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Abstract

Some natural clays and synthetic nanofibres present in the environment have a severe impact on

human health. After several decades of research, the molecular mechanism of how asbestos induce

cancers is not well understood. Different fibres, including asbestos, can penetrate the membrane and

introduce DNA in both, bacterial and eukaryotic cells. Incubating Escherichia coli with sepiolite, a

clayey  material,  and  asbestos  under  friction  forces,  both  fibres  cause  double-strand  breaks  in

bacteria. Since antibiotics and clays are used together in animal husbandry, the mutagenic effect of

these fibres  might  constitute  a  pathway to antibiotic  resistance due  to  the friction  provided by

peristalsis  of the gut from farm animals in addition to the previously proposed horizontal  gene

transfer.  Moreover,  we  raise  the  possibility  that  the  same  mechanism  could  generate  bacteria

diversity in natural scenarios with a role in the evolution of species. Finally, we provide a new

model on how asbestos may promote mutagenesis and cancer based on the observed mechanical

genotoxicity.
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Introduction

Clays  such as  sepiolite  are  jointly  used  with  antibiotics  in  farming  as  growth promoters.  This

practice improves growth and animal product quality, and these additives are common in feed for

broiler chickens and pigs [1,2]. Sepiolite is considered to be safe, stable and chemical inert hence

being also used in tablet formulation for human medicine [3]. However, in a recent study clays used

as animal feed additive can increase the risk of horizontal gene transfer (HGT) among microbes,

resulting possibly in a rise of antibiotic resistance [4,5]. 

In this case, the transformation of bacteria by foreign DNA can be achieved when clay fibres are

spread by friction or vibrations. This phenomenon is known as Yoshida effect [6] and relies on the

ability of mineral nanofibres or nano-needles to adsorb DNA and to penetrate bacterial cells under

sliding friction forces  [7]. By its mechanical nature, the Yoshida effect can be used to transform

diverse bacterial species [5,8,9]. The action of sepiolite and other clays fibres is not only capable of

delivering  DNA into  the  receptor  bacteria  but  also  able  to  promote  the  releasing  of  DNA by

disrupting the cell envelope of the portion of the population by the abrasive action of clays [5]. 

Before Yoshida began his experiments with bacteria, the ability of asbestos to transform eukaryotic

cells was reported at the end of the eighties [10]. In fact, fibrous clays and industrial nanofibres are

considered genotoxic and carcinogenic, likely due to their ability to damage DNA [11]. They have

assayed in several experimental models including bacteria and cell in cultures, but they display a

poor correlation with mutagenicity  or carcinogenesis found  in  vivo [12,13].  According to these

observations,  a  significant  concern  arises  from fibrous  clays  or  industrial  nanofibres  which  are

responsible for severe human diseases such as asbestosis  [14]. However, short or long periods of

exposure to fibres have been failing to identify a molecular basis  of DNA damage in different

several genotoxicity tests  [14]. Thus, nowadays the mechanisms underlying the genotoxicity and

carcinogenicity of asbestos and other fibres remain obscure.

Additionally, clays may have the potential to enhance antibiotic resistance in farming activities [4].

In  natural  scenarios,  sediments  and  stones  (gastroliths)  are  frequently  swallowed  by  animals

resulting unavoidably in the exposure of their microbiota to pebbles, sand, and clays. Soils and

waters  are  a  primary  source  of  antimicrobials,  either  by  natural  microbial  production  or

environmental antibiotic pollution, a major selective pressure that favours resistant strains [15,16].

Even, gut microbes can produce antibiotic compounds [17].
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In this study, the ability of fibrous clays such as sepiolite and asbestos to transform bacteria and to

induce mutagenic DNA double-strand breaks (DSBs) when they are exposed to friction forces was

experimentally shown. Additionally, a molecular mechanism of action for asbestos, which was a

strong inducer of DSBs in  Escherichia coli when friction is present, was proposed. Finally, the

importance  of  this  mechanism  is  discussed  for  the  speciation  processes  of  animals  that  use

gastroliths.

Results and Discussion

Mutant  frequency  in  sepiolite-treated  cells  is  higher  than  in  non  sepiolite-treated  cells.

