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Abstract

Our species is characterized by a great degree of cultural variation, both within and between popula-
tions. Understanding how group-level patterns of culture emerge from individual-level behaviour is a
long-standing question in the biological and social sciences. We develop a simulation model capturing de-
mographic and cultural dynamics relevant to human cultural evolution, focusing on the interface between
population-level patterns and individual-level processes. The model tracks the distribution of variants
of cultural traits across individuals in a population over time, conditioned on different pathways for the
transmission of information between individuals. From these data we obtain theoretical expectations for
a range of statistics commonly used to capture population-level characteristics (e.g. the degree of cultural
diversity). Consistent with previous theoretical work, our results show that the patterns observed at the
level of groups are rooted in the interplay between the transmission pathways and the age structure of the
population. We also explore whether, and under what conditions, the different pathways can be distin-
guished based on their group-level signatures, in an effort to establish theoretical limits to inference. Our
results show that the temporal dynamic of cultural change over time retains a stronger signature than the
cultural composition of the population at a specific point in time. Overall, the results suggest a shift in focus
from identifying the one individual-level process that likely produced the observed data to excluding those
that likely did not. We conclude by discussing the implications for empirical studies of human cultural
evolution.

Keywords human cultural evolution; cultural micro- and macro-evolution; modes of cultural transmission;
vertical, horizontal, oblique, mixed transmission; conformist bias; cultural diversity.
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1 Introduction

Our species is characterized by a great degree of cultural variation, both within and between populations.
This variation can be observed in domains as different as material culture [e.g. 1], linguistic features [e.g. 2],
or social norms [e.g. 3]. These population-level patterns are the aggregate product of underlying individual
strategies. Understanding how those patterns of culture emerge from individual-level behaviour is a long-
standing question in the biological and social sciences [4].

The field of cultural evolution encompasses efforts to answer this question, through a variety of theoretical
and empirical tools [see 5, for a recent review]. Cultural evolution is the process of change in the frequency
of different variants of a cultural trait over time. Cultural traits comprise the knowledge, ideas, beliefs,
skills, attitudes, or any other form of information that can be socially transmitted between individuals,
for example through teaching or imitation [6]. Seminal early contributions to the field focused on human
culture [e.g. 7, 8], but the scope now extends to non-human culture as well [9].

Overall, this body of work has identified a number of factors shaping cultural variation within and across
human groups, including the pathways for the transmission of information between individuals, demog-
raphy, shared population history, and adaptation to environmental conditions. However, we lack a sys-
tematic understanding of the effect of these different factors and their interactions. In particular, we lack
a conceptual framework explicitly mapping the patterns observed at the level of groups onto the under-
lying processes occurring at the level of individuals [5]. For example, a large body of empirical work in
cultural evolution builds on the notion of the relative “conservativeness” of vertical transmission (i.e. par-
ent to child) compared to other transmission pathways (e.g. horiziontal transmission, i.e. between peers)
[7]. This body of work includes field-based investigations [e.g. 10, 11, 12] and cross-cultural studies [e.g.
13, 14, 15, 12]. But how exactly does the group-level “signature” of vertical transmission differ from that
of other transmission pathways? And is it sufficiently different that it can be mapped, unequivocally, onto
vertical transmission?

To address these and related questions, we develop a simulation model capturing demographic and cul-
tural dynamics relevant to human cultural evolution, focusing on the interface between population-level
patterns and individual-level processes [see e.g. 16, 17, 18, 19, for other modelling frameworks]. By de-
sign, the simulation model is the simplest it can be. For example, we focus on neutral cultural traits (i.e.
not linked to to fitness) and constant population sizes; traits only differ in the way they are transmitted
between individuals. In this respect, our work differs from related recent analyses by [18], which explored
instead the effect of trait transmission on the age-structure of a population, and the extent to which cultural
traits affecting demographic change can spread.

In other words, our model does does not seek to replicate a specific cultural system. Rather, it is used
to run “artificial experiments” for various demographic and cultural scenarios, in order to explore and
analyse the ranges of possible evolutionary outcomes generated by those scenarios. Specifically, the model
tracks the distribution of variants of cultural traits across a population over time, conditioned on different
pathways for the transmission of information between individuals. From these simulated data we obtain
theoretical expectations, in the form of probability distributions, for a range of statistics commonly used in
the literature to capture population-level characteristics (e.g. the degree of cultural diversity).

Our aim is two-fold. First, we aim to derive general insights about the different transmission pathways and
their signatures at the level of the group. Second, we aim to establish whether, and under what conditions,
the different pathways can be distinguished based on their group-level signatures. Are the signatures
sufficiently different that they can be traced back to specific individual-level processes? The rationale is
that if we cannot accurately infer underlying scenarios from simulated data, which are generated under
known “experimental” conditions, it is unlikely that we will be able to do so based on empirical data.

Some additional context may help grasp the significance of the second aim. Researchers in anthropology
and related disciplines often draw inferences from data on variation in cultural traits within a population,
but these data are typically sparse in space and/or time. Our analysis aims to establish the theoretical
limits to inference — in other words, how much information can in fact be “extracted” from the data under
simplified scenarios of cultural change captured by our simulation framework. These theoretical limits
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represent an upper-bound to inference: we cannot expect to obtain more information from empirical data,
which are the product of intricate real-world scenarios.

We begin by describing the mathematical framework and the statistical analysis (Section 2), followed by
presentation of the results (Section 3). The code used to generate the results is available from https:
//github.com/bwilder0/cultural-evolution. We conclude with a non-technical summary of the
key findings, together with discussion of their implications (Section 4); readers can skip to this part without
loss of insight.

2 Methods

Our analysis involves two components. The first is a mathematical framework simulating human cultural
evolution. The second is a set of statistics used to summarize the simulation output; these are used to deter-
mine whether the group-level patterns extracted from the simulation output can be reliably distinguished.

The framework includes both discrete and continuous cultural traits: discrete traits assume a finite number
of variants, continuous traits assume any value in a given interval. For ease of presentation, this and the
next section focus on the discrete case. An outline of key results for the continuous case are in Section 3.2.4,
with additional detail in Section S3.3.4 of the supplementary material.

