Conserved changes in secondary structure and aggregation properties of *in vitro* evolved proteins for thermo stability

Kundarpu Satyamurthy

National Institute of Science Education and Research,

Sainik School, Khorda District,

Bhubaneshwar, Odisha,

India, 751005.

Email: K.satyamurthy@niser.ac.in

Mobile No: 918790826268.

Abstract

Most of the screening strategies of directed evolution involved in thermo stability deals with aggregation of proteins either directly or indirectly. Here in this work I investigated what happens in aggregation property and secondary structure of the protein when it improved its thermo stability by incorporating certain amino acid changes in the protein. To study these changes I picked randomly 12 different proteins and I analyzed their 25 different thermo stable mutants. I used open access online Software to get the aggregation propensity values and values for different secondary structure elements propensities of proteins. I compared the aggregation propensity and predicted secondary structure values of thermo stable mutants with their parent Wild type proteins. The stable mutants followed three different conserved patterns to improve their thermo stability.

Introduction

There are different strategies employed to improve the thermo stability of the protein like modifications, oligomerisation, domain shuffling, protein engineering. Among these strategies protein engineering is widely used for its promising positive results for thermo stability improvement in proteins which are having industrial and therapeutic applications. Most of the screening strategies of protein engineering involved in thermo stability deals with aggregation of proteins either directly or indirectly because, most of the proteins upon thermal denaturation will undergo to an irreversible aggregation. There is an unbreakable link in between the aggregation property and thermal melting of the protein. When you change the amino acids in proteins, along with changes in aggregation propensity values there will be a definite or slight changes will happened in the secondary structure of the protein.

Here in this work I want to study is this changes are following any trend among the thermo stable mutants. So in this study I compared trends in different parameters either decreasing or increasing.

To study these changes I used Online Software to get the aggregation propensity values and predicted propensity values for different secondary structure elements of proteins. I compared the aggregation propensity and predicted secondary structure values of thermo stable mutants with their parent Wild type proteins which are less stable than mutants at given temperature. For this study, I picked randomly 12 different proteins and their 25 different thermo stable variants (5,6,7,8,9,10,11,12,14).

Methods and Material

Proteins Used in this Study

	Parent Protein	Muta nts	Mutations	Tm(in Degree Celsius)
1	Bacillus subtillis Lipase			55.5
		6B	A15S, F17S, A20E, N89Y, G111D, L114P, A132D, I157M and N166Y M134E, M137P and S163P	75.6
2	Pseudomor Stutzeri Phosphona Dehydroge	te		39.7
		OPT1 4	V71I,T101A,E130K,Q132R,Q137R,T146S,I150F,Q215L,R275Q, L276Q,I313L,V315A,A319E,A325V	64.4
3	<i>Candida</i> <i>Antarctic</i> <i>a</i> Lipase			
		CALB 7	P218N,L219K,F220T,V221S	7 Folds High activity

				than WT at 60degre
		CALB 168	A57T,T89A,G226R,R168K	e 14 Folds Activity than WT at 60 degree
4	HHV8P Protein ORF49			48.05
		ORF4 9-1	K8N, A36T, K186R	57.8
		ORF4 9-2	L90I, E116Q, A155V, G157D, T239I	51.92
		ORF4 9-3	Q207H	53.08
		ORF4 9-4	V218I, C294Y	50.66
		ORF4 9-5	A155V, D278N, Q302E	51.3
		ORF4 9-6	K119E, L125V, Q207H	51.82
		ORF4 9-7	K187E, T193S	57.65
		ORF4 9-8	V218I, R273S	54.43
		ORF4 9-9	Q207H, K242I	53.45
5	Serratia sp.strain MK1 Phosholip ase A1			70
		TA3	Q32P,T39A, E105V,M153I,S158I	77
		TA13	E35Q, S101N, M153K, L157W,L280Q,K290N	81
6	HHV1 capsid UL18	Triplex protein		54.43*(Tagg)
		UL18- 1	S212L	60.65*
		UL18- 2	S212L, T247M	61.03*
7	Thermus th	iermophil	lus Beta-glucosidase	$3.8 \pm 0.4(t1/2)$
		HF5	S266P A285Y, H321D, F395Y, L403I	$\begin{array}{ccc} 17.9 & \pm \\ 0.8 \end{array}$
8	Escherichi	a coli		50.5

