the selection of the correlation and variability
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thresholds for informative CpGs. A full explanation of the threshold selection is provided in the
supplementary text, but in short, informative CpGs had to meet a variability threshold of 0.1
reference range and correlation threshold of 2 standard deviations from the mean correlation
of the highly positively correlated polymorphic and sex chromosome CpGs enriched correlation
peak, defined separately for each brain region.

The importance of a variability threshold was clear when the matched blood and brain
samples were randomly unmatched in five simulations. The correlation distributions of these
unmatched data sets were used as null distributions to compare to the real paired data correlation
distributions44.

CpG to Gene Associations

There are multiple approaches for associating a CpG to a gene, such as the closest TSS35,
associating CpGs to gene by the CpGs localization to a genes body or promoter45, or stringent
associations based on CpGs with only one likely gene association (i.e. lone gene associations)31.
These approaches focus on a single gene, rather than allowing for multiple gene associations for
a CpG. We used a CpG to gene association definition that allows for a CpG to be associated
with multiple gene features, as well as multiple genes (see Supplementary text). This inclusive
association, while somewhat more ambiguous, is an attempt to capture all possible roles of a
CpG in gene regulation46. The gene list used was the Refseq genes from UCSC, including all
splice variants of Refseq mRNA. The gene list included 24 047 genes and a total of 33 431 unique
transcription units. The 485 512 CpGs on the 450K array associated with 23 018 genes (43.8%
intragenic CpGs, 34.2% promoter CpGs, 2.5% 3 region CpGs, and 19.5% intergenic CpGs)46.

Comparison to Previous Analyses

DNAm in blood and brain samples was analyzed previously using a 450K dataset33 providing an
opportunity to validate our findings using an independent dataset. The published data set pro-
vided 74 matched brain and blood samples on Gene Expression Omnibus (GEO; GSE59685)33.
The regions examined in this previous work were cerebellum, entorhinal cortex, frontal cortex
and superior temporal gyrus regions. While their frontal cortex and our BA10 region partially
overlap, the 3 other regions available in GSE59685 allow for possible validation in structurally
and functionally different brain regions. We ran the GSE59685 normalized data through our
pipeline (described above) to make the results as comparable as possible. Unfortunately, in
GSE59685, the tissues were run on separate arrays, introducing confounding of array and tissue.
However, despite this limitation, to be consistent with our analysis we did run ComBat to correct
for sentrix ID. Cell correction was performed as described above in the brain regions and blood.
Spearman correlations and reference ranges were calculated between blood and all brain regions,
and informative CpGs were defined similarly as described above. The actual percent overlap of
informative CpGs was calculated for all 7 brain regions available. Monte Carlo simulations were
used to build an expectation of overlap between two lists of informative CpGs.

To test for enrichment of mQTL in informative CpG lists we used mQTL previously identified
at p¡11014 in middle aged individuals using the mQTL database47 (http://www.mqtldb.org/).
The mQTL list contained 31 325 CpGs under observed genetic influence. Using Monte Carlo
simulations we built an expected overlap of the mQTL CpGs and informative CpGs, to compare
to the observed overlap.

There have been numerous studies using blood as a surrogate for brain when studying a
neurobiological disorder48. To explore whether CpGs identified in these studies are informative
of brain DNAm we collected a list of six CpGs associated with 4 genes previously observed to
be differentially methylated in blood in relation to psychiatric disorders48. We explored the
identified CpGs correlation between blood and brain in BECon. Specifically, the CpGs were
evaluated in terms of the correlation percentile in each brain region to explore if the CpGs are
more or less informative then the average CpG. CpGs we also examined for variability in each
tissue as a measure of biological relevance.
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Results

Differential Methylation Analysis of Blood and Brain

Tissue is the one of the largest contributor to DNAm variance31,49. However, it is not yet
known which specific CpGs show concordance in DNAm between blood and brain, at which
blood DNAm could potentially serve as a proxy for brain DNAm, and which CpGs show no
concordance. DNAm was measured from matched human blood and brain on the 450K45.
In comparisons of DNAm between the four samples from each of the 16 individuals across
the methylome, different brain regions from the same individual had higher correlation with
each other than any brain region with blood (Figure 1A). Additionally, brain to blood DNAm
analysis returned orders of magnitudes more differentially methylated CpGs than did differential
DNAm analysis between brain regions (e.g. 119 371 differential CpGs between BA10:blood and
347 between BA10:BA7, FDR¡0.001, mean difference in DNA methylation between tissues 0.1;
Figure 1B).

