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Abstract 

Neuroscience has long focused on finding encoding models that effectively ask “what predicts neural 
spiking?” and generalized linear models (GLMs) are a typical approach. Modern machine learning 
techniques have the potential to perform better. Here we directly compared GLMs to three leading methods: 
feedforward neural networks, gradient boosted trees, and stacked ensembles that combine the predictions 
of several methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1) cortices 
from reaching kinematics, and in rat hippocampal cells from open field location and orientation. In general, 
the modern methods produced far better spike predictions and were less sensitive to the preprocessing of 
features. XGBoost and the ensemble were the best-performing methods and worked well even on neural 
data with very low spike rates. This overall performance suggests that tuning curves built with GLMs are 
at times inaccurate and can be easily improved upon. Our publicly shared code uses standard packages and 
can be quickly applied to other datasets. Encoding models built with machine learning techniques more 
accurately predict spikes and can offer meaningful benchmarks for simpler models. 

 
Introduction 

A central tool of neuroscience is the tuning curve, 
which maps stimulus to neural response. The tuning 
curve asks what information in the external world a 
neuron encodes in its spikes. For a tuning curve to be 
meaningful it is important that it accurately predicts the 
neural response. Often, however, methods are chosen 
that sacrifice accuracy for simplicity. Predictive 
methods for tuning curves should instead be evaluated 
primarily by their ability to describe neural activity 
accurately. 

A common predictive model is the Generalized 
Linear Model (GLM), occasionally referred to as a 
linear-nonlinear Poisson (LNP) cascade (1-4). The 
GLM performs a nonlinear operation upon a linear 
combination of the input features, which are often called 
external covariates. Typical covariates are stimulus 
features, movement vectors, or the animal’s location. 

The nonlinear operation on the weighted sum of 
covariates is usually held fixed, though it can be learned 
(5, 6), and the linear weights of the combined inputs are 
chosen to maximize the agreement between the model 
fit and the neural recordings. This optimization problem 
of choosing weights is often convex and can be solved 
with efficient algorithms (7). The assumption of Poisson 
firing statistics can often be loosened (8) allowing the 
modeling of a broad range of neural responses. Due to 
its ease of use, perceived interpretability, and flexibility, 
the GLM has become a popular model of neural spiking.   

The GLM’s central assumption of linearity in feature 
space may hold in certain cases (8, 9), but in general, 
neural responses can be very nonlinear (5, 10). When a 
neuron responds nonlinearly to stimulus features, it is 
common practice to mathematically transform the 
features to obtain a new set that meets the linearity 
requirements of the GLM and yields better spike 
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predictions. The new features may be any function of 
the original features and may include cross-interactions. 
In keeping with the machine learning literature, we call 
this step feature engineering. The precise form of 
feature engineering is rarely rigorously determined and 
often falls to the researcher’s intuition. Given the 
infinite space of possible engineered features, it is 
unlikely that any guess would yield a set that is truly 
linear with respect to inputs. Incorrect guesses yield 
suboptimal predictions, and it is therefore important that 
GLMs be compared with nonlinear models that can 
express more complex stimulus–response relationships. 

Machine learning (ML) methods for regression have 
improved dramatically since the invention of the GLM. 
Many ML methods require little feature engineering and 
do not need to assume linearity. Top performing 
methods, (as judged by the frequency of winning 
solutions on Kaggle, a ML competition website (11)) 
include neural networks (12), gradient boosted trees 
(13), and ensemble techniques. Many neuroscientists 
are unaware that these methods are now relatively easy 
to implement in a few lines of code in a scripting 
language such as Python. This ease of use is enabled by 
machine learning packages that are supported by large 
groups of scientists, such as scikit-learn (14), Keras (15), 
Theano (16), and XGBoost (13). Applications of 
modern ML to spike prediction remain rare, though 
some inroads have been made with neural networks (17-
20). The greatly increased predictive power of modern 
ML methods is now very accessible and could improve 
the state of the art in encoding models across 
neuroscience.  