	<i>and Edwa</i> <i>ictaluri</i> F bisphospha	ructose-		
	aldolase			
		4- 43D6	Multiple Mutants	61.7
9	HHV11 Te protein UL			44.23
		UL14- 1	V77D, V81L, A85G	54.53
10	Streptomyc	es aureof	faciens Non-heme bromoperoxidase BPO-A1	80.6
		HT11 7	R114H,N146H	82
		HT50 7	G106S,V148I	84.5
11	NUD18 HU	JMAN 8-	oxo-dGDP phosphatase	40.27
		NXR1 -1	V45M, E91V	66.85
		NXR1 -2	E95K, S107F	55.76
12	Bacillus subtilis Para Nitro Benzyl Esterase			52.5
		6sF9	I60V,L144M,L313F,H322Y,A343V,M358v,Y370F,G412E,I437T	66

Software Used in this Study

Four different software freely available online software were used in this study. Those are TANGO, AGGRESCAN, PASTA2.0 and CHOUFASMAN.

http://tango.crg.es/protected/academic/calculation.jsp

http://protein.bio.unipd.it/pasta2/

http://cho-fas.sourceforge.net/

http://bioinf.uab.es/aggrescan/

For total protein aggregation propensity values, TANGO Agg and Amylo values, AGGRESCAN a3vSA value and in PASTA2.0 number of Amyolids and for Secondary structure prediction TANGO Secondary structure propensities, PASTA Percentage of different secondary structure elements, CHOUFASMAN Percentage of different secondary structure elements were taken(1,2,3,4). Every software I used at their default settings. For analyzing the Local aggregation propensity value changes at the mutated regions I used TANGO (helix agg or Beta agg) and AGGRESCAN (a3v) (10, 12). To check local secondary structure values TANGO

Helix propensity at the mutated region or Beta sheet propensity or Turn propensity and CHOUFASMAN were used. To check aggregation prone regions in the protein an open access tool WALTZ was used (Data not shown). For a mutant out of three different values from different software which two give a similar trend like either decrease or increase when compared with wild type that trend was considered for that mutant.

When there are three different software values for a given mutant, TANGO values of aggregation propensity and secondary structure prediction propensities were taken consideration or the changes in these parameters at that particular mutated region were analyzed.

Results and discussion

Lipase

	WT	6B		WT	6B		WT	6B
CFSSP	55.2	49.2	PASTA	27.62	20.99	TANGO	37.4528	33.2371
Helix			Helix			Helix		
CFSSP	43.6	43.1	PASTA	26.52	28.73	TANGO	401.536	353.099
Beta			Beta			Beta		
CFSSP	10.5	11.6	PASTA	45.86	50.28	Tango	140.245	150.232
Turn			Coil			Turn		

 Table-1: Predicted secondary structure propensities in WT and Thermo stable Mutant (6B)

 Table-2 Predicted aggregation propensity values of WT and Thermo Stable Mutant (6B)

	WT	6B		WT	6B		WT	6B
Aggrescan a3vSequence Average (a3vSA)	-0.007	-0.052	PASTA Amyloids	20	9	TANGO Agg	844.27	868.45
						TANGO Amylo	256865	2081.0

The comparison of predicted secondary structure elements propensities of wild type lipase with stabilized mutant 6B showed there is a decrease in alpha helical content and beta sheet in 6B but there is an increase in overall Turn content in 6B. Comparison of wild type aggregation propensity values with 6B showed significant decrease. There is slight increase in Tango agg value of 6B but Tango Amylo value is too less for 6B than wildtype. At the every mutated position the aggregation propensity values were decreased (data was not shown). This aggregation resistance behavior of 6B was reported earlier also (5).