Different  types  of  clays  can  transform  bacteria  by  absorbing  DNA  and  penetrating  the  cell

envelope. In that case, the penetration could allow the clays to interact with the intracellular DNA

and promote mutations. To test whether sepiolite under friction forces (as in transformation) has an

impact  on  bacterial  mutation  rate,  the  mutant  frequency  of  Escherichia  coli was  measured  by

plating in the antibiotic fosfomycin and enumerating spontaneous mutants (fig 1). When the cells

were  merely  exposed  to  sepiolite  without  any  friction  on  agar  plates  surface,  no  significant

differences in mutant frequencies were detected (Mann-Whitney U test; P=0.999). In contrast, a six-

fold increase in mutant frequency was found when friction was present for two or three minutes

(Mann-Whitney U test; P=0.008) and a modest increase—but not significant—when the treatment

time  lasted  for  one  minute  (Mann-Whitney  U  test;  P=0.421).  Interestingly,  only  cells  in  the

stationary phase displayed an increase in mutant frequency (Kruskal-Wallis test; P=0.001), while no

significant mutagenesis was found when bacteria came from exponential cultures (Kruskal-Wallis

test; P=0.954; fig 1). Along with the mutant frequency experiments, the effect of the treatments on

cell  viability  was  checked.  Sensitivity  to  the  treatment  is  higher  in  exponential  phase  than  in

stationary phase cultures (fig 2). The observed mutant frequency differences was initially attributed

to a  higher  sensitivity  to  the treatment.  However,  several  hypotheses  can explain  the observed

increase in mutant frequency and reduced-sensitivity in stationary phase cultures. 

Heavy metals are non relevant on sepiolite mutagenesis. Many minerals containing metals such

as iron, aluminium or copper are toxic for bacteria because of the generation of reactive oxygen

species (ROS) via the Fenton reaction [18]. The release of metal ions inside the cell could therefore

be  the  reason of  the  increase  in  mutagenesis.  In  fact,  despite  the  addition  of  2-2′  bipyridyl,  a

chelating  agent,  shortly  before  treatment,  mutagenesis  was  still  observed  (Kruskal-Wallis  test;
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P=0.008; fig S1). This result indicates that the mutagenic effect does not depend on the metals

present in the fibres.

Sepiolite interacts with the DNA by causing double-strand breaks. A second likely explanation

is the physical interaction of individual clay fibres in motion directly damaging DNA by creating

DSBs.  The ability of sepiolite fibres to penetrate and interact with DNA has already been stated

[6,19].  Physical or mechanical stress on the DNA duplex is a relevant cause of DSBs  [20]. To

evaluate this possibility,  E. coli DH5α strain (recA deficient) carrying the plasmid (pET-19b) was

subjected to treatment with sepiolite and sliding friction. Sepiolite without friction and bacterial

cells alone were used as controls. The plasmid content was extracted, and its integrity was evaluated

by  gel  migration  (fig  3A).  Typically,  during  plasmid  DNA  extraction,  three  molecular

conformations are found: the supercoiled (which migrates very fast), nicked DNA (which is also

closed circular but relaxed due to single strand breaks and it has an intermediate migration rate) and

linear molecules (with a lower migration speed) [21]. These latter DNA molecules were especially

abundant in the friction-sepiolite treated group at the time that they are present in a low level in

control groups. In fact, plasmids from the sepiolite group (under friction) presented a significantly

high level of linearised molecules when compared to the control groups (One-Way ANOVA test;

P=3.33×10-16). According to these results, the joint action of sepiolite and friction are responsible

for induction of DSBs in the DNA. Interestingly, no increase in nicked DNA (single-strand break)

was observed, indicating that if this type of lesion occurs, it happens at a non-detectable rate by this

technique (fig 3B).  