Here we applied the standard ML methods of 
artificial neural networks, gradient boosted trees, and 
ensemble methods to the task of spike prediction, and 
evaluated their performance alongside a GLM. We 
compared the methods on recordings from three 
separate brain areas. These areas differed greatly in the 
effect size of covariates and typical spike rates, and thus 
served to evaluate the strengths of these methods across 
different conditions. For neurons from each area we 
found that the advanced ML methods could more 
accurately predict spiking than the GLM. The stacked 
ensemble and XGBoost were consistently the highest-
scoring of the methods tested. We provide our 
implementing code in an accessible format so that all 
neuroscientists may easily test and compare these 
methods on other datasets. 

Methods 
Data 

We tested our methods at predicting spikes for 
neurons in the macaque primary motor cortex, the 
macaque primary somatosensory cortex, and the rat 
hippocampus. 

The macaque motor cortex data consisted of 
previously published electrophysiological recordings 
from 82 neurons in the primary motor cortex (M1) (21). 
The neurons were sorted from recordings made during a 
two-dimensional center-out reaching task with eight 
targets. In this task the monkey grasped the handle of a 
planar manipulandum that controlled a cursor on a 
computer screen and simultaneously measured the hand 
location and velocity (Fig. 1). After training, an 
electrode array was implanted in the arm area of area 4 
on the precentral gyrus. Spikes were discriminated using 
offline sorter (Plexon, Inc), counted and collected in 50-
ms bins. The neural recordings used here were taken in 
a single session lasting around 13 minutes. 

The macaque primary somatosensory cortex (S1) 
data was recorded during a two-dimensional random-
pursuit reaching task and was previously unpublished. 
In this task, the monkey gripped the handle of the same 
manipulandum. The monkey was rewarded for bringing 
the cursor to a series of randomly positioned targets 
appearing on the screen. After training, an electrode 
array was implanted in the arm area of area 2 on the 
postcentral gyrus, which receives a mix of cutaneous 
and proprioceptive afferents. Spikes were processed as 
for M1. The data used for this publication derives from 
a single recording session lasting 51 minutes.  

As for M1 (described in results), we processed the hand 
position, velocity, and acceleration accompanying the 
S1 recordings in an attempt to obtain linearized features. 
We extracted six features for the models: the hand speed, 
the sine and cosine of velocity direction, the distance of 
the hand from the center of the workspace, and the sine 
and cosine of the angle of the hand position with respect 
the workspace center. Cells in the arm area of S1 have 
been shown to have approximately sinusoidal tuning 
curves relating to movement direction (22), and the 
features were chosen accordingly. The features 
𝑥, 𝑦, 𝑥, 𝑦, 𝑥, 𝑦  were also tested but were not found to 

improve the performance of the GLM. 
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Figure 1: Encoding models aim to predict spikes, top, from 
input data, bottom. The inputs displayed are the position and 
velocity signals from the M1 dataset (21) but could represent 
any set of external covariates. The GLM takes a linear 
combination of the inputs, applies an exponential function f, 
and produces a Poisson spike probability that can be used to 
generate spikes (left). The feedforward neural network (center) 
does the same when the number of hidden layers i = 0. With i 
≥ 1 hidden layers, the process repeats; each of the j nodes in 
layer i computes a nonlinear function g of a linear 
combination of the previous layer. The vector of outputs from 
all j nodes is then fed as input to the nodes in the next layer, 
or to the final exponential f on the final iteration. Boosted trees 
(right) return the sum of N functions of the original inputs. 
Each of the fi is built to minimize the residual error of the sum 
of the previous f 0:i-1.  

 

The third dataset consists of recordings from 58 neurons 
in the CA1 region of the rat dorsal hippocampus during 
a single 93 minute free foraging experiment, previously 
published and made available online (23, 24). Position 
data from two head-mounted LEDs provided position 
and heading direction inputs. Once again we binned 
inputs and spikes in 50ms bins. Since many neurons in 
the dorsal hippocampus are responsive to the location of 
the rat, we processed the 2D position data into a list of 
squared distances from a 5x5 grid of place fields that tile 
the workspace. Each position feature thus has the form 

𝑝%& =
1
2
𝑥(𝑡) − 𝜇%&

/
𝛴%&12 𝑥(𝑡) − 𝜇%& , 

where 𝜇%,& is the center of place field i, j≤5 and 𝛴%& is a 
covariance matrix chosen for the uniformity of tiling. 
An exponentiated linear combination of the 𝑝%& (as is 
performed in the GLM) evaluates to a single Gaussian 
centered anywhere between the place fields. The 
inclusion of the 𝑝%& as features thus transforms the 
standard representation of cell-specific place fields (25) 
into the mathematical formulation of a GLM. The final 
set of features included the 𝑝%& as well as the rat speed 
and head orientation. 