2.1 Mathematical framework

We consider a simple age-structured population, divided into five age classes, where each individual pos-
sesses a variant of five different cultural traits.

2.1.1 Cultural traits and transmission modes

Discrete cultural traits assume one of five possible variants. As the traits are assumed to be neutral, indi-
viduals do not benefit from carrying a specific variant over another.

Following [7], we define a set of modes for the transmission of trait variants between individuals (Table 1).
Broadly, the modes describe the flow of information within and between generations. They delimit the set
of potential interaction partners within a population, with interactions between individuals within this set
occurring at random.

Mode (notation) Description Note
Vertical (v) From parent to offspring
Horizontal (h) Between individuals in the same age group
Oblique (o) From older to younger individual Excludes parent–offspring pairs
Age-neutral (n) Between any two individuals in the population Equivalent to random drift
Mixed (m) A combination of horizontal and oblique See text (Section 2.1.3)

Table 1: Transmission modes

Additionally, transmission biases may steer interactions towards individuals carrying a particular variant
[8]. A large number of biases have been identified in the literature [see 20]; we focus on conformity bias, i.e.
a preference for the most common variant in the population, as detailed in Section 2.1.4.

We consider a population of N individuals. At each point in time individual i is described by a variable
Iix, with Iix ∈ {1, . . . , 5} for x = v, h, o, n,m (Table 1). This is the individual’s current cultural make-up,
comprising five cultural traits, each linked to a transmission mode. For all traits, an individual acquires
the variant of its parent at birth, i.e. through vertical transmission. For all traits except the one linked to
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mode v, the variant may change through further transmission events during the individual’s lifetime, as
described in Section 2.1.3.

2.1.2 Demographic processes

In addition to variable Iix, at each point in time individual i is described by a variable Iiage, denoting its
current age group. There are five age groups, covering the age range 0–50. The age structure of the popu-
lation is summarised by [n1, . . . , n5], where ni describes the number of individuals in age group i. It holds∑5
i=1 ni = N .

Each time step in the simulation corresponds to 10 years. At each time step, individuals age by moving
to the next age group, and they may either die or reproduce. We assume a constant population size N .
Therefore, the number of individuals entering the population through reproduction in a given time step is
determined by the difference between N and the number of deaths in the previous time step. Individuals
die with probability pdeath. All individuals in age group 5 die with pdeath = 1 in the following time step.

Reproduction occurs asexually. Individuals in age groups 2 and 3 are chosen at random at each time step to
reproduce until population size N is reached. These individuals produce offspring who inherit their trait
variants. However, with a small probability µ a mutation occurs and the offspring’s variant differs from
the parent’s, as described in Section 2.1.3.

These demographic processes produce a pyramid-shaped age structure, with fewer individuals in older
generations. It is possible that all potential parents die before reproducing, leading to extinction of the
population. The results presented below are based on simulation runs where the population survived for
the entire duration of the simulation.

2.1.3 Mutation and transmission events

We define a mutation rate µ, which describes the fidelity of the transmission process and applies to all
transmission events. For all traits, individual i acquires the variant of its parent with probability 1− µ, and
a randomly selected variant with probability µ. This process describes vertical transmission (Table 1).

Additionally, for traits linked to modes h, o, n the variant may change through further transmission events
during the individual’s lifetime. Specifically, at each time step individual i engages with probability pw in
interaction with a randomly selected individual j. For example, pw = 0.5 corresponds to an average of
2.5 transmission events during the individual’s lifetime, pw = 1 to an average of 5 events. During each
transmission event, individual i acquires the variant of individual j with probability 1−µ, and a randomly
selected variant with probability µ. The transmission rules in Table 2 apply to these interaction events; they
show that horizontal, oblique, and age-neutral transmission differ only in the set of potential interaction
partners (Section 2.1.1).

Mode Possible interaction partner j for individual i Transmission rule
h Iiage = Ijage Iih = Ijh
o Iiage > Ijage Iio = Ijo
n any individual Iin = Ijn

Table 2: Transmission rules for modes h, o, n in the absence of mutation

The “pure” modes v, h, o, n provide a useful baseline against which to compare more realistic scenarios.
Specifically, one of the five traits in an individual’s cultural make-up is linked to modem, whereby possible
interaction partners include both peers and older individuals (Table 1). We term this mode “mixed”, to
indicate that it is effectively the combination of horizontal and oblique transmission. For this trait, indi-
vidual i engages in horizontal transmission with probability (1 − pmix) and in oblique transmission with
probability pmix, following the rules specified in Table 2. Qualitatively, the higher the value of pmix, the

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2017. ; https://doi.org/10.1101/111575doi: bioRxiv preprint 

https://doi.org/10.1101/111575
http://creativecommons.org/licenses/by-nc-nd/4.0/


more likely that transmission is oblique, i.e. that the individual’s interaction partner belongs to an older
age group, rather than to the same age group.

Across all modes, the interaction probability pw and the mutation rate µ, combined, determine the poten-
tial for cultural change. Broadly, we distinguish between scenarios with low vs. high potential for cultural
change (e.g. low µ, low pw vs. high µ, high pw). For instance, the higher pw and µ, the more opportuni-
ties there are for an individual’s cultural make-up to change over its lifetime, and hence for the cultural
composition of the population to change with each time step.

2.1.4 Conformity bias

As noted in Section 2.1.1, the transmission modes describe different sets of potential interaction partners,
but interactions between individuals within each set occur at random. This implies that the probability pk
that an individual interacts with a partner carrying variant k is proportional to the relative frequency of
variant k in the set. It holds

pk =
n∗k
N∗

,

where n∗k describes the number of individuals in the set of size N∗ carrying variant k.

Conformist transmission is defined as the disproportional adoption of common variants [8]. With confor-
mity bias, the probability of an individual interacting with a partner carrying variant k is given instead by
[21, 22]

pk =
n∗k
N∗

+ b

(
k̂
n∗k
N∗
− 1

)
. (1)

The parameter b ≥ 0 describes the strength of the bias and k̂ is the number of variants present in the
population. Conformity increases the probability that an individual carrying variant k acts as interaction
partner if the frequency of variant k exceeds the “relative” majority 1/k̂.