The  view  of  mutagenic  DSBs  by  mechanical  shearing  is  very  consistent  with  the  absence  of

mutagenic effect in exponentially growing bacteria. If the organism is diploid (even if the diploidy

is only transient, as in replicating bacteria or replicating haploid yeast),  then homology-directed

repair can be used [20]. Because E. coli lacks a pathway to join non-homologous ends, homologous

recombination is the only mechanism to salvage broken chromosomes  [22]. But how can  E. coli

repair DSBs in stationary phase by homologous recombination? Stationary-phase cultures contain

cells with several chromosome copies  [23]. In exponentially growing  E. coli DSB repair is non-

mutagenic  [24,25].  However,  break  repair  becomes  mutagenic  during  the  stationary  phase  and

requires the Sigma S factor (RpoS), the SOS response, and the error-prone DNA polymerase PolIV.

The change from one situation to the other has been described as a switch from high-fidelity repair

in  the  exponential  phase  to  error-prone DNA double-strand breaks  during  the  stationary  phase

[24,25]. Because DSBs are lethal unless repaired, and repair action requires RecA protein [24,25],
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the experiment of sepiolite mutagenesis was repeated with E. coli DH5α that is impaired in the SOS

response triggering to confirm this notion. In such analysis, sepiolite mutagenesis was completely

abolished by recA gene inactivation in stationary phase (Kruskal-Wallis test; P=0.011; fig 4). Thus,

the lower level of mutant frequency in the recA deficient strain could be explained by the death of

cells that suffered DSBs and were unable to repair them. Mutations introduced by DSB repair are

considered a mechanism of diversity via mutagenic repair in bacteria [26,27].

Potentially, the mutagenicity of clay treatment is also enhanced in stationary phase cells due to

DNA being more tightly compacted than in the exponential phase [28]. Indeed, in Escherichia coli,

DNA goes to a co-crystallization state with the stress-induced protein Dps offering protection to

several types of stress, ordinarily chemical damage  [29]. However, while crystallization is often

associated with less flexibility or added fragility to direct physical contact, less compacted DNA of

proliferating E. coli is elastic and soft [30], which may limit the number of DSBs. It is then possible

that mineral fibres under friction can break DNA strands more easily in the stationary than in the

exponential phase. 

Sepiolite  fibres  can  penetrate  bacteria  when  friction  forces  are  present. To  reunite  more

evidence that penetration and interaction of fibres with DNA cause DSBs inside the cell, a direct

observation of sepiolite-treated bacteria by scanning electron microscopy (SEM) was performed.

Fibres look compatible in dimensions able to penetrate bacteria without completely destroying the

envelope. Additionally, bacteria were directly penetrated by fibres while those that were exposed to

mineral without friction were not (fig 5). This observation is in concordance with previous studies,

whereas sepiolite and other nano-sized acicular materials can penetrate bacterial cells under friction

forces on a hydrogel [6]. In fact, the partial destruction of the cell wall and the presence of mutants

after adding 2-2′ bipyridyl point to the mechanical action as causing agent of the damage. The

notion of mechanical breaks is in good agreement with the results in cell-free systems. In these

experiments, breakage of plasmid DNA was not directly associated with the amount of iron released

by asbestos fibres when they are incubated together [14].

Sepiolite  fibre  length  matters  to  cause  significant  DNA damage  in  the  cell. Sepiolite  also

contains very short fibres (fig S2). In the case of asbestos, there is a certainty that long fibres are

much  more  dangerous  by  their  carcinogenic  potential.  We designed  an  experiment  to  test  the

influence  sepiolite  fibre  length  for  mutagenesis  in  bacteria.  The  exposure  of  stationary  phase

bacteria to a suspension of short fibres (less than 1 µm) did not cause any significant DNA damage
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when compared with the control and in contrast with the long-fibre original mineral suspension

(Kruskal-Wallis test; P=0.005; fig 6).

Asbestos  fibres  increase  the  mutant  frequency  in  the  same  way  as  sepiolite  do. Bacterial

genotoxicity experiments are considered a key step in the assessment of mutagenic properties of

chemicals, drugs or materials in general  [31]. Because asbestos fibres resemble sepiolite ones, an

experiment  to  test  if  asbestos  fibres  provoke  an  increase  in  mutagenesis  was  designed  using

crocidolite asbestos (fig S2). In our assay, the addition of asbestos to bacteria in the plates without

friction did not increase the mutant frequency. In contrast, the application of friction when the fibres

were present increased the mutant frequency even more than sepiolite alone (Kruskal-Wallis test;

P=0.002; fig 7), probably by the same mode of action. Yoshida et al. have suggested that asbestos

and other clays can be potentially mutagenic based on integrity analysis of genomic DNA from

treated bacteria [32]. A clear antecedent of the ability of fibrous nanoclays to penetrate bacteria was

the transformation of monkey cells in culture by exogenous plasmid DNA using chrysotile (a type

of asbestos) [10]. Although procedures are not described in details, we think that this transformation

requires penetration of the cell membrane.