Phosphonate dehydrogenase

Table-3 Predicted secondary structure propensities in WT and Thermo stable Mutant (OPT14)

bioRxiv preprint doi: https://doi.org/10.1101/111443; this version posted February 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

	WT	OPT14		WT	OPT14		WT	OPT14
CFSSP	85.4	84.5	PASTA	54.46	57.74	Tango	934.86	962.18
Helix			Helix			Helix		
CFSSP	38.7	36.3	PASTA	8.03	6.25	Tango	494.941	463.198
Beta			Beta			Beta		
CFSSP	9.2	9.2	PASTA	37.5	36.01	Tango	128.275	129.577
Turn			Coil			Turn		

Table-4 Predicted aggregation propensity values of WT and Thermo Stable Mutant (OPT14)

	WT	OPT14		WT	OPT14		WT	OPT14
PASTA Amyloids	6	4	a3vSA	0.005	-0.001	Tango agg	1728.15	1556.57
						Tango amylo	194968	170539

Opt14 (thermo stable mutant of phosphonate dehydrogenase) mutation Q215 to L showed increase in alpha helical content at 213-229 compared to wild type protein and the overall alpha helical content also improved. There is a significant decrease in overall aggregation propensity values and beta sheet values also observed in Opt 14 when compared with wild type.

Candida Antarctica Lipase

Table-5 Predicted secondary structure propensities in WT and Thermo stable Mutants (CALB7, CALB168)

	WT	CAL	CALB		WT	CAL	CALB		WT	CAL	CALB
		B7	168			B7	168			B7	168
PAST	22.7	23.4	25.87	CFSS	49.8	46.7	55.2	Tango	110.9	110.9	82.284
Α				Р				Helix	59	56	4
Helix				Helix							
aPAS	13.25	10.73	11.36	CFSS	68.5	66.6	68.1	Tango	683.4	671.4	687.80
TA				Р				Beta	25	82	5
Beta				Beta							
PAST	64.4	65.93	62.78	CFSS	15.1	15.5	15.1	Tango	182.7	186.4	178.49
A Coil				Р				Turn	55	46	2
				Turn							

Table-6 Predicted aggregation propensity values of WT and The	rmo Stable Mutants (CALB7, CALB168)
---	-------------------------------------

	WT	CAL	CALB		WT	CAL	CALB		WT	CAL	CALB
		B7	168			B7	168			B7	168
Aggres	0.03	0.01	0.031	PASTA	4	1	6	Tango	557.	546.	512.08
can	2			Amyloid				Agg	666	569	4
a3vSA				s				00			
								Tango	2.24	2.24	5.9216
								Amylo	911	911	

Candida Antarctica lipase thermo stable mutants CALB7 and CALB168 stabilized in two different ways.CALB7 stabilized by decreasing the aggregation Propensity and CALB168 improved it's stability by improving Alpha helix content and there is slight decrease in beta sheet also observed.

ORF49

algorithm	l									
	WT	ORF4								
		9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9

Table-7 Predicted secondary structure propensities in WT and Thermo stable Mutants By Choufasman

	WT	ORF4								
		9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9
CFSSP	74.5	73.8	75.5	74.5	74.5	74.5	74.5	74.5	74.5	74.5
Helix										
CFSSP	82.5	82.5	82.8	82.5	82.5	83.1	82.5	82.5	82.5	82.5
Beta										
CFSSP	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.3
Turn										

Table-8 Predicted secondary structure propensities in WT and Thermo stable Mutants by PASTA2.0

	WT	ORF4								
		9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9
PASTA	72.19	66.87	74.83	72.52	72.52	72.19	70.53	73.84	72.19	72.52
Helix										
PASTA	0.66	0.99	0.33	0.66	0.66	0.99	1.32	0.33	0.66	0.66
Beta										
PASTA	27.15	30.13	24.83	26.82	26.82	26.82	28.15	25.83	27.15	26.82
Coil										

Table-9 Predicted secondary structure propensities in WT and Thermo stable Mutants by TANGO

	WT	ORF4								
		9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9
Tango	138.41	129.25	161.37	137.61	141.32	142.15	121.09	137.45	138.17	139.27
Helix	6	9	4	6	8	7	2		3	9
Tango	757.46	769.18	751.53	755.92	751.54	762.23	771.32	756.55	746.49	758.71
Beta	8	9	2	9	5	7	9	2	8	
Tango	138.64	138.90	136.86	139.42	138.29	132.94	138.56	138.79	138.68	139.00
Turn	7	5	8	2	6	9	4		7	6

