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 2

Abstract 1 

The degree to which genomic architecture varies across space and time is central to the 2 

evolution of genomes in response to natural selection.  Bulked-segregant mapping combined 3 

with pooled sequencing provides an efficient method to estimate the effect of genetic variants on 4 

quantitative traits.  We develop a novel likelihood framework to identify segregating variation 5 

within multiple populations and generations while accommodating estimation error on a sample-6 

and SNP-specific basis. We use this method to map loci for flowering time within natural 7 

populations of Mimulus guttatus, collecting the early and late flowering plants from each of three 8 

neighboring populations and two consecutive generations.  We find appreciable variation in 9 

genetic effects on flowering time across both time and space; the greatest differences evident 10 

between populations.  Structural variants, such as inversions, and genes from multiple flowering 11 

time pathways exhibit the strongest associations with flowering time. It is also clear that 12 

genotype-by-environment interactions are an important influence on flowering time variation. 13 

 14 
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Introduction 1 

The standing genetic variation in a population is the raw material for evolution.  For 2 

quantitative traits, a basic question is whether the architecture of this variation is consistent 3 

across populations of a species, or even within a single population through time.  Consistency 4 

requires not only for the same polymorphisms to be present in each population, but also that the 5 

genotype-to-phenotype mapping is stable across space and time.  The consistency of genomic 6 

architecture is relevant to many outstanding questions: How general are the results from QTL 7 

mapping studies, typically done on a single population evaluated in a single environment?  How 8 

frequently will parallel selection pressures produce parallel genetic changes (COHAN 1984a; 9 

COHAN 1984b; COLOSIMO et al. 2005; MONNAHAN AND KELLY 2015b)?  How influential are 10 

factors such genotype-by-environment (GxE) interactions in generating inconsistent architecture 11 

from spatial and temporal environmental variation?  To what extent do such factors alter the 12 

balance of evolutionary forces that maintain the quantitative trait variation in the first place?  13 

To address the question of consistency, we performed a bulked-segregant mapping 14 

experiment of flowering time variation across multiple population of Mimulus guttatus over two 15 

generations in the field.  Bulked-segregant mapping (MICHELMORE et al. 1991) identifies loci 16 

that are divergent between the tails of the distribution of a phenotype, in this case the earliest and 17 

latest flowering plants in a population.  Quantitative Trait Loci (QTL) for flowering time should 18 

exhibit allele frequency divergence between groups (bulks).  Because the selection of bulks is 19 

equivalent to a single generation of (bi-directional) truncation selection, the expected magnitude 20 

of this difference is directly proportional to the “average effect” of alleles on the trait (FISHER 21 

1941; LATTER 1965; KIMURA AND CROW 1978).  The average effect measures the association 22 

between alleles and phenotypes (FALCONER AND MACKAY 1996), and the extent to which the 23 
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average effect changes with context directly assays importance of that context on variation.  1 

Changes in average effect across environments estimates the effect of genotype-by-environment 2 

interaction.  Changes in average effect owing to different genetic backgrounds estimate the effect 3 

of epistasis.    4 

The three populations chosen for this study are geographically proximal (within 7km of 5 

each other in the Central Cascades of Oregon, U.S.A) and exhibit extensive shared 6 

polymorphism (MONNAHAN et al. 2015).  When polymorphisms are shared, differences among 7 

populations must be due to difference in the expression of variation rather than the presence or 8 

absence of different alleles.  The change in allele frequency between early and late flowering 9 

individuals within a population (which we call ∆pEL) can differ between populations for 10 

numerous reasons.  If the mapping from genotype to phenotype is constant, ∆pEL will differ if the 11 

allele frequency is intermediate in one population but extreme in the other.  Without differences 12 

in allele frequency, ∆pEL will differ if the distribution of genetic backgrounds differs between the 13 

populations and that influences expression of the focal locus.  Environmental differences among 14 

populations can alter the magnitude or even direction of ∆pEL.  Furthermore, GxE can generate 15 

heterogeneity in ∆pEL between generations within a population if there are temporal changes in 16 

the environment. 17 

Our trait of study, flowering time, is typically highly polygenic and responsive to 18 

numerous environmental variables (BERNIER AND PÉRILLEUX 2005; WELLMER AND RIECHMANN 19 

2010; BLÜMEL et al. 2015).  It is central to numerous ecological and evolutionary processes.  For 20 

many plants, the time of flower production is a major determinant of fitness because access to 21 

pollination and resources necessary to complete reproduction (set seed) vary over the course of a 22 

growing season.  This is particularly true for annual M. guttatus, in which plants must flower and 23 
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set seed before the cessation of water availability.  Although late-flowering plants tend to 1 

produce more seed than their early-flowering counterparts, they risk desiccation prior to seed set 2 

(MOJICA AND KELLY 2010; MOJICA et al. 2012).  This tradeoff may be relevant to the 3 

maintenance of genetic variation in flowering time and will surely play a role in how these 4 

populations evolve in response to a changing climate.  Shifts in flowering time due to climate 5 

change have already been observed for a number of species (FITTER AND FITTER 2002).   6 