2.1.5 Simulation set-up

At the beginning of each simulation run the N individuals in the population are distributed randomly
across the five age groups. They all carry the same variants of the cultural traits. In each subsequent time
step the demographic and cultural processes described above take place, over time leading to changes in
the frequency of the different variants, and thus to the cultural composition of the population.

Individuals update their cultural make-ups asynchronously, i.e. an individual’s interaction partner may
have already updated its cultural make-up in the given time step. The order in which individuals engage
in transmission events is randomised in every time step.

A single simulation run consists of a burn-in phase followed by 200 time steps. We explore various
constellations of the parameters for ranges N = 25, 50, 100; µ = 0.01, 0.05, 0.1; pw = 0.5, 0.75, 1; b =
0, 0.01, 0.02, 0.03. Note that b = 0 for all analyses, except those investigating specifically the effect of con-
formity on distinguishability of the different transmission modes.

2.2 Statistical analysis

2.2.1 Summary statistics

The mathematical framework tracks the frequencies of trait variants at each time step. We use this infor-
mation to characterize the cultural composition of the population and the dynamic of cultural change over
time, conditioned on the different transmission modes. Specifically, with x = v, h, o, n,m denoting the
mode (Table 1), for a given trait we derive
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i. the frequencies of its five variants [px1 , p
x
2 , . . . , p

x
5 ] across individuals in the population, where pxk de-

scribes the relative frequency of variant k,

ii. the frequency of the most common variant in the population, denoted pxmax,

iii. the total number of variants present in the population, denoted kx,

iv. the level of cultural diversity, as measured by the Shannon diversity index

dxs = −
kx∑
k=1

pxk log(pxk),

where kx describes the number of variants present and pxk the relative frequency of variant k, as
defined above,

v. the average time a variant stays the most common variant, denoted txmax.

The first statistic is the joint probability distribution of the frequencies of the five cultural variants. While
this captures the most information about the cultural composition of the population at a given point in
time, researchers may not have access to the full data. Accordingly, we also explore how much information
can be extracted from “partial” data, namely the frequency of the most common variant, pxmax, and the total
number of variants present, kx.

Researchers often summarise the cultural composition of a population using a diversity measure such as
the Shannon diversity index [e.g. 1, 23, 24]. We include this statistic in our analysis to investigate how the
dimension reduction this involves affects our ability to distinguish between transmission modes.

Finally, we characterise the temporal dynamic of cultural change with txmax, which measures the rate of
change of the most common variant in the population. Broadly, this gives an indication of how fast the
cultural composition of the population can change over time. We use txmax to explore whether the temporal
dynamic is more informative than the cultural composition of the population at a given point in time, as
described by the other statistics.

2.2.2 Distinguishability analysis

We explore the behaviour and inferential power of each statistic by generating probability distributions of
the statistic, across simulation runs, for different values of the parameters in the model.

For a given parameter constellation, we determine whether two modes can be distinguished based on
the statistic by (i) examining the area of overlap between the corresponding distributions (e.g. vertical vs.
horizontal transmission) and (ii) determining the probability that a particular transmission mode acted in
the population to produce on observed value of the statistic. The approach can be applied more generally
to determine the effect of a given parameter. This is done by comparing the distributions for a given mode
under different values of the parameter (e.g. oblique transmission with vs. without conformity, or vertical
transmission with small vs. large population size), keeping constant the values of the other parameters. For
ease of presentation, we focus here on comparison of two modes for a given parameter constellation. For
simplicity, we describe the procedure for one-dimensional probability distributions (i.e. the distributions
for pxmax, kx, dxS and txmax), but the same approach applies to the joint distributions fjoint,x.

We take the area of overlap between the distributions to indicate to what degree the two corresponding
modes can be distinguished based on the statistic without knowledge of an empirical estimate. At one
extreme, no overlap suggests that the modes can be reliably distinguished; at the other, complete overlap
suggests that they cannot be distinguished.

In detail, the area of overlap Oxy between probability distributions fx and fy is determined using the
Kolmogorov–Smirnov distance Kxy between the associated distribution functions Fx and Fy (Figure 1(a)).
If z? denotes the value where Kxy = sup

z
|Fx(z)− Fy(z)| is realized, then it holds [25]

Oxy = 1− Fy(z?) + Fx(z?) = 1 + (Fx(z?)− Fy(z?)) = 1−Kxy.
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Figure 1: Illustration of (a) the area of overlap Oxy between probability distributions fx and fy , and (b) the
probability P (y|z) that transmission mode y (as opposed to x) acted in the population to generate value z.

Distinguishability is defined using a threshold value Ō: two distributions fx and fy are distinguishable if it
holds Oxy < Ō, and we use a value of Ō = 20%, corresponding to the widely accepted 80% power cut-off.
An alternative approach, based on the Rayleigh criterion, is introduced in Section S1 in the supplementary
material.

Specifically, based on 30,000 simulation runs we determine (i) the joint distributions fjoint,x of frequencies
of the five trait variants, and (ii) the probability distributions fpxmax

, fkx , fdxS , ftxmax
of statistics pxmax, kx, dxS ,

txmax, conditioned on transmission modes x = v, h, o, n,m. For a given statistic we calculate the areas of
overlap Oxy for pairs of distributions x and y, and we compare their values against the threshold Ō = 20%
to determine whether the corresponding modes are distinguishable based on the statistic.

This procedure rests on an a priori definition of distinguishability, without considering available empirical
data. The results provide general expectations about the similarity or dissimilarity of population-level
outcomes generated by the different transmission modes. Even in the absence of empirical data, these
expectations can inform researchers as to whether the corresponding statistics pxmax, kx, dxS , txmax carry a
signature of the underlying transmission modes.