Informative CpGs Exist between Human Blood and Brain

While our group and others have observed large differences between human blood and brain
DNAm23,31, by necessity, blood is often used as a surrogate in for brain tissue. We therefore set
out to use the strength of our matched sample cohort to identify CpGs that show concordance
between blood and brain. Our first step in identifying these CpGs was to use the correlation of
inter-individual variability between blood and each brain region (Figure 2A). These correlations
had a slightly skewed distribution toward negative correlations, indicating the majority of CpGs
are not concordant between blood and brain, but a few CpGs are highly positively correlated
(Supplementary Figure S5; see Supplementary Text).

However, many of the most highly correlated CpGs had very low variability between indi-
viduals, which likely limits the utility of these CpGs to explain differences in phenotype and/or
exposures in EWAS. We therefore explored the importance of variability in defining concordant
CpGs. We looked at the correlation distributions of increasingly more variable sets of CpGs
(Figure 2B) and found that the higher the variability threshold the more skewed to positive cor-
relations the distribution became. This trend was not an artifact of the variability measurements
as it disappeared when the data was simulated as unpaired (Figure 2B). We therefore endeavored
to select CpGs with both high inter-individual variability, as well as high blood-brain correlation.

To make the thresholds of variability and correlation more biologically driven we based the
thresholds on a set of CpGs which were some of the most highly variable and correlated between
blood and brain, polymorphic CpGs and CpGs on sex chromosomes (Figure 3A). We focused on
variability in blood and blood-brain correlation of these 32 344 CpGs to define our thresholds.
The reference range variability of these CpGs in blood was 0.11 so a threshold of 0.1 was used
for our concordant CpG selection (Figure 3B). The correlation distribution of all CpGs was
bimodial, and we focused on the polymorphic and sex chromosome enriched highly positively
correlated peak to define our correlation thresholds (Figure 3C). Therefore our definition of a
blood-brain informative CpG is a CpG at which the DNAm in blood correlated with DNAm
in brain (rs = BA7 0.36; BA10 0.40; BA20 0.33) and DNAm is also highly variable in blood
(reference range ¿0.1).

Using our variability threshold of 0.1, we identified 83 427 variable CpGs. Of these, 48%
also passed our correlation requirements, resulting in a total of 40 029 informative CpGs (both
positively and negatively correlated). Thus 9.7% of the total number of CpGs examined were
informative between blood and any of the three brain regions. Informative CpGs identified in
each brain region show a large overlap (Figure 3D and E), as expected considering the observed
similarities in DNAm of the three brain regions. While we have been strict in our definition of
what an informative CpG is, and small changes to the correlation and variability thresholds do
result in large changes for the number of CpGs considered informative (Supplementary Table
S1), our informative list has been built on biologically defined statistical thresholds based on the
polymorphic and sex chromosome CpGs characteristics. Therefore our informative CpG list is
relatively stringent and should reflect the strongest concordance signal in the data.
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Figure 1: Human blood and brain show very distinct methylation patterns. A) DNAm corre-
lation values between each tissue pair from an individual, averaged across all individuals. B)
Volcano plots of the differential methylation analysis between representative tissue pairs (blood
and Brodmann area 10; and Brodmann area 10 and 7). Vertical lines indicate a DNAm differ-
ence between compared tissues of 0.1. The horizontal line represents an FDR corrected p value
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Figure 3: Informative CpGs are defined through both variability and correlation thresholds. A)
Representative SNP and sex chromosome CpGs show high levels of correlation and variability.
All plots show the relationship between DNAm in Brodmann brain area 7 and blood with the
correlation coefficient in the bottom right of the plot. The CpGs in the top 3 plots show a poly-
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CpGs. D) Venn diagram showing the overlap of informative CpGs with positive correlations
between blood and brain in the three Brodmann areas sampled. E) Venn diagram showing the
overlap of informative CpGs with negative correlations between blood and brain in the three
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Informative CpGs were Enriched in Intergenic Regions of the Genome

Next, we explored the genomic location(s) of our informative CpGs. We associated each CpG
with a gene (see Supplementary Text), and used the Illumina annotation for CpG island asso-
ciations45. In general, informative CpGs were depleted in gene promoters and CpG islands and
enriched in intergenic regions (p¡0.001; Figure 4).

We then explored whether genes associated with informative CpGs were involved in any
specific biological process. We used a list of 239 genes associated with at least ten informative
CpGs (informative genes), in order to focus on the genes with high DNAm variability and
concordance between blood and brain. The informative gene list showed enrichment for GO
terms related to cell-adhesion and highly multifunctional genes (Supplementary Table S2)50.
We then investigated if the informative genes were more highly expressed in either blood or
brain, using independent gene expression datasets (GSE17612, GSE37171 and GSE61635). The
informative genes are less expressed in blood samples than the average expression of all genes
measured (p¡0.001, Wilcoxon Rank Sum) but the expression of the informative genes was not
different from the average expression of all genes in brain samples (p=0.98, Wilcoxon Rank
Sum; see Supplementary Text and Figure S6). Therefore, informative genes may be more brain
specific than blood specific as they are less expressed in blood then the average gene.

