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ABSTRACT

Motivation

Epidemiological cohorts typically contain a diverse set of phenotypes such that automation of
phenome scans is non-trivial, because they require highly heterogeneous models. For this
reason, phenome scans have to date tended to use a smaller homogeneous set of phenotypes
that can be analysed in a consistent fashion. We present PHESANT (PHEnome Scan
ANalysis Tool), a software package for performing comprehensive phenome scans in UK

Biobank.

General features

PHESANT tests the association of a specified trait with all continuous, integer and categorical
variables in UK Biobank, or a specified subset. PHESANT uses a novel rule-based algorithm
to determine how to appropriately test each trait, then performs the analyses and produces

plots and summary tables.

Implementation

The PHESANT phenome scan is implemented in R. PHESANT includes a novel Javascript
D3.js visualization, and accompanying Java code that converts the phenome scan results to

the required JavaScript Object Notation (JSON) format.

AVAILABILITY
PHESANT is available on GitHub at [https://github.com/MRCIEU/PHESANT]. Git tag v0.2

corresponds to the version presented here.
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INTRODUCTION

Phenome scans test the association of a trait of interest with a comprehensive array of
phenotypes (the “phenome”). Types of phenome scans include phenome-wide association
studies (pheWAS) (1), Mendelian randomization-pheWAS (MR-pheWAS) (2) and
environment-wide association studies (EnWAS) (3,4). PheWAS seek to investigate the
association of a genetic variant with a set of phenotypic traits (1,5). A recent extension to
pheWAS, MR-pheWAS, uses Mendelian randomization (MR) in a pheWAS framework in
order to search for the causal effects of a particular exposure (2). EnWAS seek to test the

associations of a trait of interest with a set of other phenotypes (3).

Epidemiological cohorts usually contain a large number of diverse phenotypes, such that
testing the association of these phenotypes with another trait in an automated way is non-
trivial. For this reason, researchers wishing to perform a phenome scan will typically specify a
homogeneous subset of traits, in order to automate the tests of association across these traits
in a consistent way. For instance, pheWAS initially started using international classification
of disease (ICD) codes from electronic health records, where each disease code could be
treated as a binary variable and a consistent test performed (5). However, restricting the set of
phenotypes provides only a partial view of associations with a trait of interest, and reduces the

potential to identify novel associations.

In this paper we present PHESANT (PHEnome Scan ANalysis Tool), a parallelizable tool for
phenome scans in UK Biobank, a prospective cohort of over 500 000 men and women in the
UK aged between 37—73 years (6). This cohort includes genetic data, and a large and diverse

range of data from blood, urine and saliva samples analyses, clinical assessments, record


https://doi.org/10.1101/111500
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/111500; this version posted February 26, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

linkage and health and lifestyle questionnaires. The diversity of traits available coupled with
the large sample size provides an opportunity to identify novel associations with phenome

scans.

IMPLEMENTATION

PHESANT is implemented in R and requires the following R packages: optparse, MASS,
Imtest, nnet and forestplot (see GitHub repository for package versions). PHESANT takes one
data file as input containing the set of phenotypes and the trait of interest, which may be a
SNP, a genetic score or a phenotypic trait depending on whether a pheWAS, MR-phe WAS or
EnWAS is being performed (the trait of interest can alternatively be provided as a separate
file if this is preferred). PHESANT also makes use of two data files that contain information
about the variables in the UK Biobank cohort: 1) a data coding information file, and 2) a
variable information file. These files have been set up for the example we describe in the
usage section, but can be changed as needed for each particular phenome scan. For more
information on the PHESANT data and information files see the documentation in the GitHub
repository. In the rest of this section we describe the variable processing flow used in

PHESANT.

Automated processing flow to determine variable coding

In order to test the association of the trait of interest with the diverse range of phenotypes in
UK Biobank in an automated manner, we developed a rule-based system to determine the
appropriate coding of each variable and hence test of association to use. These rules are

shown in Figure 1 and described in full in the Supplementary section S1. The decision rules
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start with the variable field type (as specified by UK Biobank at
[http://biobank.ctsu.ox.ac.uk/showcase/list.cgi]), either continuous, integer, categorical
(single) or categorical (multiple), and categorise each variable as one of four data types:
continuous, ordered categorical, unordered categorical and binary. The categorical (single)
field type refers to categorical fields (including binary) where each participant can only have
one value. For example, by questionnaire participants were asked “How would you describe
your usual walking pace?” with options including “slow”, “average” and “brisk” (field
ID=924; see Supplementary figure 1). In contrast, categorical (multiple) fields can have
multiple values per participant. For example, by questionnaire participants were asked what
types of bread they ate the previous day (field ID=20091; see Supplementary figure 2) and
could, for instance, select both white and wholemeal options. Where a field is measured at
several time points we use the first occurrence only (see Supplementary section S2 for
details). Continuous and integer variables may have more than one measurement at this first
measured time point (typically to improve the estimate of a measurement). For instance,
spirometry was measured two or three times a few moments apart (see for example field 3062

[http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=3062]). When this is the case we take the

mean to create a single value per participant (see Supplementary section S2 for details).