Further discussion. The poor correlation between DNA damage in vivo and in vitro described in

previous  studies  [12] may  be  explained  by  the  limited  or  lack  of  penetration  of  asbestos  in

experimental  designs.  Thus,  the  introduction of  some friction  or  shaking can in  determining if

penetration of cells by asbestos and other fibres underly a molecular mechanism of carcinogenesis.

The mechanism(s) underlying asbestos toxicity associated with the pathogenesis of mesothelioma

has been a challenge to unravel for more than six decades  [33].  According to our results and the

current knowledge about asbestos-induced carcinomas, we speculate about a model that explains a

potential path leading to carcinomas. Briefly, we think that people exposed to asbestos fibres during

prolonged periods accumulate them in the respiratory tract. It is frequent to find asbestos fibres into

the pleural cavity, and maybe they increase the friction coefficient in the pleural space, a parameter

with a very small value in in physiological conditions  [34]. The coelomic movement (a cyclical

mechanical movement between the parietal pleura—covering membrane of the inner surface of the

thoracic cavity—and the visceral pleura—covering membrane of the lung surface—) provokes the

movement  of  asbestos,  trespassing  occasionally  the  mesothelial  cell  membranes  or  floating

mesothelial  cells,  physically  interacting  and  disrrupting  the  DNA  or  spindle.  This  physical

interaction, with adequate intensity, could induce DSBs, which generate chromosome aberrations or

fragmentations in eukaryotic cells as we found here for bacteria. After years of exposure, DSBs or
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spindle  disruption  can  cause  chromosome  damages  or  losses  or  aneuploidy  that  increase  the

probability of malignancy. The proposed model for eukaryote cells would need in vitro validation

with epithelial cells but this is beyond the scope of the current study and left for future research.

Moreover, this model does not exclude other toxic and genotoxic mechanisms of asbestosis such as

reactive species arising from metal action or inflammatory response. 

One of the most important limitations of our study is the lack of an animal model to test if our

finding of mutagenicity in bacteria by clays occurs in vivo. In theory, clays present in livestock feed

could  promote  antibiotic  resistance  and  virulence  in  pathogenic  bacteria  by  not  only  their

transformation ability but also via mutations. However, testing conditions are hindered by the fact

that  experiments  would  require  at  least  S1  security  level,  and this  is  difficult  to  achieve  with

livestock animals [4]. Transformation of plasmid DNA requires penetration and sepiolite and other

clays have shown this capacity in a wide range of concentrations although it diminishes at high

concentration due to the killing of bacteria [9,35–37]. In a previous study, the values of pressure in

the gut of many animal species were discussed, meeting the criteria very well [4]. The presence of a

hydrogel does not seem to be a problem since both mucin layer of the gut or mucoid secretion in the

respiratory tract can play that role, particularly if fibres have the capacity to change viscosity locally

or gradients of viscosity exist across these body compartments.

An  implication  of  our  study  is  the  consideration  of  other  factors  (such  the  friction  forces)  in

assessing of genotoxicity and carcinogenesis by certain fibrous materials. Until now, many studies

associate clay-induced damage mostly with ROS  [14]. DNA damage can be produced by oxido-

reduction processes generated by metal containing-fibres. Asbestos fibres are carcinogenic for both,

humans and experimental animals, because asbestos produce DNA breaks leading to the formation

of micronucleus (a type of chromosomal aberration) [38]. This kind of damage seems to be caused

more by mechanical action rather than ROS generation, which can worsen the situation but not

necessarily has to be determinant. In other words, we think that ROS is more a symptom than a

cause. Another example of a potentially dangerous material are the carbon nanotubes (CNTs), a

novel  industrial  material  with  many  applications.  The  genetic  alterations  provoked  by  these

nanotubes  in  rat  malignant  mesothelioma  were  similar  to  those  induced  by  asbestos  [39].