 

Generalized Linear Model 

The Poisson generalized linear model is a multivariate 
regression model that describes the instantaneous firing 
rate as a nonlinear function of a linear combination of 
input features (see e.g. (26, 27) for review, (28, 29) for 
usage). Here, we took the form of the nonlinearity f to 
be exponential, as has been found to be successful in 
previous applications of GLMs to similar data (30). 
After the nonlinearity, spiking is generated as a Poisson 
process, in which the probability of firing in any instant 
is independent of firing history. The general form of the 
GLM is depicted Figure 1. We implemented the GLM 
using elastic-net regularization, using the open-source 
Python package pyglmnet (31). The regularization path 
was optimized separately on a single neuron in each 
dataset on a validation set not used for scoring. 

 

Neural Network 

Neural networks are well-known for their success at 
supervised learning tasks. More comprehensive reviews 
can be found elsewhere (12). Here, we implemented a 
simple feedforward neural network. A model that takes 
predicted spike history as input, such as a recurrent 
neural network, would likely increase predictive power. 
We omit such architectures to be able to establish the 
methods’ relative power when trained on the same 
information. 

We point out that a neural network with no hidden layers 
is equivalent in mathematical form to a GLM (Fig. 1). 
For multilayer networks, one can write each hidden 
layer of n nodes as simply n GLMs, each taking the 
output of the previous layer as inputs (noting that the 
weights of each are chosen to maximize only the final 
objective function, and that the intermediate 
nonlinearities need not be the same as the output 
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nonlinearity). A feedforward neural network is thus a 
generalization, or repeated application of a GLM.  

The networks were implemented with the open-source 
neural network library Keras, running Theano as the 
backend (15, 16). The network contained two hidden 
layers (or one for S1), dense connections, rectified linear 
activation, and a final exponentiation. To help avoid 
overfitting, we allowed dropout on the first layer, and an 
elastic-net or max-norm regularization upon the weights 
(but not the bias term) of the network (32). The networks 
were trained to maximize the Poisson likelihood of the 
neural response. We optimized over four 
hyperparameters: the number of nodes in the first and 
second hidden layers (if present), the dropout, and the 
regularization parameters. Optimization was performed 
on only a subset of the data from a single neuron in each 
dataset, using Bayesian optimization (33) in an open-
source Python implementation (34).   

 

Gradient Boosted Trees 

A popular method in many machine learning 
competitions is that of gradient boosted trees. Here we 
describe the general operation of XGBoost, an open-
source implementation that is efficient and highly 
scalable, works on sparse data, and easy to implement 
out-of-the-box (13).  

XGBoost trains many sequential models to minimize the 
residual error of the sum of previous model. Each model 
is a decision tree, or more specifically a classification 
and regression tree (CART) (35). Training a decision 
tree amounts to determining a series of rule-based splits 
on the input to classify output. The CART algorithm 
generalizes this to regression by taking continuously-
valued weights on each of the leaves of the decision tree.   

For any predictive model 𝑦(2) = 𝑓2(𝒙𝒊) and true 
response 𝑦%, we can define a loss function 𝑙 𝑦(2), 𝑦%  
between the prediction and the response. The objective 
to be minimized during training is then simply the sum 
of the loss over each training example i, plus some 
regularizing function 𝛺 that biases towards simple 
models.  

𝐿 = 𝑙(𝑦%
(2), 𝑦%)

%

+ 𝛺(𝑓2) 

After minimizing L for a single tree, XGBoost 
constructs a second tree 𝑓:(𝒙𝒊) that approximates the 
residual. The objective to be minimized is thus the total 
loss L between the true response 𝑦% and the sum of the 

predictions given by the first tree and the one to be 
trained. 

𝐿 = 𝑙(𝑦%
2 + 𝑓:(𝒙%), 𝑦%)

%

+ 𝛺(𝑓:) 

This process is continued sequentially for a 
predetermined number of trees, each trained to 
approximate the residual of the sum of previous trees. In 
this manner XGBoost is designed to progressively 
decrease the total loss with each additional tree. At the 
end of training, new predictions are given by the sum of 
the outputs of all trees. 