Variables with the continuous field type are usually assigned to the continuous data type. In
this case, the variable is transformed to a normal distribution using an inverse normal rank
transformation. In a minority of cases, continuous fields are assigned to the ordered
categorical data type (or binary if there are only two distinct values). For example, field
100022 [http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=100022] contains the estimated
alcohol intake based on responses to the “diet by 24-hour recall” questionnaire. A large

proportion of the participants have a zero value for this field, because they consumed no
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alcohol. It is not possible to inverse normal rank transform this variable because where a large
number of participants have the same value the rank assigned in this transformation is random
among these, and this would add noise to the data. Instead, we transform this variable into
three categories with roughly the same number of participants in each (placing split points
between distinct values), and treat it as an ordered categorical variable (see algorithm in
Supplementary section S3). Variables with the integer field type are usually treated exactly
the same as the continuous variables. In a minority of cases, where there are 20 or fewer
distinct values we treat this variable as ordered categorical (or binary if there are only two

distinct values).

Categorical (single) variables may be assigned to the binary, ordered categorical or unordered
categorical data types. UK Biobank consistently assigns negative values to categories
denoting missingness (such as “Preferred not to answer” and “Do not know”), and so we
recode negative values to NA. UK Biobank defines ‘data codes’ to which one or more fields
are assigned, and these define the set of categorical values for these fields and their
corresponding numeric values. The PHESANT data-coding information file specifies whether
a data code of a categorical (single) field defines an ordered or unordered category structure,
and we use this information to assign each non-binary categorical (single) field as either an

ordered or unordered categorical data type.

Each categorical (multiple) variable is converted to a set of binary variables, each denoting
whether a participant has a given value of this variable. For example, for the variable
describing the bread eaten yesterday (field ID=20091; Supplementary figure 2), with values
‘white’, ‘mixed’, ‘wholemeal’, ‘seeded’ and ‘other’, we generate 5 binary variables,

white={true,false}, wholemeal={true,false} and so forth. Categorical (multiple) fields have an
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added complexity because when a person has no value in this field this may be because: 1) the
field values are incomplete — they do not contain all possible values (e.g. a participant who
does not eat bread cannot choose any option above) or 2) because the data is missing (e.g.
because a participant did not answer this particular question). This affects who we assign as,
for instance, ‘white=false’, either 1) all people who selected a value other than ‘white’, 2) all
people who responded to this questionnaire and did not select ‘white’ or 3) all people who did
not select ‘white’ including those who did not respond to the questionnaire (see
Supplementary figure 3 for illustration). In this case the second option might be preferred
such that we are comparing those who ate white bread with those who responded to the
questionnaire but did not eat white bread. This decision is variable specific, and can be
specified in the PHESANT variable information file (the variable information file we used for
the example described in the next section is available in the GitHub repository). For more

details see Supplementary material section S1.

Some categorical multiple fields include negative numeric values for particular categories
denoting missingness (such as “Do not know”). We exclude all participants with a missing
value from the false value of the generated binary variable, because we cannot know if they
do or do not pertain to the true value of this binary variable. For example, consider field
41228 [http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=41228] describing the type of
medical professional who conducted the delivery of a participant’s child, and a participant
who has given birth twice and has values “midwife” and “not known” in this field. The
generated binary variable for midwife includes this participant in the set of participants
corresponding to midwife=true because we know that on at least one occasion a midwife
conducted the delivery. However, we cannot be certain that a hospital doctor did not conduct

a delivery for this participant because the “not known” value could refer to a “hospital
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doctor”. Hence, the generated “hospital doctor” binary variable would not include this
participant in the set of participants corresponding to hospital doctor=false, because this is

not known.