Table-10 Predicted aggregation propensity values of WT and Thermo Stable Mutants by Tango

WT	ORF4								
	9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9

Tango	2752.0	2657.2	2778.9	2720.2	2751.3	2730.2	2721.3	2483.0	2758	3191.6
Agg	9	7	3	3	1	1	6	2		6
Tango	27505	16194	27505	27505	27505	27505	27505	27505	27505	27505
Amylo	3	7	4	3	3	4	4	4	4	4

Table-11 Predicted aggregation propensity values of WT and Thermo Stable Mutants by Aggrescan

	WT	ORF4 9-1	ORF4 9-2	ORF4 9-3	ORF4 9-4	ORF4 9-5	ORF4 9-6	ORF4 9-7	ORF4 9-8	ORF4 9-9
Aggresca n a3vSA	0.089	0.086	0.092	0.09	0.092	0.095	0.092	0.087	0.093	0.099

Table-12 Predicted aggregation propensity values of WT and Thermo Stable Mutants by PASTA

	WT	ORF4 9-1	ORF4 9-2	ORF4 9-3	ORF4 9-4	ORF4 9-5	ORF4 9-6	ORF4 9-7	ORF4 9-8	ORF4 9-9
PASTA Amyloids	20	20	20	20	20	20	20	20	20	20

Thermo stability screening of ORF49 mutants is aggregation dependent, out of nine mutants ORF49-1, ORF49-7 showed decreased aggregation propensity values. ORF49-2 showed increase in alpha helical content. ORF49-3 (O207H) a single mutant showed both improvement in alpha helix and decrease in aggregation propensity but ORF49-6 mutant had along with ORF49-3 mutation two extra mutations which are decreasing Tm by 2degrees of single mutant.ORF49-6 showing same aggregation propensity values like ORF49-3 but there is a significant decrease in alpha Helix content. The Decrease in Tm of ORF49-6 is due decrease in alpha helix content.ORF49-9 mutant also had this single mutation (Q207H) along with one more mutation and it doesn't showed any significant change in Tm but there is increase in aggregation propensity values. Alpha Helix content of ORF49-9 is slightly more than ORF49-3. ORF49-4 and ORF49-8 had one common mutation (V218I) but there is Tm difference of 4 degrees present in between these mutants the second mutation in ORF49-4 improving the beta sheet, in ORF49-8 the second mutation causing slight increase in local alpha helical content. Previous mutations in different proteins showed increase beta sheet content decrease the stability so the decrease in Tm of ORF49-4 is due increase in Beta sheet. ORF49-5 showed improvement in alpha helix content and showed decrease in aggregation propensity value.

Phospholipase A1

Table-13 Predicted secondary structure propensities in WT and Thermo stable Mutants (TA3,TA13)

	WT	TA3	TA13		WT	TA3	TA13		WT	TA3	TA13
CFSS	67.8	69.1	67.2	PAST	44.06	44.06	43.13	Tango	302.8	324.6	294.6
Р				Α				Helix	98	14	16
Helix				Helix							
CFSS	60.3	61.16	60.3	PAST	8.13	9.38	8.44	Tango	601.8	626.7	591.1
P Beta				A Beta				Beta	23	61	79

CFSS	12.5	12.8	13.1	PAST	47.18	46.56	48.44	Tango	123.8	116.4	128.0
Р				A Coil				Turn	58	39	95
Turn											

Table-14 Predicted aggregation propensity values of WT and Thermo Stable Mutants (TA3, TA13)

	WT	TA3	TA13		W	TA	TA1		WT	TA3	TA13
					Т	3	3				
Aggresc	-	2.81	-	PASTA	0	2	0	Tango	1427	1469.8	1428.4
an	0.104	2	0.122	Amyloi				Agg	.32	6	2
a3vSA				ds				00			
								Tango	4016	35208	39130
								Amylo	32	3	1
								, v			

In Phospholipase mutants TA13 improved its aggregation resistance. It was also observed that, mutated regions had less aggregation propensity values than WT protein. TA3 doesn't show any decrease in aggregation propensity values but improved its alpha helical content.