Interestingly, CNTs lack heavy metals in their  composition. The nanoscale size and needle-like

rigid structure of CNTs appear to be associated with their pathogenicity in mammalian cells [38].

Coincidentally, CNTs can be used to transform bacteria with plasmids [40] in a similar fashion that
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asbestos  [10,41] and  sepiolite  do  [6,42].  It  would  not  be  surprising  that  all  these  fibrous

nanomaterials share their ability to mechanically induce DSBs. 

Recently, a possible link between talcum powder and ovarian cancer risk associated with asbestos

contamination in talc is under discussion. Although the risk is small, some studies suggested a low

or moderate but significant chance of cancer, while other rejected/discarded this correlation  [43–

45]. It is necessary to advance the understanding of molecular base of DNA damage by asbestos

and other industrial fibres. If the proposed model of mechanical/physical DNA breaks is validated

in future studies, some genotoxicity assays intended to unveil mutagenic properties of materials

(e.g.  the  test  of  Ames)  should be modified  accordingly to  include  a  standardised  procedure of

friction or promoting some sort of shaking during incubation steps. Similarly, several in vitro test,

with  both  bacteria  and eukaryotic  cells,  were  modified  by  researchers  and regulatory  agencies

where introduced the metabolic activation by fraction S9 of liver homogenate [46].

Other implications of the induction of DSBs by nanofibres in bacteria could be related with the

microbiota of animals that use gastroliths. It has been suggested that gut microbes play a crucial

role in keeping species apart or enhance the speciation [47]. It is tempting to speculate that animals

that use gastroliths or sediment ingestion expose their microbiota to the abrasive action of stone

derivative fibres. Therefore, the shaping of their own microbes is expected to contribute to their

own  speciation  trajectories.  Among  animals  that  use  or  used  gastroliths  in  their  evolutionary

trajectories, we find several branches of fishes, amphibians, reptiles (including dinosaurs) and birds.

Gastroliths also regularly occur in several groups of invertebrates [48]. Wings (2007) recommends

making a distinction between lithophagy and geophagy. Lithophagy (stones larger than 0.063 mm

in diameter) is defined as the deliberate consumption of stones that turn into gastroliths after their

ingestion. Geophagy is the consumption of soil and it is known for reptiles, birds, and mammals.

These soils, rich in clays, salts or fat, serve mainly as a food supplement for the supply of specific

minerals  or for medical purposes  [48].  Both concepts can contribute to getting together  all  the

components  that  this  mechanism  needs  to  operate:  gut  microbiota,  gut  mucin  mucoid  layer

(hydrogel)  and friction forces  provided by the peristaltic  pressure of digestive tract  in  animals,

especially the gizzard and the stomach. An interesting question is why sepiolite from limestone

gastroliths does not damage the animal gut. A convincing explanation is that the mucoid layer in the

gut protects it from the action of these sharp fibres at the time that serve as a protective layer for gut

epithelium.  In  mammals,  this  mucoid  layer  is  around  200  µm  thick  and  is  under  continuous

renovation  [49].  Sepiolite  is  a  natural  clay  mineral  characterised by a  nanofibre  structure  with
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average dimensions less than or equal to 0.2 micrometers in diameter, and from 2 to 5 micrometers

in length, although longer fibres can be present.

Concluding  remarks. Overall,  one  of  the  most  significant  contributions  of  this  article  is  the

proposition for the first time of a bacterial model to test genotoxicity of nanofibres and uncover a

new mechanism of action for asbestos that correlates better with in vivo observations. Asbestosis is

a global health and environmental problem, which molecular basis has been a challenge for several

decades [33]. Although asbestos fibres are widely distributed in the anatomy of patients [33,50], the

most common cancers caused by asbestos originate in lungs (mostly mesothelioma). If the most

explored mechanism of action is based on reactive radicals (chemical damage), why is not there

significant differences in the frequencies of other types of carcinoma such as leukaemia, lymphoma,

liver or kidney cancer among exposed populations? In the last place, and not less important, is the