Tests of association with trait of interest

The association of each phenotype, having been appropriately coded and assigned one of the
four data types (continuous, ordered categorical, unordered categorical and binary), is tested
with the trait of interest as follows. The phenotype and the trait of interest are the dependent
and independent variables of the regression, respectively. All regressions are adjusted for age
at recruitment and sex (and also genotype chip when the trait of interest is genetic, derived
from the genotype measurement batch). We test the association with the transformed
variables of the continuous data type using linear regression (1m R function). Ordered
categorical, unordered categorical and binary variables are tested using ordered logistic
regression (polr R function), multinomial logistic regression (multinom R function) and
binomial regression (g1lm R function with family parameter as binomial), respectively. We do
not test phenotypes where the sample size is fewer than 500, which typically occurs for a
minority of fields such as follow up questions on a subsample (e.g. field 22148
[http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?1d=22148]). We do not test unordered
categorical variables with more than 1000 categories (above the default maximum of the
multinom function), which occurs once in our usage example (for field 132

[http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=132]).

Customising a phenome scan with PHESANT

PHESANT allows researchers to easily customise the phenome scan by changing settings in

the data coding and variable information files. This includes:
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* Changing the numeric values underlying a variable (such as recoding a value to
missing) or the ordering of values for ordered categorical variables.

* Assigning a default value to categorical (single) variables where this is not explicitly
coded in the variable (see Supplementary section S1).

* Changing fields from the categorical (single) to the categorical (multiple) field type, as
this may be more appropriate for a small number of fields.

* Specifying which variables should be excluded a priori from the phenome scan.

* Specifying which fields in the phenome dataset are essentially the same phenotype as
the trait of interest (e.g. weight and body mass index (BMI)), such that, after the
phenome scan is run, the results of association between these fields and the trait of
interest are used for validation only, rather than being included in the results and

adding to the multiple testing burden.

PHESANT-viz: a web-based visualization for phenome scans

Reviewing the results from phenome scans can be challenging due to the number and
complexity of phenotypes. As part of PHESANT we have also developed PHESANT-viz, a
D3 Javascript visualization that displays phenome scan results as an interactive graph, using
the hierarchical field category structure defined by UK Biobank (available at
[http://biobank.ctsu.ox.ac.uk/showcase/label.cgi]). PHESANT includes a Java program to
convert the phenome scan results to the JavaScript Object Notation (JSON) format required

for PHESANT-viz. We provide the PHESANT-viz of our usage example below.
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USAGE

To demonstrate PHESANT we have performed a MR-pheWAS, to search for the causal
effects of BMI in UK Biobank (previously performed in a smaller cohort with continuous
phenotypes only (2)). Such an analysis is predicated on the Mendelian randomization
principle that genetic variants can be used as instrumental variables to estimate causal effects
of the phenotype they proxy for on downstream outcomes (7). In the current context this
would be a screening exercise to identify associations for detailed follow-up. This analysis is
preliminary and for example only, having been run on a non-random subsample of 114 963
participants (containing the UK BILEVE samples selected on smoking status; see
Supplementary section S4 for details) for which genetic data is currently available in UK
Biobank (a final analysis will be subsequently published upon release of the full 500 000

sample with genetic data).

We created an allele score from 96 genetic variants previously found to be associated with
BMLI, in a recent genome-wide association study (GWAS) meta-analysis (8). The score was
calculated as a sum of the number of BMI-increasing alleles, weighted by the effect size as
reported in (8) (see Supplementary table 1). Hence, a higher genetic score corresponds to a
tendency towards higher BMI (F-statistic=1979). We used PHESANT to test the association
of the BMI genetic score with the 290 integer, 1030 continuous, 658 categorical (single) and
99 categorical (multiple) fields available in UK Biobank at the current time (excluding 66
fields a priori, see Supplementary table 2). Supplementary figure 4 shows the number of

variables reaching each stage of our variable processing flow.

10
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Figure 2 shows the QQ plot of our MR-pheWAS results (see full results ranking in
Supplementary data table, and forest plots in Supplementary figure 5). Of the 12 819 tests
performed (excluding 87 phenotypes tested but specified a priori as being aspects of the same
essential phenotype as BMI), 86 were associated at a Bonferroni corrected P value threshold
of 3.90x107 (0.05/12819). We detected several known effects of BMI, for example with
hypertension (9) (fields 41204 value 110, and 4079), diabetes (10) (field 2443) and age at
puberty in both sexes (11) (fields 2714, 2375 and 2385). For instance, a 1 standard deviation
(SD) increase in BMI allele score was associated with a 1.09-fold [95% confidence interval
(CI): 1.06, 1.11] higher odds of being diagnosed with hypertension in hospital (field 41204
value 110), and a 0.015 SD [95% CI: 0.010, 0.021] higher diastolic blood pressure (field
4079). We also detected a number of potentially causal associations that were previously
unknown. For example, participants with a genetic propensity to higher BMI were less likely
to perceive themselves as a nervous person (field 1970) or to call themselves tense or 'highly

strung' (field 1990).