If researchers do have access to empirical estimates of a statistic, then the procedure can be extended to
incorporate this information. This is illustrated with an example in Figure 1(a). Values of the statistic
in regions A and C are almost “unique” to modes x and y, respectively, whereas values in region B are
“shared”. The interpretation is that values of the statistic in regions A and C could only have been produced
by one of the two modes, whereas values in region B could have been produced by either mode. It follows
that empirical estimates provide no additional information in cases where the area of overlapOxy is close to
the extremes 0 and 1 (corresponding to no overlap and complete overlap of the distributions, respectively).

In detail, given the empirical estimate of a statistic, denoted by z, the aim is to determine the probability
that a given transmission mode acted in the population to produce this value. We define the set of possible
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transmission modes Γ = {v, h, o, n,m} and assume that one of these did produce the observed value of the
statistic. Bayes’ theorem then results in

P (y|z) =
f(z|y)P (y)

f(z)
with y ∈ Γ, (2)

where P (y|z) stands for the probability that mode y is acting in the population given z (see blue triangles in
Figure 1(b)). The probability distribution f(z|y) is the distribution generated by the simulation framework;
it captures the values of the statistic that can be assumed for mode x. The probability P (y) includes all prior
information about the likelihood that mode y acted in the population; in the absence of prior information
we assume that P (y) = 1

|Γ| . The function f(·) describes the probability distribution of the values of the
statistic and it holds f(z) =

∑
γ∈Γ

P (γ)f(z|γ).

For comparison of two transmission modes, the probability P (y|z) can be determined by logistic regression
(see blue line in Figure 1(b)). Multinomial logistic regression can be used for more than two modes. Proba-
bilities close to 0 or 1 have a clear interpretation: at 0, mode y could not have produced the observed value
of the statistic; at 1, mode y is most likely to have produced the observed value, compared to the possible
alternatives. Intermediate values indicate that multiple transmission modes could have produced the ob-
served value of the statistic. Alternatively, receiver operating characteristic (ROC) curve analysis could be
applied (see Section S2 in the supplementary material for details).

3 Results

3.1 Population-level patterns

In this section we explore whether the different transmission modes result in characteristic population-level
outcomes under scenarios with low vs. high potential for cultural change, as defined in Section 2.1.3. An
example of the analyses underlying the results is presented in Section S3.1 in the supplementary material.

3.1.1 Pure modes

We begin by investigating the behaviour of the pure modes — vertical, horizontal, oblique, and age-neutral
transmission. To this end, we study the distributions of statistics pxmax, kx, dxS , txmax, conditioned on transmis-
sion modes x = v, h, o, n, for parameter constellations N = 25, 50, 100; µ = 0.01, 0.05, 0.1; pw = 0.5, 0.75, 1.

Statistics pxmax, kx, and dxS describe the cultural composition of the population at a given point in time
(Section 2.2.1). The different transmission modes result in comparable population-level outcomes for these
statistics under scenarios with low potential for cultural change. At the same time, outcomes for oblique
transmission are strongly affected by the value of pw. Specifically, under scenarios with high potential
for cultural change oblique transmission leads to more homogenous cultural compositions than vertical,
horizontal, and age-neutral transmission.

These differences in behaviour across transmission modes are rooted in the different sets of potential in-
teraction partners. In age-neutral transmission an individual can interact with any other individual in the
population. In horizontal transmission an individual in age group k can only interact with the nk − 1 indi-
viduals in its own age group (corresponding to age-neutral transmission within the age group). In oblique

transmission an individual in age group k can interact with
5∑

j=k+1

nj older individuals, where nj is the

number of individuals in age group j (corresponding to age-neutral transmission within all age groups
older than the individual’s). In other words, compared to age-neutral and horizontal transmission, oblique
transmission is characterised by a disproportional influence of older individuals. Individuals in age group
5 are potential interaction partners for all individuals in age group 4 and younger, whereas individuals in
age group 2 are potential interaction partners only for individuals in age group 1. As a result, a variant at
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high frequency in age group 5 tends to “trickle down” to the other age groups; over time, it tends to become
increasingly common, eventually leading towards homogenisation of the population as a whole.

To illustrate the influence of the age structure on the transmission dynamic we derive the probability that a
mutant variant (i.e. a variant with frequency 1) has frequency 0, 1, 2, . . . , N after one time step (Section S3.2
of the supplementary materials). For oblique transmission the spread probability of a mutant variant is
highly influenced by the age of the individual introducing it into the population: the older the individual,
the higher the probability that the variant is still present in the population after one time step. By contrast,
for horizontal transmission the spread probability does not vary greatly with the age of the individual
introducing it into the population. By definition, the same is true for age-neutral transmission.

How does this translate into population-level outcomes? Figure 2 shows the level of cultural diversity
dxs for the different modes in a scenario with high potential for cultural change (parameter constellation
N = 100, µ = 0.1, pw = 1), separately in each of the five age groups and in the population as a whole. For
oblique transmission the level of diversity within age groups is comparable to the level of diversity in the
whole population. This suggests that the age groups are culturally more homogeneous, as expected based
on the trickle-down effect. The same pattern applies to age-neutral transmission; by definition, this mode
is not affected by the age structure of the population. By contrast, for horizontal transmission the level of
diversity within age groups is substantially lower than the level of diversity in the whole population. This
suggests that the different age groups sustain different cultural variants.
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Figure 2: Level of cultural diversity in the five age groups and in the whole population for the pure trans-
mission modes. Shown are the distribution functions of statistic dxs for the different modes, under parameter
constellation N = 100, µ = 0.1, pw = 1.