Comparison of Informative CpGs to Previous Findings

An existing similar blood brain DNAm analysis33 provided an opportunity for independent
validation of our results. The previous study, reports the correlation between blood and four
brain regions (cerebellum, entorhinal cortex, frontal cortex and superior temporal gyrus), and
provides data for 74 individuals with paired blood samples DNAm (GSE59685). We found that
while the greatest overlap of informative CpGs was between brain regions from the same study,
the overlap between the lists of informative CpGs from the two studies was greater than expected
by chance (Figure 5A). Interestingly, the previous study had very few negatively correlated sites
(42 negatively correlated informative CpGs compared to 16 738 in our data set), which may
suggest the negative correlations we observed represent a property inherent to our smaller sample
size (Supplementary Figure S7).

As polymorphic CpGs were some of the most highly concordant CpGs in our data, we
speculated that our informative CpGs could be under genetic influence and represent poten-
tial DNAm quantitative trait loci (mQTL). We tested whether our informative CpGs and
those we defined in GSE59685 were enriched for known mQTL using the mQTL database47

(http://www.mqtldb.org/). We found 8 202 out of 40 029 (21%) of our informative CpGs and 3
018 out of 10 930 (28%) informative CpGs from the Hannon et al. 2015 cohort were previously
identified as mQTL. In both informative lists the mQTL numbers represented significant en-
richment for known mQTL (Monte Carlo simulations, p¡ 0.0001). Although our smaller cohort
likely did not have enough genetic diversity to capture all potential mQTL sites (Supplementary
Figure S8), our informative CpGs were still enriched for mQTL.

BECon as a Community Resource

The availability of this matched blood and brain DNAm data set provided an excellent oppor-
tunity to develop a community resource. We have built an R Shiny web application51 to aid
interpretation of blood based DNAm results in studies of brain function and health (Blood-
brain Epigenetic Condordance; BECon; https://redgar598.shinyapps.io/BECon/). While we
also made the full data set available on GEO (GSEnumber), we built BECon for researchers
interested in a particular gene or CpG, but without the need to re-analyze our data themselves.
A full description of the information provided through BECon is in the supplementary text,
with detailed explanations for how the metrics provided were calculated. To aid interpretation
of epigenetic results BECon provides metrics on: the variability of CpGs in our blood and brain
samples, concordance DNAm at CpGs between blood and brain, and estimations of how strongly
a CpG is affected by cell composition in both blood and brain (Figure 5B).
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Figure 4: Blood brain informative CpGs show associations to specific genomic features. In all
plots, bars show the fold change between informative CpG count in each region and the count of
CpGs from 10,000 permutations of random CpGs in that same region. Error bars show standard
error. A) Genomic enrichment for informative CpGs which are positively correlated between
blood and brain. B) Genomic enrichment for informative CpGs which are negatively correlated
between blood and any brain.
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Figure 5: The informative CpG list can be used to validate previous findings. A) Percent
of overlapping positively correlated informative CpGs in each of our brain regions and those
regions used in the Hannon et al. (2015) data. The number in larger text is the percent of
the informative CpGs along the rows that are also informative in the tissue along the columns,
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To demonstrate the utility of BECon, we assessed key candidate genes often investigated
for changes in DNAm in relation the psychiatric disorder (BDNF, COMT, OXTR and DRD4).
We examined six specific CpGs in these candidate genes that were identified as differentially
methylated in blood in studies of psychiatric disorders48 (Supplementary Table S3). The six
CpGs show varying levels of average correlation across brain regions (rs=-0.15 - 0.49) and one
CpG is in the 90th percentile of all CpG correlation values (Figure 5C; Supplementary Table
S4), suggesting only some differential DNAm reported previously in blood could be expected to
be seen in brain.

Discussion

The increasing popularity of EWAS using blood samples to study brain function and health
outcomes has created a need for tools to enable interpretation of DNAm results in the context
of the brain. Our findings indicate that it is essential to examine the concordance of DNAm
between blood and brain at each CpG before interpreting blood-based results, as concordance
varied greatly dependent on CpG. A subset of CpGs, which we consider informative of brain, has
been validated in an independent cohort. Despite the tissue specific DNAm seen between blood
and brain the validated informative CpGs suggested blood has applicability as a surrogate for
brain.. In identifying informative CpGs, correlation seemed to be the most logical measure of
concordance, however we found a variability measure was also necessary to identify concordance
with the utility to explain differences in phenotype and/or exposures in EWAS. Discordant CpGs
were either not variable in one tissue, or appear to be potentially tissue specific in their variabil-
ity. Tools to examine multiple metrics of concordance simultaneously will aid the interpretation
of blood based DNAm results. We developed BECon to enable easier examination of the con-
cordance of blood and brain DNAm. Our hope is that BECon that should allow for biologically
grounded interpretation of blood-based DNAm results.