tighter  contact  of  slippery  membranes  (a  monolayer  of  flattened  epithelial-like  cells)  of  the

mesothelium. The pleural space is in continuous movement and constitute preferential  target of

asbestos-induced carcinogenesis.  Of  particular  interest  are  free-floating  mesothelial  cells  of  the

cavity, that even proliferate under damaging conditions  [51]. The free-floating cells are the ideal

candidates to be penetrated by asbestos in the pleural space. They may be more sensitive to suffer

direct (physical) or indirect (chemical) DNA damage and become into a mesothelioma. Finally,

sepiolite transformation technique gained some popularity in the last years because there is no need

to prepare competence cells  [9,19,42,52]. In that case, diverse bacteria can be transformed  [4] in

both stationary  and exponentially  growing phases.  However,  to  prevent  undesired mutations  in

both, plasmid and genomic DNA, it is highly recommendable to use exponential phase bacteria,

where mutagenesis is not significant, at least in E. coli.

Methods

Bacteria and growth conditions. The E. coli MG1655 wild-type strain and its derivative mutants

were cultured in Lysogenic Broth (LB). All experiments were performed at 37°C, with shaking in

liquid culture. All solid cultures were grown in LB agar 1.5% for standard procedures and 2% for

the sepiolite treatment. All cultures were supplemented with antibiotics when appropriate.

Mutant frequency estimation of sepiolite treated cells. Approximately 2 × 109 bacterial cells per

ml  of  E.  coli MG1655  and its  derivative  mutants  from overnight  or  mid-exponential  growing

cultures were centrifuged and resuspended in 100 μl of sterilised transformation mixture, consisting
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of sepiolite (Kremer Pigmente, Germany) suspended in aqueous solution at a final concentration of

0.1 mg/ml. Resuspended cells were spread on plates containing fresh Müller-Hinton-Agar (Sigma-

Aldrich, Germany) medium solidified with 2% agar, and Petri dishes were pre-dried in a biological

safety flow cabinet for 20 minutes before use. Friction force was provided by streaking bacterial

cultures plus sepiolite with sterile glass stir sticks gently pressed onto the medium surface for one,

two and three minutes, applying as much pressure as possible without breaking the agar gel. Petri

dishes were incubated at 37°C for 2 hours to allow DNA repair if any damage occurred. The plates

were gently washed four times with 5 ml of 0.9% sodium chloride solution using a 5 ml pipette. The

bacterial suspensions were transferred to 10 ml tubes to recover the cells by centrifugation at 3000 g

for 10 minutes. The resulting pellets were resuspended in a final volume of 1 ml of fresh LB an

incubate during 1 hour at 37°C to allow the cells to recover. Appropriate dilutions were plated onto

LB plates to estimate bacterial  viability  and in  LB plus fosfomycin (50 µg/ml)  to estimate the

number of resistant mutants. Plates were incubated overnight at 37°C. Each experiment consisted of

5 replicates and was repeated at twice. Mutant frequencies were calculated by using the FALCOR

web-tool [53].

Influence  of  2-2′  bipyridyl  on  sepiolite  mutagenesis. The  effect  of  2-2′  bipyridyl,  a  metal

chelating agent  [54], on sepiolite mutagenesis was determined by measuring its influence on the

mutant frequency for a selected concentration of sepiolite, where mutagenesis was observed. The

experiment  consisted  of  adding a  titrating  concentration  of  2-2′  bipyridyl  (200 µM) to  chelate

metals five minutes before the treatment. Cultures treated with sepiolite and friction without the

addition of 2-2′ bipyridyl and bacteria alone without sepiolite were used as a control. The mutant

frequencies for these groups were determined as described elsewhere in this section.