𝑦 = 𝑓;(𝒙)
<

;=2

 

In practice, it is simpler to choose the functions 𝑓; via 
gradient boosting, which minimizes a second order 
approximation of the loss function (36). 

XGBoost offers several additional parameters to 
optimize performance and prevent overfitting. Many of 
these describe the training criteria for each tree. We 
optimized some of these parameters for a single neuron 
in each dataset using Bayesian optimization (again over 
a validation set different from the final test set). These 
parameters included the number of trees to train, the 
maximum depth of each decision tree, and the minimum 
weight allowed on each decision leaf, the data 
subsampling ratio, and the minimum gain required to 
create a new decision branch.  

 

Random Forests 

Random forests train multiple parallel decision trees on 
the features-to-spikes regression problem (not 
sequentially on the remaining residual, as in XGBoost) 
and averages their outputs (37). The variance on each 
decision tree is increased by training on a sample of the 
data drawn with replacement (i.e., bootstrapped inputs) 
and by choosing new splits using only a random subset 
of the available features. Random forests are 
implemented in Scikit-learn (14). We introduced this 
method only to increase the power of the ensemble (see 
below). Their performance alone is displayed in 
Supplementary Figure 1. It should be noted that the 
Scikit-learn implementation currently only minimizes 
the mean-squared error of the output, which is not 
properly applicable to Poisson processes and may cause 
poor performance. Despite this drawback their presence 
still improves the ensemble scores. 
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Ensemble Method 

It is common machine learning practice to create 
ensembles of several trained models. Different 
algorithms may learn different characteristics of the data, 
make different types of errors, or generalize differently 
to new examples. Ensemble methods allow for the 
successes of different algorithms to be combined. Here 
we implemented stacking, in which the output of several 
models is taken as the input set of a new model (38). 
After training the GLM, neural network, random forest, 
and XGBoost on the features of each dataset, we trained 
an additional instance of XGBoost using the spike 
predictions of the previous methods as input. The 
outputs of this ‘second stage’ XGBoost are the 
predictions of the ensemble. 

 

Scoring and Cross-Validation 

Each of the three methods was scored with the pseudo-
R2 score, a scoring function applicable to Poisson 
processes (39). Note that a standard R2 score assumes 
Gaussian noise and cannot be applied here. The pseudo-
R2 was calculated as  

𝑅?: = 1 −
log 𝐿 𝑦 − log 𝐿 𝑦
log 𝐿 𝑦 − log 𝐿 𝑦

= 	  
log 𝐿 𝑦 − log 𝐿 𝑦
log 𝐿 𝑦 − log 𝐿 𝑦

 

Here 𝐿 𝑦  is the log likelihood of the true output, 𝐿 𝑦  
is the log likelihood of the predicted output, and 𝐿 𝑦  is 
the null log likelihood, which here is the log likelihood 
of the data under the mean firing rate alone. The pseudo-
R2 can be interpreted as the fraction of the maximum 
potential log-likelihood gain (relative to the null model) 
achieved by the tested model (39). The score can also be 
seen as related to the ratio of deviances of the tested 
model and the null model. It takes a value of 0 when the 
data is as likely under the tested model as the null model, 
and a value of 1 when the tested model perfectly 
describes the data. It is empirically a lower value than a 
standard R2 when both are applicable (40). The null 
model can also be taken to be a model other than the 
mean firing rate (e.g. the GLM) to directly compare two 
methods, in which case we refer to the score as the 
‘comparative pseudo-R2’. The comparative pseudo-R2 is 
referred to elsewhere as the ‘relative pseudo-R2’, 
renamed here to avoid confusion with the difference of 
two standard pseudo-R2 scores measured against the 
mean (29). 

As many methods are prone to overfitting the training 
data, we used 8-fold cross-validation (CV) when 

assigning a final score to the models. Briefly, the input 
and spike data were randomly segmented, 
discontinuously in time, into eight equal partitions. The 
methods were trained on seven partitions and tested on 
the eighth, and this was repeated until all segments 
served as the test partition once. The mean and variance 
of the eight scores are then recorded for the final score.  