A final insight relates to the relative rate of cultural change for the different transmission modes. Specif-
ically, the modes can be ranked by ordering the distribution functions of txmax (Section S3.1.1 in the sup-
plementary material). As expected, vertical transmission leads to the slowest rate of change, as there are
limited opportunities for transmission compared to the other modes (see Figure S1 in the supplementary
material). Further, oblique transmission is characterised by a slower rate of change than horizontal and
age-neutral transmission, due the disproportional influence of older age groups and the consequent ho-
mogenisation of the population.
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3.1.2 Mixed mode

The results for mixed transmission reveal a consistent pattern (Section S3.1.2 in the supplementary mate-
rial). At low values of pmix the occasional oblique transmission event may introduce variants otherwise
absent in a given age group. This leads to an increase in cultural diversity at the population level com-
pared to pure horizontal transmission. At high values of pmix the occasional horizontal transmission event
effectively dampens the trickle-down effect, weakening the disproportional influence of older age groups
and the consequent homogenization of the population. This leads to an increase in cultural diversity at the
population level compared to pure oblique transmission. In sum, at both extremes of pmix the mixed mode
results in higher levels of cultural diversity in the population than the “corresponding” pure mode.

Similarly, at both extremes of pmix the mixed mode results in a faster rate of cultural change than the “cor-
responding” pure mode.

3.2 Inference

In the previous section we have shown that the different transmission modes result in different patterns at
the population level. Here we investigate whether the differences are large enough to ensure distinguisha-
bility based on the statistics introduced in Section 2.2.1.

3.2.1 Pure modes

Following the procedure described in Section 2.2.2, we compare the probability distributions of the statistics
for pairs of transmission modes x and y, with x, y ∈ {v, h, o, n}, and parameter constellations N = 50; µ =
0.01; pw = 0.5 and N = 50; µ = 0.1; pw = 1. Analysis of a larger set of parameters can be found in section
S3.3.1 in the supplementary material. Qualitatively, comparison of vertical transmission to the other modes
captures the effect of interactions that occur during the individuals’ lifetime. Comparison of age-neutral to
oblique and horizontal transmission captures the effect of restricting the set of potential interaction partners
to individuals within the same age group and to older individuals, respectively. Finally, comparison of
horizontal to oblique transmission captures the effect of the age group of the interaction partner.

We start with analysing the area of overlap Oxy based on the joint probability distribution of the five vari-
ants of a trait (Figure 3(a)). Under scenarios with low potential for cultural change (e.g. low µ, low pw;
Section 2.1.3), the different transmission modes result in comparable joint probability distributions: Oxy
approaches 1 (see Figure S4 in the supplementary material). Oxy tends to decrease as the potential for cul-
tural change increases (i.e. as µ and/or pw increase). In particular, oblique transmission tends to deviate
from the other modes. However, the differences are not large enough to ensure distinguishability based on
an arbitrary threshold Ō = 0.2 (see the values of Oxy for fjoint,x in Table 3).

As noted in Section 2.2.1, the joint probability distribution of the five variants of a trait captures the most
information about the system at a given point in time. By contrast, statistics pxmax, kx rely on partial data,
whereas dxS provides summary information. Unsurprisingly, then, the distributions of pxmax, kx, dxS carry a
weaker signature of the underlying transmission modes than the joint probability distribution (e.g. com-
pare the values of Oxy for fjoint,x vs. fdxS in Table 3; the corresponding plots are in Section S3.3.1 in the
supplementary material).

Figure 3(b) shows the behaviour of Oxy based on statistic txmax, the average time a variant stays the most
common variant in the population (Section 2.2.1). Under scenarios with low potential for cultural change
(e.g. low µ, low pw), the different transmission modes result in comparable distributions of txmax. Under
scenarios with high potential for cultural change (e.g. high µ, high pw), four pairs (vertical vs. horizontal,
vertical vs. age-neutral, age-neutral vs. oblique, horizonatal vs. oblique) produce distributions of txmax with
no overlap (i.e. Oxy = 0; Table 3), indicating that they can be distinguished based on this statistics. In
other words, these transmission modes result in temporal dynamics that are sufficiently different to be
distinguishable.
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a. b.

Figure 3: Distinguishability between the pure transmission modes v, h, o, n (Table 1) based on (a) the
joint probability distribution of the five variants of a trait in the population, and (b) the average time
a variant stays the most common variant, txmax. Shown are the values of the area of overlap Oxy be-
tween the probability distributions of the statistic for pairs of modes, under parameter constellations
N = 50;µ = 0.01; pw = 0.5 (left panels) and N = 50;µ = 0.1; pw = 1 (right panels). The correspond-
ing gray scale ranges from white for Oxy = 0 to black for Oxy = 1.

Modes fjoint,x fdxS ftxmax

Vertical vs. horizontal 0.63 0.84 0
Vertical vs. oblique 0.60 0.73 0.39
Vertical vs. age-neutral 0.61 0.73 0
Age-neutral vs. horizontal 0.69 0.96 0.48
Age-neutral vs. oblique 0.39 0.57 0
Horizontal vs. oblique 0.52 0.58 0.10

Table 3: Distinguishability between the pure transmission modes based on select statistics: the joint proba-
bility distribution of the five variants of a trait in the population, fjoint,x, the level of cultural diversity, dxS ,
and the average time a variant stays the most common variant, txmax. Shown are the values of the area of
overlap Oxy between the probability distributions of the statistic for pairs of modes, under parameter con-
stellation N = 50, µ = 0.1, pw = 1. Values in bold indicate distinguishability based on threshold Ō = 0.2.

Two pairs of modes result in comparable distributions (vertical vs. oblique transmission, age-neutral vs.
horizontal transmission), with areas of overlap substantially greater than 0 (Figure 3(b)). To obtain fur-
ther insight, we calculate the conditional probabilities P (y|z) given in equation (2) for these pairwise com-
parisons. Figures 4(a) and (b) show the probabilities based on tmax. In the case of vertical vs. oblique
transmission (Figure 4(a)), smaller values of empirical estimates of tmax point to oblique transmission (cf.
P (v|tmax = z) ≈ 0 for small values of tmax), whereas larger values point to vertical transmission (cf.
P (v|tmax = z) ≈ 1 for large values of tmax). We note that in this context “small” and “large” refer only
to the comparison between values generated by vertical and oblique transmission. As discussed in Section
3.1, oblique transmission produces larger values of tmax than horizontal and age-neutral transmission (see
Figure S1(d) in the supplementary material). The distinction between age-neutral and horizontal transmis-
sion remains ambiguous, however; almost all values of tmax can be produced by either mode (Figure 4(b)).
Similar conclusions apply for the level of cultural diversity dS (Figures 4(c) and (d)).