Triplex capsid protein UL18

Table-15 Predicted secondary structure propensities in WT and Thermo stable Mutants (UL18-1, UL18-2)

	WT	UL18	UL18		WT	UL18	UL18		WT	UL18-	UL18-
		-1	-2			-1	-2			1	2
CFSS	70.1	71.7	71.7	PAST	35.22	35.22	35.22	Tang	809.33	809.71	800.11
P				Α				0	1	8	4
Helix				Helix				Helix			
CFSS	47.2	47.2	47.2	PAST	16.98	16.98	16.98	Tang	687.58	671.07	663.69
P				A Beta				0	5	1	5
Beta								Beta			
CFSS	11.3	11.3	11	PAST	47.8	47.8	47.8	Tang	140.64	140.81	140.8
Р				A coil				0	3	6	
Turn								Turn			

Table-16 Predicted aggregation propensity values of WT and Thermo Stable Mutants (UL18-1, UL18-2)

	WT	UL1	UL1		WT	UL1	UL1		WT	UL1	UL1
		8-1	8-2			8-1	8-2			8-1	8-2
PAST	20	20	20	Aggresc	0.09	0.095	0.099	Tango	1846.	2008.	2008.
Amyloi				an				Agg	89	86	89
ds				a3vSA				00			
								Tango	20.36	20.36	20.36
								Amylo	24	24	24

Both thermo stable mutants of UL18 had common mutation (S212L) which increases the Local Alpha helix content decreases the beet sheet values and the UL18-2 had one more mutation that decreases the beet sheet value furthermore. The decrease in beta sheet value and local improvement alpha helix is cause of stabilization both mutants.

Beta-glucosidase Thermus thermophiles

	WT	HF5		WT	HF5		WT	HF5
CFSSP	63.8	62.6	PASTA	45.24	44.78	Tango	772.383	899.635
Helix			Helix			Helix		
CFSSP	57.1	57.1	PASTA	9.74	10.21	Tango	757.952	747.42
Beta			Beta			Beta		
CFSSP	12.8	12.8	PASTA	45.01	45.01	Tango	139.408	134.842
Turn			Coil			Turn		

Table-17 Predicted secondary structure propensities in WT and Thermo stable Mutant (HF5)

Table-18 Predicted aggregation propensity values of WT and Thermo Stable Mutant (HF5)

	WT	HF5		WT	HF5		WT	HF5
PASTA	7	7	Aggrescan	-0.014	-0.013	Tango	1971.09	2053
Amyloids			a3vSA			Agg		
						Tango	1.35E+0	1.35E+0
						Amylo	6	6

Thermo stable mutant of Beta glucosidase showed significant increase in alpha helical values at the mutated regions. Showed decrease beta sheet values. But there is no significant change in overall aggregation propensity values although two mutations of this protein showed little decrease at their positions.

Fructose bisphosphate aldolase

Table-19 Predicted secondary structure propensities in WT and Thermo stable Mutant (4-43D6)

	WT	4-43D6		WT	4-43D6		WT	4-43D6
CFSSP	72.6	73.1	PASTA	43.58	43.7	Tango	165.262	266.39
Helix			Helix			Helix		
CFSSP	32.4	41.7	PASTA	14.25	14.85	Tango	854.948	817.164
Bete			Beta			Beta		
CFSSP	13.4	12.3	PASTA	42.18	41.46	Tango	154.457	152.639
Turn			Coil			Turn		

Table-20 Predicted aggregation propensity values of WT and Thermo Stable Mutant (4-43D6)

	WT	4-43D6		WT	4-43D6		WT	4-43D6
Aggrescan	-0.04	-0.009	PASTA	2	2	Tango	603.945	795.203
a3vSA			Amyloids			Agg		
						Tango	0.670351	67.2146

			Amylo	

Aggregation propensity values for WT protein is too less. Thermo stable mutant 4-43D6 showed increase alpha helix content and also showed there is an increase aggregation propensity values. But this mutant stabilized because of improvement in alpha helix content.