Cross-validation for ensemble methods requires extra 
care to ensure that there is no leak of information from 
the validation set into the training set. The training set 
for the ensemble must contain predictions from methods 
that were themselves not trained on the validation set. 
This rules out using simple k-fold CV with all methods 
trained on the same folds. Instead, we used the following 
nested CV scheme to train and score the ensemble. The 
data were split into p=8 folds, each of which contained 
a training set and a test set for the ensemble. On each 
fold standard k-fold CV is run on just the training set 
with each first stage method (GLM, etc.) such that we 
obtain predictions for all training data. The ensemble’s 
test set is then obtained from the predictions of the first 
stage methods trained on the entire training set. This 
ensures that the ensemble’s test set was never used for 
training any method. The process is repeated for each of 
the p folds and the mean and variance of the p scores of 
the ensemble’s predictions are recorded.  

 

Results 
We applied modern machine learning methods to 
predict spike counts in three brain regions and compared 
the quality of the predictions to those of a GLM. Our 
primary analysis centered on neural recordings from the 
macaque primary motor cortex (M1) during reaching 
(Fig. 1). Analyses of data from macaque S1 and from rat 
hippocampus indicate how these methods compare 
beyond M1. On each of the three datasets we trained a 
GLM and compared it to the performance of a 
feedforward neural network, XGBoost (a gradient 
boosted trees implementation), and an ensemble method. 
The ensemble was inspired by ML competition 
strategies and was an additional instance of XGBoost 
trained on the predictions of all three methods plus a 
random forest regressor. Together, these methods 
allowed us to compare the performance of traditional 
GLMs with modern methods. The resulting code 
implementing these methods can be used by any 
electrophysiology lab to compare these machine 
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learning methods with their own approaches for 
encoding models. 

To test that all methods work reasonably well in a trivial 
case, we trained each to predict spiking from a simple 

and well-understood feature. Some neurons in M1 have 
been described as responding linearly to the 
exponentiated cosine of movement direction relative to 
a preferred angle (41). We therefore predicted the 

Figure 2: Encoding models for M1 performed similarly when trained on the sine and cosine of hand velocity direction. (a) The 
pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3-5 the example neuron is the 
same, and is not the neuron for which method hyperparameters were optimized.  (b) The tuning curves of the neural net and 
XGBoost were similar to that of the GLM. The black points are the recorded responses, to which we added y-axis jitter for 
visualization. The tuning curve of the ensemble method was similar and is omitted here for clarity. (c) Plotting the pseudo-R2 
of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single 
neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error 
bars represent the 95% bootstrap confidence interval. 

Figure 3: Modern ML models could learn the cosine nonlinearity when trained on only the direction of hand velocity, in radians. (a) For 
the same example neuron as in Figure 3, the neural net and XGBoost maintained the same predictive power, while the GLM was unable 
to extract a relationship between direction and spike rate. (b) XGBoost and neural nets displayed reasonable tuning curves, while the GLM 
reduced to the average spiking rate (with a small slope, in this case). (c) Most neurons in the population were poorly fit by the GLM, while 
the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested. 
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spiking of M1 neurons from the cosine and sine of the 
direction of hand movement in the reaching task. (The 
linear combination of a sine and cosine curve is a phase-
shifted cosine, by identity, allowing the GLM to learn 
the proper preferred direction). We observed that each 
method identified a similar tuning curve (Fig. 2b), 
constructed by plotting the predictions of spike rate on 
the validation set against movement direction. The bulk 
of the neurons in the dataset were just as well predicted 
by each of the methods (Fig. 2a, c), though the ensemble 
was slightly better than the GLM (mean comparative 
pseudo-R2, defined in methods, of 0.06 [0.043 – 0.084], 
95% bootstrapped confidence interval (CI)). The similar 
performance suggested that an exponentiated cosine is a 
nearly optimal approximating function of the neural 
response to movement direction alone, as was 
previously known (42). This classic example thus 
illustrated that all methods can in principle estimate 
tuning curves.  

The exact form of the nonlinearity of the neural response 
to a given feature is rarely known, but this lack of 
knowledge need not impact our prediction ability. To 
illustrate the ability of modern machine learning to find 
the proper nonlinearity, we performed the same analysis 
as above but omitted the initial cosine feature 
engineering step. Trained on only the hand velocity 
direction, in radians, which are likely to be 

discontinuous at ±π, the modern ML methods very 
nearly reproduced the predictive power they attained 
using the engineered feature (Fig. 3a). As expected, the 
GLM failed at generating a meaningful tuning curve 
(Fig. 3b). Both trends were consistent across the 
population of recorded neurons (Fig. 3c). The neural net, 
XGBoost, and ensemble methods thus perform well 
without feature engineering and the required prior 
knowledge or assumptions. 