In sum, the existence of an empirical estimate greatly improves our ability to distinguish between different
transmission modes in situations where a priori definitions are not sufficient (i.e. in situations where the
area of overlap between the corresponding distributions is larger than 0).
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Figure 4: P (x|z) for pairwise comparisons between vertical and oblique transmission (left panels, blue tri-
angles) and age-neutral and horizontal transmission (right panels, green squares) based on (a) the average
time a variant stays the most common variant, txmax, and (b) the level of cultural diversity, dS , under param-
eter constellation N = 50;µ = 0.1; pw = 1. The grey areas indicate the values of the statistic which could
have been produced by either transmission mode with a probability greater than 0.2.

3.2.2 Mixed mode

The results for mixed transmission are in Section S3.3.2 in the supplementary material. The aim in this case
is to compare distributions of a statistic for (i) the mixed mode at a given level of pmix to the pure modes,
and (ii) the mixed mode at a given level of pmix to the mixed mode at other levels of pmix.

Consistent with results for the pure modes, the temporal dynamic of cultural change carries more informa-
tion about the underlying process than the cultural composition of the population at a specific point in time,
as captured, respectively, by statistics txmax and dxS . Overall, for both statistics the overlap between distri-
butions tends to decrease as the potential for cultural change increases. However, only a limited number of
pairs of modes result in distributions that can be distinguished based on the arbitrary threshold Ō = 0.2,
and only for txmax. For instance, mixed transmission with pmix = 0.5 can only be reliably distinguished
from vertical transmission. Further, as expected at both extremes of pmix the mixed mode cannot be distin-
guished from the “corresponding” pure mode (i.e. horizontal transmission for low values of pmix, oblique
transmission for high values of pmix).

3.2.3 Conformity bias

Conformist transmission is known to reduce cultural diversity: the cultural composition of a population
tends to be more homogeneous with conformity bias than without it [e.g. 8]. But how strong does the bias
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have to be to produce characteristic population-level outcomes? In this section we explore whether the
presence of conformity bias can be established based on the level of cultural diversity in a population or
the temporal dynamic of cultural ange.

Without conformity bias, interactions occur at random between individuals in the relevant age group(s). By
contrast, with conformity bias the probability of an individual interacting with a partner carrying a given
variant increases with the frequency of the variant in the population (see equation (1)).

Following the procedure described in Section 2.2.2, we compare the probability distributions of statistics dxS
and txmax for transmission modes x, y ∈ {v, h, o, n} and parameter constellationsN = 50, 100; µ = 0.1; pw =
1. Analysis of a larger set of parameters can be found in Section S3.3.3 of the supplementary material. The
aim in this case is to compare the distributions of each statistic for a given mode without conformity bias to
its conformist counterparts with varying levels of b (i.e. b = 0 vs. b = 0.01, 0.02, 0.03; recall that parameter b
captures the strength of the bias). Note that we focus on scenarios with interaction probability pw = 1.

Figure 5(a) shows the areas of overlap Oxy for statistic dxS , the level of cultural diversity in the population.
By definition, vertical transmission is not affected by conformity bias (not shown). For all other modes,
as expected there is a trend towards more homogeneous cultural compositions with increasing conformity
bias. Thus, as b increases, diversity decreases, the distributions of dxS with and without bias become in-
creasingly different, and the values of Oxy decrease as a result. However, the differences are typically not
large enough to ensure distinguishability based on an arbitrary threshold Ō = 0.2. The only exception is
age-neutral transmission for a limited subset of parameter values involving a large population size, low to
intermediate mutation rates, and moderate to strong conformity bias (see Figure S6 in the supplementary
material). As expected, analysis of P (y|z) given in equation (2) reveals that low values of dS are consistent
with a hypothesis of conformist transmission.

Figure 5(b) shows the behaviour ofOxy for statistic txmax, the average time a variant stays the most common
variant in the population. We expect this to increases with conformity bias, which by definition “sustains”
the most common variant in the population. Our results show that the ability to reliably detect the bias
increases with population size. At the same time, it is contingent on the number of potential interaction
partners. For example, for age-neutral transmission, moderate conformity can be detected for almost all
parameter settings (see also Figure S6 in the supplementary material). By contrast, restricting the set of
potential partners to peers (horizontal transmission) or older individuals (oblique transmission) reduces
the range of parameter values for which the bias can be detected. In the case of oblique transmission, in
fact, only strong bias can be reliably detected, and only for intermediate to high mutation rates (specifically,
N = 100;µ = 0.1; b = 0.03). Analysis of P (y|z) reveals that large values of tmax point to the existence of a
conformist bias in the population.

3.2.4 Continuous traits

In section S3.3.4 of the supplementary material we apply the framework described above to continuous
cultural traits, i.e. traits that can take any value in a given interval. Overall, we find that the population
average of the trait does not carry a detectable signature of the underlying transmission modes. Binning
the interval of trait values into discrete variants results in greater inferential power, but the binning must
be sufficiently fine-grained, with the traits discretized in more than three variants (see Section S3.3.4 for a
detailed analysis).

4 Discussion

We developed a simulation model to explore the interface between individual-level processes and
population-level patterns in human cultural evolution. Our first aim was to derive broad expectations
about different pathways for the transmission of information between individuals. Our second aim was
to establish theoretical limits to inference based on the population-level patterns produced by these path-
ways. Are the patterns different enough that they can be reliably distinguished based on population-level
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a. b.

Figure 5: Distinguishability between pure transmission modes h, o, n (Table 1) and their conformist counter-
parts based on (a) the level of cultural diversity, dxS , and (b) the average time a variant stays the most com-
mon variant, txmax. Shown are the values of the area of overlap Oxy between the probability distributions of
the statistic for a given mode with and without conformity, with varying levels of b = 0.01; 0.02; 0.03, under
parameter constellations N = 50;µ = 0.1; pw = 1 (left panels) and N = 100;µ = 0.1; pw = 1 (right panels).
The corresponding gray scale ranges from white for Oxy = 0 to black for Oxy = 1.

statistics, providing insight into the underlying individual-level processes?