Tegument UL14

Table-21 Predicted secondary structure propensities in WT and Thermo stable Mutants (UL14-1)

	WT	UL14-1		WT	UL14-1		WT	UL14-1
CFSSP	67.6	67.6	PASTA	52.97	53.88	Tango	523.461	523.489
Helix			Helix			Helix		
CFSSP	36.1	36.1	PASTA	1.83	0	Tango	312.36	272.687
Beta			Beta			Beta		
CFSSP	15.5	16	PASTA	45.21	46.12	Tango	125.093	126.852
Turn			Coil			Turn		

Table-22 Predicted aggregation propensity values of WT and Thermo Stable Mutant (UL	14-1)
Tuble 22 Frederice aggregation propensity (and so it is a main frederice (C2	/

	WT	UL14-1		WT	UL14-1		WT	UL14-1
PASTA Amyloids	0	0	Aggrescan a3vSA	-0.266	-0.285	Tango Agg	287.803	287.803
						Tango Amylo	0.994051	0.994045

Aggregation propensity values for WT protein is too less. Aggrescan values showed there is an aggregation resistance although there is change in Tango values. Thermo stable mutant of this viral protein showed significant increase in alpha Helix content.

Non-heme bromoperoxidase

Table-23 Predicted secondary structure propensities in WT and Thermo stable Mutants (HT117, HT507)

	WT	HT11 7	HT50 7		WT	HT11 7	HT50 7		WT	HT11 7	HT50 7
CFSS	68	68	69.5	PAST	35.27	35.64	32	Tango	181.5	159.3	186.4
Р				Α				Helix	86	13	17
Helix				Helix							
CFSS	33.8	33.8	33.8	PAST	19.64	19.64	21.82	Tango	478.0	477.8	483.2
P Beta				A Beta				Beta	27	83	61
CFSS	13.5	13.1	13.5	PAST	45.09	44.73	46.18	Tango	160.1	149.9	166.1
Р				A Coil				Turn	12	23	13
Turn											

 Table-24 Predicted aggregation propensity values of WT and Thermo Stable Mutant (HT117, HT507)

WT	HT1	HT5	WT	HT1	HT5	WT	HT1	HT5
	17	07		17	07		17	07

PASTA	4	5	4	Aggresc	-	-	-	Tango	740.8	761.5	741.1
Amyloid				an	0.103	0.102	0.106	Agg	37	13	29
s				a3vSA							
								Tango	5716	5716	5693
								Amylo	7.2	7.6	3.9

The mutant HT117 mutation in the position 114 showed decrease beta sheet value but second mutation showed increase in beta sheet value and decrease in alpha helix value. But second thermo stable mutant HT507 showed significant decrease in aggregation propensity values and increase in alpha helix values. In Comparison both mutants HT507 is more thermo stable than HT117 although the mutations located same regions but different positions.

NUD18 HUMAN 8-oxo-dGDP phosphatase

	WT	NXR	NXR		WT	NXR	NXR		WT	NXR	NXR
		1-1	1-2			1-1	1-2			1-1	1-2
CFSS	71.2	71.2	71.2	PAST	42.14	43.65	41.18	Tango	475.3	485.1	544.6
Р				Α				Helix	49	76	06
Helix				Helix							
CFSS	48	49.2	48	PAST	13.13	12.38	14.24	Tango	762.0	719.8	748.5
P Beta				A Beta				Beta	48	33	21
CFSS	12.7	12.4	12.7	PAST	44.27	43.96	44.58	Tango	87.18	87.13	87.35
Р				A Coil				Turn	18	66	29
Turn											

Table-25 Predicted secondary structure propensities in WT and Thermo stable Mutants (NXR1-1, NXR1-2)

Table-26 Predicted aggregation propensity values of WT and Thermo Stable Mutants (NXR1-1, NXR1-2)

	WT	NXR	NXR		WT	NXR	NXR		WT	NXR	NXR
		1-1	1-2			1-1	1-2			1-1	1-2
Aggresc	0.006	0.013	0.014	PASTA	20	20	20	Tango	3191.	3192.	3225.
an				Amyloid				Agg	53	64	56
a3vSA				s							
								Tango	3165	5597	3165
								Amylo	3.7	7.9	2.9