Machine learning methods can also take advantage of 
information contained in combinations of inputs, and 
should perform better if given more inputs. We verified 
that this was true for our dataset by training on the four-
dimensional set of hand position and velocity 
𝑥, 𝑦, 𝑥, 𝑦 , which we call the set of original features. All 

methods gained a significant amount of predictive 
power with these new features, though the GLM did not 
nearly match the other methods (Fig 4a, c). This set of 
neurons thus seemed to encode strongly for position and 
velocity in a potentially nonlinear fashion captured by 
machine learning methods. 

While some amount of feature engineering can improve 
the performance of GLMs, it is not always simple to 
guess the optimal set of processed features. We 
demonstrated this by training all methods on features 
that have previously been successful at explaining spike 

Figure 4: Training on the set of original features (𝑥, 𝑦, �̇�, �̇�) increased the predictive power of all methods. Note the change in axes scales 
from Figures 2-3.  (a) For the same example neuron as in Figure 3, all methods gained a significant amount of predictive power, indicating a 
strong encoding of position and speed or their correlates. The GLM showed less predictive power than the other methods on this feature set. 
(b) The spike rate in black, with jitter on the y-axis, again overlaid with the predictions of the three methods as a function of velocity direction. 
The neuron encodes for position and speed, as well, and the projection of the multidimensional tuning curve onto a 1D velocity direction 
dependence leaves the projected curve diffuse. (c) The ensemble method, neural network, and XGBoost performed consistently better than 
the GLM across the population. The mean pseudo-R2 scores show the hierarchy of success across methods. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint 

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

rate in a similar center-out reaching task (6). These extra 
features included the sine and cosine of velocity 
direction (as in Figure 2), the speed, the radial distance 
of hand position, and the sine and cosine of position 
direction. The training set was thus 10-dimensional, 
though highly redundant, and was aimed at maximizing 
the predictive power of the GLM. Feature engineering 
improved the predictive power of all methods to 
variable degrees, with the GLM improving to the level 
of the neural network (Fig. 5). XGBoost and the 
ensemble still predicted spikes better than the GLM (Fig. 
5c), with the ensemble scoring on average 1.8 times 
higher than the GLM (ratio of population means of 1.8 
[1.4 – 2.2], 95% bootstrapped CI). The ensemble was 
significantly better than XGBoost (mean comparative 
pseudo-R2 of 0.08 [0.055 – 0.103], 95% bootstrapped CI) 
and was thus consistently the best predictor. Though 
standard feature engineering greatly improved the GLM, 
the ensemble and XGBoost still captured the neural 
response more accurately. 

To ensure that these results are not specific to the motor 
cortex, we extended the same analyses to primary 
somatosensory cortex (S1) data. The ensemble was 
consistently the best predictor across all neurons, 
scoring almost twice as well as the GLM (ratio of 1.8 
[1.2 – 2.2] of population means, 95% bootstrapped CI). 
XGBoost predicted spikes better than the GLM only for 

neurons with significant effect sizes for any of the four 
methods (i.e., with cross-validated pseudo-R2 scores 
two standard deviations above 0; mean comparative 
pseudo-R2 was 0.002 [0.0006 – 0.0045], 95% 
bootstrapped CI). Interestingly, the neural network 
performed worse than all other methods. We speculated 
that this could be related to the small covariate effect 
size in the S1 dataset, as we observed similar scores for 
the neural network on the M1 dataset for regimes of 
similar effect sizes, as well as on simulated data with 
GLM structure, small effect size, and similar firing rates 
(Supp. Fig. 2). We also found that a much smaller 
network performed better (a single hidden layer with 20 
nodes) but that max-norm or elastic-net regularization 
did not improve the results with the larger network. 
Neural networks may thus be poor choices for Poisson 
data with very small covariate effect sizes, though we 
see no theoretical reason why this should be the case. 
Overall, on this S1 dataset featuring generally low 
predictability, the tested methods displayed a range of 
performances, with the ensemble predicting the data 
nearly twice as well as the GLM alone. 