The model tracks the distribution of variants of cultural traits across individuals in a population over time,
conditioned on different modes for the transmission of information between individuals, for a range of
parameters capturing demographic and cultural factors. Building on previous work [7], we investigated
four “pure” modes: vertical (parent to offspring), horizontal (peer to peer, by age group), oblique (older
to younger, excluding parent to offspring), and age-neutral (any individual in the population). A fifth
“mixed” mode effectively combined horizontal and oblique transmission. We also investigated the effect
of conformity bias, a preference for the most common variant in the population [8].

We used four statistics to summarize the cultural composition of the population at a specific point in time:
the frequency distribution of the different variants of the cultural trait, the frequency of the most common
variant, the total number of variants present, and the level of cultural diversity. An additional statistic
measured the rate of change of the most common variant of a trait. This gave an indication of how fast
the cultural composition of the population can change, providing insight into the temporal dynamic of the
process.

4.1 Age structure, trickle-down effect, and relative rates of change

The five transmission modes differ in the set of potential interaction partners (Section 2.1.1). Previous work
suggests that they should therefore produce substantially different evolutionary dynamics, modulated by
demographic and cultural factors [e.g. 7]. For example, [18] explored the effects of vertical, oblique, and
horizontal transmission on the age-structure of a population, and the extent to which cultural traits affecting
demographic change can spread. They showed that a trait that reduces fertility but increases survival can
spread to fixation and lead to substantial demographic change, in the form of an increase in population
size, under certain modes of cultural transmission.

Our results, based on analysis of neutral traits and constant population sizes, show that the five transmis-
sion modes lead to differences in evolutionary dynamics. These differences are most pronounced under
scenarios with high potential for cultural change (e.g. high mutation rates, high interaction probabilities).
In particular, we have shown that oblique transmission is strongly affected by the value of the interaction
probability: when this is high, oblique transmission results in more homogenous cultural compositions
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compared to the other pure modes. Broadly, a homogenous cultural composition is reflected in an un-
even frequency distribution of the cultural variants (i.e. a low number of variants present due to the high
frequency of the most common variant), resulting in low cultural diversity (Section 3.1).

Further, we have shown that this effect is rooted in the interplay between the different sets of potential
interaction partners and the age structure of the population. In particular, oblique transmission is charac-
terised by a disproportional influence of older individuals, whereby a variant at high frequency in one age
group trickles down to all younger age groups; over time, this leads to a more homogeneous population.
For example, an individual in the oldest age group is a potential interaction partner for all younger indi-
viduals in the population, whereas a “middle-aged” individual is a potential partner for only the younger
half of the population. This effect leaves a signature at the population level in terms of (i) lower levels of
cultural diversity, and (ii) slower rates of cultural change, for oblique transmission compared to horizontal
and age-neutral transmission. Horizontal and age-neutral transmission show comparable rates of change.

Vertical transmission leads to the slowest rates of change. In our framework, this mode involves a “one-
shot” interaction event between parent and offspring, with opportunities for change limited to the process
of mutation. The relative “conservativeness” of vertical transmission is a well-established result in the
theory of gene–culture coevolution, starting with seminal work by [7]. We return to this issue below, after
outlining our results regarding inference.

4.2 Inferring process from pattern

4.2.1 Summary of results

Questions relating to the indentifiability of transmission modes or other underlying processes are of course
not restricted to the field of cultural evolution. For example, a large body of work in population genetics
focuses on testing for the presence or absence of selective forces [e.g. 26, 27, 28]. The general idea, similar
to the one used here, is to derive expectations for different quantities of interest under a specific evolution-
ary scenario, and to subsequently compare empirical estimates of the quantities with those expectations.
Recently, inferential frameworks have been applied directly to observed data. These frameworks often
combine generative modeling of the system under consideration and Bayesian inference techniques. For
example, in this way researchers have gained important insights into the transmission dynamics of infec-
tious diseases and other epidemiological processes [e.g. 29, 30, 31], and into human demographic history
[e.g. 32, 33, 34]. Rather than focusing on a particular cultural dataset [see e.g. 11, 12, 35, 36, 37, for examples
of such analyses], our aim here was to develop a theoretical understanding of which transmission modes
can be distinguished on the basis of population-level data. This relates to the problem of equifinality, i.e.
which modes can produce similar population-level patterns.

Our analysis provides two kinds of results: first, general expectations about the distinguishability of
population-level outcomes produced by the different transmission modes in the absence of empirical data;
second, given an empirical estimate of a statistic, the probability that a given transmission mode acted in
the population to produce this estimate.

Beginning with the pure modes, our results show that under scenarios with low potential for cultural
change (e.g. low mutation rates, low interaction probabilities) the modes produce outcomes that cannot
be reliably distinguished based on any statistic. Yet outcomes tend to diverge as the potential for cultural
change increases. In particular, under scenarios with high potential for cultural change they can be reliably
distinguished, in most cases, based on the temporal dynamic. The two exceptions are vertical vs. oblique
transmission, and age-neutral vs. horizontal transmission. In these two cases, additional insight can be
gained from empirical estimates of the average time a variant stays the most common variant. For vertical
vs. oblique transmission, small values are indicative of oblique transmission, whereas large values clearly
point to oblique transmission. For age-neutral vs. horizontal transmission, even an empirical estimate will
likely not be able to resolve the distinguishability issue.

These results suggest that even when outcomes are similar in terms of cultural compositions, they can
differ substantially in temporal dynamics — in other words, similar distributions of cultural variants at a
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specific point in time can be reached through substantially different processes. In sum, for the pure modes
the temporal dynamic of cultural change over time retains a stronger signature of the underlying processes
than a “snapshot” of the relative frequencies of the variants at a given point in time, and the signature is
stronger the greater the potential for cultural change.

This general insight also applies to mixed transmission. However, in this case even under scenarios with
high potential for cultural change the signature retained by the temporal dynamic tends to be too weak for
outcomes to be reliably distinguished.