The First thermo stable mutant NXR1-1showed significant increase in Alpha helix. There is decrease in beta sheet compared to second mutant NXR1-2. NXR1-2 also showed significant increase in alpha helix at their mutated regions and decrease in beta sheet value. The aggregation propensity values when compared with WT slightly increased.

p- Nitro Benzyl Esterase

Table-27 Predicted secondary structure propensities in WT and Thermo stable Mutant (6sF9)

	WT	6SF9		WT	6SF9		WT	6SF9
CFSSP	76.5	76.3	PASTA	40.7	41.2	Tango	793.101	1015.04
Helix			Helix			Helix		
CFSSP	28.8	29.7	PASTA	15.54	14.72	Tango	1099.84	1085.02
Beta			Beta			Beta		
CFSSSP	14.5	14.5	PASTA	43.76	43.56	Tango	272.585	256.468
Turn			Coil			Turn		

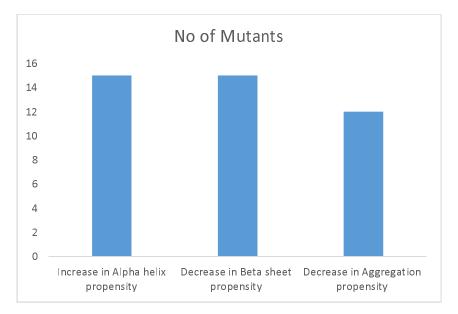
Table-28 Predicted aggregation propensity values of WT and Thermo Stable Mutant (6sF9)

	WT	6SF9		WT	6SF9		WT	6SF9
Aggrescan	-0.035	-0.037	PASTA	20	20	Tango	2346.69	2277.06
a3vSA			Amyloids			Agg		
						Tango	3626.39	32.9687
						Amylo		

p-Nitro Benzyl Esterase thermo stable mutant 6sF9 showed an improvement in overall alpha helix content and decrease in overall aggregation propensity values and there is a decrease in beta sheet value also.

Conclusion

All thermo stable mutants analyzed in this study, out of 25 mutants 18 showed either there is decrease in aggregation propensity values or increase in alpha helix secondary structure prediction values. Remaining 7 mutants showed these changes at their mutated regions and almost of all of this mutants showed the decrease in overall beta sheet values and it was already reported that involvement beta sheet in thermal aggregation (13). The proteins which are thermo stabilized analyzed in this study showed are tabulated into three different groups.


 Table-29 Changes in three different parameters happened in stabilized mutants

	Parent Protein	Mutants	Decrease in Aggregation propensity value	Increase in Alpha helix Value	Decrease in Beta sheet Value	Tm(in Degree Celsius)
1	Bacillus subtillis Lipase					55.5
		6B	+		+	75.6
2	Phosphor	nate Dehydro	ogenase			39.7
		OPT14	+	+	+	64.4
3	Candida Antarctica Lipase					
		CALB7	+		+	7 Folds High activity than WT at 60degree
		CALB16		+		14 Folds Activity than
		8				WT at 60 degree
4	HHV8P Protein ORF49					48.05

	ORF49-1	+			57.8
	ORF49-2		+	+	51.92
	ORF49-3	+	+		53.08
	ORF49-4	+		+	50.66
	ORF49-5		+		51.3
	ORF49-6	+	+		51.82
	ORF49-7	+		+	57.65
	ORF49-8	+		+	54.43
	ORF49-9	+	+		53.45
5	Phosholipase A1				70
	TA3		+		77
	TA13	+		+	81
6	Triplex capsid protein	n UL18			54.43*(Tagg)
	UL18-1		+		60.65*
	UL18-2			+	61.03*
7	Beta-glucosidase	Thermus			$3.8 \pm 0.4(t1/2)$
	thermophilus				
	HF5		+	+	17.9 ± 0.8
8	Fructose-bisphosphat	te aldolase			50.5
	4-43D6	-	+		61.7
9	HHV11 Tegument pr			44.23	
	UL14-1		+	+	54.53
10	Non-heme bromoper			80.6	
	HT177			+	82
	HT507		+		84.5
11	NUD18 HUMAN			40.27	
	phosphatase				
	NXR1-1		+	+	66.85
	NXR1-2			+	55.76
12	Para Nitro Benzyl Es			52.5	
	6sF9	+	+	+	66