We asked if the same trends of performance would hold 
for the rat hippocampus dataset, which was 
characterized by very low mean firing rates but strong 
effect sizes. All methods were trained on a list of 
features representing the rat position and orientation, as 

Figure 5: Encoding models for M1 trained on all the original features plus the engineered features show that modern ML methods can 
outperform the GLM even with standard featuring engineering. (a) For this example neuron, inclusion of the computed features increased 
the predictive power of the GLM to the level of the neural net. XGBoost and the ensemble method also increased in predictive power. (b) 
The tuning curves for the example neuron are diffuse when projected onto the movement direction, indicating a high-dimensional 
dependence. (c) Even with feature engineering, XGBoost and the ensemble consistently achieve pseudo-R2 scores higher than the GLM, 
though the neural net does not. The selected neuron at left is marked with black arrows. 
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described in methods. We found that many neurons 
were described much better by XGBoost and the 
ensemble method than by the GLM (Fig. 6b). On 
average, the ensemble was almost ten times more 
predictive than the GLM (ratio of population means of 
9.8 [5.4 – 100.0], 95% bootstrapped CI), and many 
neurons shifted from being completely unpredictable by 
the GLM (pseudo-R2  near zero) to very predictable by 
XGBoost and the ensemble (pseudo-R2  above 0.2).  The 
neural network performed poorly, here not due to effect 
size as in S1 but likely due to the very low firing rates 
of most hippocampal cells (Supp. Fig. 2). Out of the 58 
neurons in the dataset, 54 had rates below 1 spikes/ 
second, and it was only on the four high-firing neurons 
that the neural network achieved pseudo-R2 scores 
comparable to the GLM. The relative success of 
XGBoost was interesting given the failure of the neural 
network, and supported the general observation that 
XGBoost can work well with smaller and sparser 
datasets than those neural networks generally require. 
Thus for hippocampal cells, a method leveraging 
decision trees such as XGBoost or the ensemble is able 
to capture far more structure in the neural response than 
the GLM or the neural network. 

 
 

Discussion 
We contrasted the performance of GLMs with recent 

machine learning techniques at the task of predicting 
spike rates in three brain regions. We found that the 
tested ML methods predicted spike rates far more 
accurately than the GLM. Typical feature engineering 
only partially bridged the performance gap. The ML 
methods performed comparably well with and without 
feature engineering, indicating they could serve as 
convenient performance benchmarks for improving 
simpler encoding models. The consistently best method 
was the ensemble, which was an instance of XGBoost 
stacked on the predictions of the GLM, neural network, 
XGBoost, and a random forest. The ensemble and 
XGBoost could fit the data well even for very low spike 
rates, as in the hippocampus dataset, and for very low 
covariate effect sizes, as in the S1 dataset. These 
findings indicate that GLMs are not the best choice as 
neuroscience’s standard method of spike prediction. 

The ML methods we have put forward here have 
been implemented without substantial modification 
from methods that are already in wide use. We hope that 
this simple application might spur a wider adoption of 
these methods in the neurosciences, thereby increasing 
the power and efficiency of studies involving neural 
prediction without requiring complicated, application-

Figure 6: XGBoost and the ensemble method predicted the activity of neurons in S1 and the hippocampus better than a GLM. 
The diagonal dotted line in both plots is the line of equal predictive power with the GLM.  (a) The ensemble predicted firing 
almost twice as well, on average, as the GLM for all neurons in the S1 dataset. XGBoost was better for neurons with higher 
effect sizes but poorly predicted neurons that were not predictable by any method. The neural network performed the worst 
of all methods. (b) Many neurons in the rat hippocampus were described well by XGBoost and the ensemble but poorly by 
the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing 
of most neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally more predictable 
than those in S1. 
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specific methods development (e.g. (43)). Our methods 
could also be further optimized by including additional 
information, such as spike history, covariate history, or 
the phase relative to the theta cycle (25, 44) in the 
hippocampus. While such steps could be valuable in 
future studies, they are not necessary for this 
demonstration of the methods’ relative power when 
operating on a common set of inputs. Further 
improvements are possible, but researchers may still 
gain descriptive power over GLMs with simple, out-of-
the-box implementations. 