Finally, we have shown that the signature of conformity bias is in general stronger for the temporal dynamic
than for the level of cultural diversity. As expected, the level of cultural diversity decreases with increas-
ing conformity bias, while the temporal dynamic slows down. At the same time, with small population
sizes the signature of conformist transmission tends to be obscured by random drift. It becomes stronger
as population size increases, especially for age-neutral transmission, as the resulting increase in the pool of
potential interaction partners is larger in this case than for horizontal or oblique transmission. For horizon-
tal and oblique transmission, only strong conformity bias can be reliably detected, in most cases, and only
based on the temporal dynamic with large population sizes.

Empirical estimates can provide further insight also in this case. Specifically, low values of cultural diversity
and large average times a variant stays the most common point strongly to the existence of a conformist
bias, when compared with the non-conformist situation.

4.2.2 Implications for empirical studies

We conclude by reviewing the implications of our findings for empirical studies of cultural evolution.
Broadly, our work complements alternative theoretical approaches used to infer process from pattern in
human culture, including efforts based on adoption curves [e.g. 16, 38, 39, 40], rank–abundance distribu-
tions [e.g. 41, 19, 42], levels of diversity [e.g. 43, 1, 44], and turnover rates [e.g. 45, 46], as well as model
selection frameworks [e.g. 47].

In terms of inference, our study suggests that if the frequency distribution of the different variants of a trait
is available, then inference procedures should rely on these data where possible. Unsurprisingly, using
partial data (e.g. the frequency of the most common variant of a trait) or summary statistics (i.e. the level
of cultural diversity) results in loss of useful information. For example, a diversity measure such as the
Shannon index is often used to summarise the cultural composition of a population [e.g. 1, 23, 24]. We have
shown that the dimension reduction involved in its calculation obscures population-level differences in the
patterns produced by the transmission modes.

As discussed above, our results suggest that the temporal dynamic of cultural change over time is more
instructive about the underlying processes than the cultural composition of the population at a given point
in time. The approach we used to characterize the temporal dynamic is more parsimonious than other
approaches in the literature. For example, [45] use the turnover rate, defined as the number of new variants
of a trait that enter the list of variants at the highest frequency in each time step (analogous to the “new
entries” in a top-10 or top-100 chart). However, this measure does not readily extend to traits that include
only a small number of variants (e.g. five variants, as in our case). Additionally, it requires information
about the frequencies of all variants in the population. By contrast, our approach only requires information
about the frequency of the most common variant.

At the same time, it should be noted that the results presented here rest on the assumption that we have
complete information about the most common variant of the trait at every point in a given time interval
— in other words, that estimation of the temporal dynamic of cultural change is exact. Such detailed time
series data are difficult to obtain, however, especially for existing datasets and/or those that rely on his-
torical information. In a related study using the mathematical framework developed here, we investigated
how sparse the time series data can be for the transmission modes to still be distinguishable [48]. Results
show that if only incomplete information is available, i.e. the most common variant is known for a sample
of time points, then the level of distinguishability depends on the properties of the sample. In particular,
the distance between the time points affects how much insight can be obtained from population-level data.

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2017. ; https://doi.org/10.1101/111575doi: bioRxiv preprint 

https://doi.org/10.1101/111575
http://creativecommons.org/licenses/by-nc-nd/4.0/


In general, if information about the most common variant in the population is only available for a sample
of time points, one should not expect levels of distinguishability comparable to those we report here.

In practice, the use of the most appropriate statistic or inference framework is dictated by the available data.
Given our focus on cultural evolution, we have analyzed statistics that can potentially be derived even from
sparse data — a common feature of datasets in athropology and related disciplines. Where researchers
have access to data with high temporal resolution, such as time series describing the frequency change of
different cultural variants, then adoption curve analyses, and especially model selection frameworks, can
be instructive.

A final set of insights relates to the analysis of continuous cultural traits. Our results show that the mean
value of a trait across the population does not carry a detectable signature of the underlying transmission
modes; therefore, it is not a useful statistic for characterising the cultural composition of a population.
Binning the interval of trait values into discrete variants results in greater inferential power, but the binning
must be sufficiently fine-grained. For example, discretisation into two or three variants (corresponding to
e.g. present vs. absent or small vs. medium vs. large) is generally not enough to ensure distinguishability
based on the temporal dynamic of cultural change, whereas discretization into five or ten variants produces
distinguishability results comparable to the discrete case.

We conclude with a general observation, bearing on the interface between the observed population-level
patterns and the underlying individual-level processes. As discussed above, our results show that vertical
transmission leads to the slowest rate of change of all the modes, consistent with the notion prevalent in the
literature of its relative “conservativeness” [7]. This notion continues to provide the foundation to a large
body of empirical work, including field-based investigations [e.g. 10, 11, 12] and cross-cultural studies [e.g.
13, 14, 15, 12]. At the same time, our inference results show that vertical transmission can produce temporal
dynamics similar to other modes, and in particular to oblique transmission. Empirical estimates of statistics
describing the temporal dynamic can provide further crucial information. Still, our findings invite caution
in linking population-level patterns to individual-level processes based on data documenting variation in
cultural traits within and between populations.

This example illustrates well the theoretical limits to inferring individual-level processes from population-
level patterns in human cultural evolution. In particular, we should not expect a one-to-one mapping
between population-level statistics and the underlying transmission modes: different scenarios can lead
to comparable patterns at the level of groups. Consistency between any one specific scenario and empir-
ical data should be interpreted in this context. However, acknowledging the problem of equifinality does
not imply that we cannot extract any information about cultural evolution from these data. Mathematical
frameworks similar to one used here can provide general expectations, in form of probability distribu-
tions, against which to compare empirical estimates. Further, statistical inference procedures that compare
simulated data to empirical data can help delimit the amount of information that can be extracted on a
case-by-case basis [e.g. 35, 36, 37]. Conceptually, this shifts the focus from identifying the one scenario that
likely produced the observed data to excluding those that likely did not.
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