The web application BECon that we provide to the community includes metrics on the vari-
ability of CpGs in blood and brain. We have included metrics on variability as we found that the
DNAm at many correlated CpGs varied by less that would generally be considered biologically
meaningful. It is the consensus of the field that differences in DNAm, whether between tissues
or disease states, to be have a theoretical biological impact they must show variability in DNAm
measures52. When examining concordance of DNAm in BECon it is expected that if a CpG
shows no variability in either blood or brain tissue, that any concordance will not be biologically
meaningful. While CpGs not variable in our blood and brain data set may vary in another
context, or perhaps another tissue, we are hopeful that or concordance findings are robust and
relevant to other blood and brain samples.

We have some evidence our concordance findings are robust to brain region type and cohort as
we were able to confirm the general trends seen in previous blood-brain studies33,53. Our study,
like others, demonstrated that tissue type is a considerable contributor to DNAm variability,
evident by the abundant DNAm differences we have observed between each brain region and
blood. Second to broad tissue type differences the next largest contributor to DNAm variation is
cell composition within a tissue31. In studies using surrogate tissues, as with all DNAm studies,
it has become more apparent that cell type composition adjustments are a mandatory step in the
analysis of data for results to be interpretable. We therefore included statistics on the estimated
effect of cell type composition in BECon to better enable researchers to examine the effect of
cell composition on CpGs or gene of interest.

Next to tissue type and cell composition, genetics are a major contributor to DNAm vari-
ability. CpGs under the influence of SNPs are some of the most variable CpGs observed in
DNAm47,54,55. Given our variability selection criteria it is not surprising that out informative
CpGs were enriched for mQTL. However it is reasonable to suspect that, regardless of variability
criteria, CpGs under genetic control will be the most concordant between blood and brain as
the genetics will be consistent between tissues. When interpreting DNAm concordance between
blood and brain through BECon it will be important to consider the biology driving the concor-
dance. At some CpGs the driver of variability and concordance may be primarily genetic and
potentially independent of any environmental influences seen in associated with blood DNAm.
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While we were able to observe enrichment for mQTL we speculate that due to our smaller sam-
ple size we were not as sensitive to detect mQTL as the previous blood brain analysis33. With
16 individuals we may not have had representative samples from all possible alleles at many
potential mQTL SNP loci. Therefore DNAm at potential mQTL was less variable in our data
and high correlations could not be observed. Interestingly, this suggests that there is a minimum
required sample size for thorough mQTL detection above 16 individuals, however we can not
speculate if the 74 individuals used previously were enough to detect all possible mQTL.

Future studies into the gene regulation and expression associations of concordant CpGs in
blood and brain may provide insight into the biological relevance of blood DNAm in brain. While
we were unable to directly compare the concordance of our sites in gene expression data we were
able to look at the overall expression of our informative genes in brain and blood. Interestingly
we found that informative genes are less expressed in blood than expected by chance. It is
possible that by our selection criteria we have identified CpGs that can serve as biomarkers
for brain specific genes that have little to no function in blood and are therefore not highly
expressed.

In addition to the highly tissue specific nature of DNAm, using a surrogate tissue for brain
DNAm is further complicated by the existence of higher levels of hydroxymethylation in the
brain compared to other tissues56–58. Hydroxymethylation has been seen in the brain at levels
as high as 0.65% but only at 0.027% in blood57,59. Here we have characterized the anticipated
utility of blood as a surrogate for brain in terms of a composite DNAm signal (mC+hmC).
Hydroxymethylation in the human brain has potentially added complexity to our data and to
the correlations calculated between blood and brain.

Using BECon we were able to identify a CpG showing high concordance between blood and
brain that has also been identified as differentially methylated in a study of blood from patients
with schizophrenia and controls (cg03909863)29. The CpG is a promising candidate to show
DNAm concordance in the brains of the individuals, and could be relevant functionally in the
brain as the CpG in located in coding region of dopamine receptor D4 (DRD4). In future studies
that use blood as a surrogate for brain, BECon will enable prioritization of CpGs for validation
to those CpGs with demonstrated concordance between blood and brain.

Despite the limitations of our analysis, there is a tremendous value and information content
in quantifying the genome wide concordance of DNAm in the blood and brain. In anticipation
of the communitys interest in examining whether specific CpGs in blood are informative of brain
DNAm, we have built BECon to enable examination of concordance between blood and brain.
We expect BECon to be most useful to users who need to interpret blood DNAm results from a
study of brain function and health. This application may also help guide blood based surrogate
studies toward candidate gene approaches or post-hoc selection of CpGs for validation.
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