The success of a GLM depends on the form of the 
input features, and as such it might be argued that the 
GLM underperforms simply because we have selected 
the wrong sets. This is true, in a technical sense; in 
principle, one can always find a set of operations that 
maps the features to a linear regime. (The output of 
XGBoost, say, or its first several approximating 
moments.) It is worth asking, however, not just whether 
different features could improve a GLM but also 
whether it is necessary or useful to use a GLM in the 
first place. When determining if a neuron encodes a 
certain set of features, like muscle forces or body 
position, one can choose to ask if there is a neural 
response that is linear with respect to those features, or 
alternatively if there is any learnable response at all. We 
posit that the brain is not a priori a linear computation 
engine, and that framing computations in linear space 
does not necessarily better represent the computations 
that a neuron ‘actually’ performs. Choosing to observe 
the widest possible space of responses may thus be the 
more prudent decision. Furthermore, we gain little 
understanding of the neural function by lifting the GLM 
to the level of the ensemble with feature engineering if 
there is no prior preference for linearity. It is far easier 
to stay agnostic to the form of engineered features and 
use modern ML methods to find an optimal predicting 
function. 

Advanced ML methods are not widely considered to 
be interpretable, and some may worry that this 
diminishes their scientific value as encoding models. 
We can better discuss this issue with a more precise 
definition of interpretability. Lipton makes the 
distinction between a method’s post-hoc interpretability, 
the ease of justifying its predictions, and transparency, 
the degree to which its operation and internal parameters 
are human-readable or easily understandable (45). A 
GLM is certainly more transparent than many ML 
methods due to its algorithmic simplicity. Post-hoc 
explanations of predictions, on the other hand, are often 
possible with modern ML methods. It is possible, for 

example, to visualize the aspects of stimuli that most 
elicit a predicted response, as has been implemented in 
previous applications of neural networks to spike 
prediction (17, 18). Post-hoc explanations also include 
descriptive explanations and justifications by example 
(“neuron y fired when the stimulus sounded like a 
human voice”). Work is underway to add such post-hoc 
explanations to the capabilities of neural networks (46, 
47). These capabilities for post-hoc justifications could 
be as scientifically valuable as method transparency if 
successfully implemented. 

Not all types of interpretability are necessary for a 
given task, and many scientific questions can be 
answered based on predictive ability alone. Questions of 
the form, “does feature x contribute to neural activity?”, 
for example, require no method transparency; one can 
simply ask whether predictive power increases with 
feature x’s inclusion. Advanced ML methods could thus 
be readily applied to studies of feature importance 
across the brain (e.g. (48-50)). Lack of transparency 
should thus not generally preclude the use of advanced 
ML methods in neuroscience. 

Though GLMs are considered transparent, it is 
important to note that a few issues complicate the 
interpretation of their parameters. Regularization 
imposes prior distributions on feature weights, 
introducing a bias that is often left unconsidered. 
Unaccounted nonlinearity may also cause issues with 
interpretation. In the extreme case when the neural 
response to some feature x does not correlate with exp(x), 
the feature weights may incorrectly predict no 
dependence on feature x whatsoever. Feature 
engineering attempts to resolve this issue, though the 
engineered features must be guessed if the nonlinearity 
is unknown. This will leave some ambiguity as to how 
much the new feature weights simply capture the scaling 
of the engineering function as opposed to the relative 
contribution of the feature. Finally, any feature 
covariance must be acknowledged when examining 
fitted weights. One may find, for example, that a neuron 
fires in response to both x and x3 when the most linearly 
related feature is sin(x), which is better approximated as 
a combination of both terms than by either alone. It 
would thus be a mistake to interpret the feature weights 
on x and x3 as their ‘contribution’ to firing. These several 
considerations serve to reduce the interpretability of the 
parameters of GLMs, and should be remembered when 
choosing a model for studies of feature importance. 

The brain is nonlinear and complex. A systematic 
description with linear models presents the danger of 
obscuring its function with an illusion of a simpler form. 
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The development of a conceptual framework that 
acknowledges neural complexity could be greatly aided 
by building tuning curves that capture arbitrary 
nonlinearity and more accurately describe neural 
activity. 

The code used for this publication is available at 
https://github.com/KordingLab/spykesML. We invite 
researchers to adapt it freely for future problems of 
neural prediction.
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