Assessing double-strand breaks with a plasmid system. To evaluate if sepiolite under friction

treatment induces double-strand breaks in plasmid DNA, the strain Escherichia coli DH5α (fhuA2

lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17) carrying

the plasmid pET-19b (Novagen, Germany) was treated with sepiolite and sliding friction forces

during one minute.  Several  samples were recovered from the plates  and pooled to  compensate

viability losses due to friction. The recovery was done by washing the surface with 5 ml 0.9 % NaCl

saline solution four times as described for mutagenesis experiments. The recovered pellets were

washed with 1 ml of TE buffer and the OD600 adjusted to 1 for each type of sample. Plasmid DNA

samples  were extracted using a  Qiagen mini  plasmid extraction kit  (Qiagen,  Germany).  Added

sepiolite  with  or  without  friction  and no sepiolite  groups  were  used  as  a  control  group.  Each
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experiment  consisted  of  five  replicates.  The  same  amount  of  plasmid  DNA  per  replicate  was

applied per well to an agarose gel that was stained with SYBR® Gold Nucleic Acid Gel Stain kit

(Molecular  Probes,  USA).  A NdeI  (Promega,  USA) digested  aliquot  of  pET-19b was  used  as

control of linear migration rate. The proportion of linear molecules of the plasmid were compared

among groups using a densitometry analysis by ImageJ [55].

RecA deficient strain construction. The recA null mutant was constructed following a previously

described methodology [56] with the primers 5'-CAGAACATATTGACTATCCGGTATTACCCG-

GCATGACAGGAGTAAAAATGGT-GTAGGCTGGAGCTGCTTC-3'  and  5´-

ATGCGACCCTTGTGTATCAAACAAGACGATTAAAAATCTTCGTTAGTTTCATGGGAAT-

TAGCCATGGTCC-3' (forward and reverse respectively)  using the pKD3 plasmid as template.

The  mutant  was  checked  by  PCR  amplification  using  the  primers  c1  5'-

TTATACGCAAGGCGACAAGG-3'  and  c2  5'-GATCTTCCGTCACAGGTAGG-3'   in

combination  with  specific  primers  for  upstream  and  downstream  regions  of  recA gene:  5'-

ATTGCAGACCTTGTGGCAAC-3'  and  5'-CGATCCAACAGGCGAGCATAT-3'  respectively.

Additionally, the increased susceptibility to UV light and mitomycin C was tested phenotypically in

comparison to the parental strain. The antibiotic resistance gene was eliminated using the pCP20

plasmid as described previously [56].

SEM of  E. coli treated with sepiolite.  Approximately 2×109 CFU of  stationary phase  E. coli

MG1655 were treated with sepiolite and friction force was applied for one minute as described for

the mutagenesis experiment. Circular agar blocks were taken from agar plates with a sterile cork

borer (1 cm of diameter). Then, a thin surface layer was cut off, placed on a circular glass cover slip

(1.5 cm of diameter) and incubated for 45 minutes at room temperature in a laminar flow cabinet to

allow air drying of the samples. The cover glasses with dehydrated agar sections were mounted on

aluminium stubs using double-sided adhesive tape and coated with gold in a sputter coater (SCD-

040; Balzers, Union, Liechtenstein). The specimens were examined with a FEI Quanta 200 SEM

(FEI Co., Hillsboro, OR) operating at an accelerating voltage of 15 kV under high vacuum mode at

different  magnifications.  At  least  5  sections  from  independent  plates  were  observed  to  check

physical penetration by the mineral. Some samples of sepiolite or asbestos (crocidotiles) alone were

processed and observed in the same way.

Long  fibre-depleted  sepiolite  mutagenesis  experiment.  To  assess  the  role  of  long  fibre  of

sepiolite in mutagenesis, a sepiolite preparation depleted of fibres longer than 1 µm was obtained. A

100 ml sepiolite suspension (1 mg/ml) in distilled water was passed though Pall® Acrodisc® glass
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fibre  syringe  filters  (Sigma,  USA)  several  times.  The  resulting  suspension  was  desiccated  by

evaporation at 70°C overnight. A non-filtered solution was used as a control. From the obtained

powder, two suspensions were prepared to a final proportion of 0.1 mg/ml. These two solutions

were used for a mutagenesis  experiment  plating in  fosfomycin as indicated previously,  using a

friction time of two minutes.

Mutant frequency estimation of asbestos treated cells. The procedure was carried out identically

that the one described for sepiolite in this section. The time was set to two minutes and the same

concentration that was used, 0.1 mg/ml. We used the crocidolite asbestos analytical standard (SPI

Supplies, USA). The asbestos fibres were resuspended in distilled water, autoclaved and sonicated

in bath during 10 minutes before use to render a homogeneous suspension.