OPT14 (thermo stable mutant of phosphite dehydrogenase) and 6sF9 (thermo stable mutant of parnitro benzyl esterase) improved their Tm in a greater extent (OPT 25degrees, 6sF9 14.5degrees than their respective parent protein) with less number mutations. These thermo stable mutants of phosphite dehydrogenase and para nitro benzyl esterase showed all three existing parameters changed and this changes shown additive effect to improve the thermo stability of these mutants in greater extent. This *in vitro* evolved proteins for thermo stability showed three types conserved changes, including their secondary structure and aggregation propensity. Sometime this changes are local at the mutated region and doesn't show global changes in protein structure, but others showed significant change at local mutated region and overall global change in the protein.

bioRxiv preprint doi: https://doi.org/10.1101/111443; this version posted February 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Changes in three different parameters happened in stabilized mutants

Future Directions

This study can help in rational designing of protein for improving their stability in future to minimize the errors in it.

References

- 1. Chou PY, Fasman GD (1974). "Conformational parameters for amino acids in helical, betasheet, and random coil regions calculated from proteins". Biochemistry 13: 211–222.
- 2. Fernadez-Escamilla AM, Rousseau F, Schymkowtiz J, Serrano L, **Prediction of sequence dependent mutational effects on the aggregation of peptide and protein,** Nat Biotechnology, e-pub,2004.
- 3. Ian Walsh, Flavio Seno, Silvio C.E. Tosatto and Antonio Trovato. **PASTA2: An improved** server for protein aggregation prediction.Nucleic Acids Research, accepted. (2014)
- Ignacio Asial1, Yue Xiang Cheng1, Henrik Engman1, , Binghuang Wu1,Pa[¬]r Nordlund1,2 & Tobias Cornvik1, Engineering protein thermostability using a generic activity-independent biophysical screen Inside the cell. Nature Communications, Dec 2013.
- 5. Jae kwang song, Joon shick Rhee, Simultaneous enhancement of thermostability and catalytic activity of phospholipase A1 by evolutionary Molecular engineering. Applied Environmental Microbiology, Mar.2000, p.890-894
- 6. Jijun Hao and Alan Berry, **A thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents.** Protein Engineering, Design & Selection vol. 17 no. 9 pp. 689–697, 2004
- 7. Kamal MZ, Ahmad S, Molugu TR, Vijayalakshmi A, Deshmukh MV, Sankaranarayanan R, Rao NM In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.J Mol Biol ,2011, 413:726–741.
- 8. Lori Giver, Anne Gershenson, **Directed evolution of thermo stable Esterase.** Proc. Natl. Acad. Sci, 1998, Vol95, 12809-12813.
- 9. Michael J, McLachlan, Future improvement of phosphite dehydrogenase thermo stability by saturation mutagenesis. Biotechnology bioengineering, 2008;99: 268-274.
- Oscar Conchillo-Solé, Natalia S de Groot, Francesc X Avilés, Josep Vendrell, Xavier Daura and Salvador Ventura, AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics 2007, 8:65
- 11. Ryosuke Yamada, Tatsutoshi Higo, Chisa Yoshikawa, Hideyasu China, Hiroyasu Ogino, Improvement of the stability and activity of the BPO-A1haloperoxidase from Streptomyces aureofaciens by directed evolution Journal of Biotechnology 192, 2014, 248–254

- 12. Xiang-Qian Peng, Improved Thermostability of Lipase B from Candida Antarctica by Directed Evolution and Display on Yeast Surface. Appl Biochem Biotechnol, 2013, 169:351– 358
- 13. Yong-Bin Yan, Qi Wang, Hua-Wei He, and Hai-Meng Zhou' Protein Thermal Aggregation Involves Distinct Regions: Sequential Events in the Heat-Induced Unfolding and Aggregation of Hemoglobin Biophys J. 2004 Mar; 86(3): 1682–1690.
- Zhuo-Lin Yi, Shuai-Bing Zhang a, Xiao-Qiong Pei, Zhong-Liu Wu, Design of mutants for enhanced thermostability of b-glycosidase BglY from Thermus thermophiles. Bioresource Technology 129, 2013, 629–633