The PHESANT-viz of these preliminary results can be found at
[datamining.org.uk/PHESANT/] or within the PHESANT package. When this analysis is
performed using the full 500 000 sample the power to detect associations will increase, and it
is also likely that the number of tests will increase as fewer variables will be filtered out in the
variable processing steps (due to a small sample size). This preliminary analysis took

approximately 81 hours (using a 1 core Intel E5-2670).
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DISCUSSION

PHESANT enables researchers to perform a comprehensive phenome scan in UK Biobank,
including a pheWAS, MR-pheWAS or EnWAS. While GWAS have been highly successful at
identifying novel associations, we are currently only just beginning to explore the phenome in
a hypothesis-free manner (1,2,12). In contrast to hypothesis-driven analyses, phenome scans
allow exploration across hypotheses without strong priors, and should help to avoid
publication bias as analyses are pre-specified and all results, not just the most ‘statistically

significant’, are published together.

When undertaking a phenome scan there are several important considerations. First, phenome
scans are a screening exercise to identify potentially interesting associations that should then
be analysed more rigorously — and as such the effect estimates should be interpreted with
caution. The strength of the strongest associations identified may be inflated due to the
winners curse. Second, it is important to consider the number of tests performed when
examining the strength of identified associations. In our usage example we used a
conservative Bonferroni corrected threshold to identify potentially interesting associations,
which, while reducing the type I error rate is likely to increase the type Il error rate. Third,
interpretation of potentially hundreds of results is challenging because the correlated structure
of phenotypes means that associations between the trait of interest and each phenotype are not
independent. The strongest associations should not be viewed in isolation but alongside the
results of related variables for which an association may not have been identified, and to do

this we provide a novel visualization approach, PHESANT-viz.
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We note the following limitations and areas of future work. It is possible that in some cases
our automated rule-based method may deal with variables inappropriately. For example, field
132 [http://biobank.ctsu.ox.ac.uk/showcase/field.cgi?id=132], which describes participant’s
jobs, is treated as an unordered categorical variable but was removed from our phenome scan
because it has more than 1000 categories. In this case, it may be preferable to use the

hierarchical structure defined by UK Biobank to combine categories of related jobs.

PHESANT uses the first time point of a field where multiple time points are available. In
future work we will investigate how to automate the analysis including data from multiple
time points and the potential gains that this would give (13). Currently, when continuous
variables are converted to the ordered categorical data type we arbitrarily chose to generate
three categories, and in future work with will investigate whether a larger number of
categories are beneficial, and whether the optimal number of categories can be calculated
from the distribution of the variable. PHESANT is specifically designed for use in UK
Biobank, but a cohort-independent tool for phenome scans would be highly valuable. Hence,
in the future we will aim to adapt PHESANT for use in a general setting. Finally, we intend to
integrate PHESANT with MR-base (14), to enable automated construction of genetic

instrumental variables to use in MR-phe WAS.

The large number of participants combined with the extensive range of phenotypes available
in UK Biobank provides a great opportunity to comprehensively search for novel (potentially
causal) associations in a hypothesis-free manner. We are aware of only one very small
phenome scan that has been performed in UK Biobank to date (15), and a recent novel

Bayesian approach of self-reported diagnoses and hospital episodes (16). To our knowledge,
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PHESANT is the first open source package to automate phenome scans across diverse sets of

phenotypes.
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Figure 1: Variable processing flow diagram showing logic from defined field type specified by UK Biobank to test of association
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Pink triangular nodes at top of figure are field types defined by UK Biobank. Blue rectangular nodes show processing logic used to determine the data type assignment
(yellow, oval) — either: continuous, ordered categorical, unordered categorical and binary, and hence finally, the type of test used: linear, ordinal logistic, multinomial logistic
and logistic regression, respectively. Grey rectangular nodes show points where variables may be removed.

17


https://doi.org/10.1101/111500
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/111500; this version posted February 26, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2: QQ plot of preliminary MR-pheWAS analysis seeking to identify the causal
effects of BMI
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Green dashed line: Bonferroni corrected threshold p=3.90 x 10 (p=0.05 corrected for 12 819 tests).
Blue dotted line: actual = expected.
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