Statistical analysis. To compare experimental groups, Kruskal-Wallis test or One-way ANOVA

test were performed. In case of significance, Bonferroni-corrected one-tailed Mann-Whitney U test

or Tukey HSD Test were used respectively. P values less than or equal to 0.05, after correction if

needed, were considered statistically significant. All tests were performed with the statistic software

R v. 3.4.2 [57].
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Fig  1.  Sepiolite  can  be mutagenic  after  friction  treatment  only  in  stationary  phase.  Box-plot  of  the  mutant

frequency induced by sepiolite treatment in E. coli MG1655 (A) stationary and (B) exponential phase cells. The x-axis

indicates the experimental treatment (control, mixture of bacteria and sepiolite without friction force, and with friction

force during one, two and three minutes). Asterisks represents significant difference; Mann-Whitney U: P < 0.01.

Fig 2. The higher the time of friction, the smaller the cell viability. Box-plot of the survival of E. coli MG1655 to

the action of friction with sepiolite during one, two and three minutes of treatment. Groups with and without sepiolite

gently spread with glass beads onto agar plates were used as controls.
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Fig 3. Linear plasmid DNA molecules abundance is higher when friction forces are applied.  (A) Extraction of the

plasmid pET-19b from sepiolite-treated E. coli DH5α, a recA deficient strain, during one minute (five extractions per

treatment). Note the enrichment in linearised plasmid DNA molecules from bacteria treated with sepiolite under two

minutes of friction applied in 1% agarose gel. (B) Box-plot of the abundance of single strand DNA molecules under

different  experimental  treatments  (control,  sepiolite  without  friction  and  sepiolite  with  friction).  Plasmid  pET-19b

digested with a single cut site enzyme NdeI was used as a control for the linear molecule migration rate and as a

reference  to  calculate  relative  intensities  using a densitometry analysis.  Asterisks  represents  significant  difference;

Tukey HSD test: P < 0.01.

Fig 4. Inactivation of the recA gene suppresses the mutagenic effect of sepiolite under friction in E. coli MG1655.

Box-plot of the mutant frequency of E. coli MG1655 and DH5α (derivative recA mutant) when treated with sepiolite

during two minutes. Asterisks represents significant difference; Mann-Whitney U: P < 0.01.
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Fig 5. Sepiolite can penetrate bacterial cells when friction forces are applied. SEM of stationary phase  E. coli

MG1655  treated  with  sepiolite.  Red  arrows  represent  potential  sites  of  sepiolite  fibre  penetration.  Bacteria  were

observed with different magnifications ranging from 40 000X to 70 000X. 

Fig 6.  Removal  of  sepiolite  fibres  longer than 1 μm decreases  fibre-induced mutagenesis  to the level  of  the

control. Box-plot of the mutant frequency of E. coli MG1655 when sepiolite fibres longer than 1 µm were removed in

mutagenesis experiments (lf-depleted sepiolite). Dry and reconstituted sepiolite (normal sepiolite) and bacterial cells
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(labelled as control) with no sepiolite were used to compare the effects of long fibre removal. Asterisks represents

significant difference; Mann-Whitney U: P < 0.01. 

Fig 7.  Asbestos can increase the mutant frequency of E. coli after friction around one order of magnitude. Box-

plot of mutant frequency induced by asbestos (crocidolite fibres) treatment in  E. coli MG1655. Asterisk represents

significant difference; Mann-Whitney U: P < 0.05. Equal letters represent no differences while different ones represent

significant differences.   

Fig S1. Addition of a chelating agent (2-2' bipyridyl) does not significantly suppress or diminish the mutagenic

effect of sepiolite.  Box-plot of mutant frequency of  E. coli MG1655 when added 2-2' bipyridyl as chelating agent.

Asterisks represents significant difference; Mann-Whitney  U: P < 0.01. Equal letters represent no differences while

different ones represent significant differences.  
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Fig S2. Visualisation of sepiolite and asbestos fibres under SEM. SEM examination of (A) sepiolite fibres and (B)

asbestos. Fibres were observed at different magnifications as indicated in the pictures. 
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