 7 

Measuring genetic effects: Estimating the contribution of individual loci to quantitative trait 8 

variation is a challenge (MCCARTHY et al. 2008; KING et al. 2012).  Genetic effects may be 9 

subtle and thus difficult to distinguish from random fluctuations.  In Bulked-Segregant mapping, 10 

differences in allele frequency owing to random sampling should usually be small if bulks are 11 

large, but occasional, large random fluctuations are inevitable.  In the present study, statistical 12 

difficulties are acute given that we wish not only to detect loci affecting a trait, but also test 13 

whether these effects vary with year or population.  To this end, we develop a likelihood-based 14 

hypothesis testing framework analogous to the factorial Analysis of Variance, in which we can 15 

test for marginal effects as well as interactions between factors.  The marginal (average) effect of 16 

a locus on flowering time is important, but we also wish to know whether differences between 17 

bulks change with population or year.  A locus with variable effects across levels of these other 18 

factors should inflate the “interaction” test statistic. 19 

We used pooled population sequencing, “PoolSeq” (SCHLÖTTERER et al. 2014), to 20 

estimate allele frequencies in each bulk throughout the genome.  Each bulk makes a single pool 21 

of DNA to be sequenced with the resulting read counts estimating allele frequencies.  This 22 
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method has been applied successfully to study population differentiation (FABIAN et al. 2012), 1 

population dynamics of transposable elements (KOFLER et al. 2012), and the genomic response 2 

to selection (TURNER et al. 2011; KELLY et al. 2013; BEISSINGER et al. 2014; TOBLER et al. 3 

2014).  An important difficulty is accommodating the variance introduced by the sampling 4 

events prior to sequencing.  These include, but are not limited to, sampling of individuals from 5 

populations, sampling DNA into pools, sampling events during library preparation (particularly, 6 

PCR), and sampling of fragments for sequencing.  Multiple methods have been proposed to 7 

estimate the variance in allele frequency estimates obtained from PoolSeq data (MAGWENE et al. 8 

2011; GAUTIER et al. 2013; KELLY et al. 2013; LYNCH et al. 2014).  Here, we build on a method 9 

based on Fisher’s angular transformation of allele frequency (FISHER AND FORD 1947) using a 10 

robust estimator for the variance of dispersive processes (KELLY et al. 2013). 11 

In addition to the genome-wide mapping, we estimate flowering time effects for five 12 

structural variants (chromosomal inversions) found to be segregating in one or more of the 13 

populations.  These variants, identified in prior mapping studies (FISHMAN AND SAUNDERS 2008; 14 

LOWRY AND WILLIS 2010; HOLESKI et al. 2014; LEE et al. 2016), are located on chromosomes 5, 15 

6, 8, 10, and 11.  Previous studies have demonstrated phenotypic effects, including 16 

developmental timing, for three of these loci (inv6, inv8, and D).  The present study provides 17 

further evidence of natural selection on alternative orientations of the inversions.  Also, the 18 

inclusion of “known loci” provides important ground-truthing for genome scans in which the 19 

overwhelming majority of SNPs are effectively anonymous.  20 

Considering both SNPs and structural variants, this study provides several striking 21 

observations regarding genomic variation for flowering time in natural populations of M. 22 

guttatus.  Depending on the population and year, we find anywhere from tens to thousands of 23 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2017. ; https://doi.org/10.1101/111203doi: bioRxiv preprint 

https://doi.org/10.1101/111203
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

SNPs that differ in frequency between early and late flowering plants, broadly distributed 1 

throughout the genome.  Although individual SNPs are almost entirely idiosyncratic with regard 2 

to significance, there is appreciable overlap in the genomic regions harboring this variation.  3 

Furthermore, we find that the extent of variability over time itself varies between populations.  4 

The Quarry population, a recently established annual/perennial hybrid swarm, exhibits many 5 

more early-late divergent SNPs compared to the other two, and the allele frequency divergence 6 

at these SNPs tends to be much more consistent across years.  In the following sections, we 7 

describe our likelihood framework in detail and interpret the results in relation to the expected 8 

degree and scale of parallel evolution, as well as the generality of genetic mapping studies. 9 

 10 

Theory 11 

In this section, we describe a likelihood framework for testing divergence in allele 12 

frequency; first between two bulks (Early vs. Late) and then extended to treat multiple contrasts 13 

simultaneously.  Following FISHER AND FORD (1947), we conduct tests on transformed allele 14 

frequencies: x̂ = 2 arcsin p̂  where p̂ is the estimated allele frequency (fraction of reads bearing 15 

the specified base at a SNP) in a bulk.  Transformed allele frequency can be treated as normally 16 

distributed values with a variance determined by the series of sampling events that ultimately 17 

produce the observed read counts.  These events contribute additively and in a reciprocal manner 18 

to the sampling variance (KELLY et al. 2013).  For a single bulk, x̂ ~ N[x, σ x̂
2 ], where x is the 19 

true (transformed) allele frequency and σ x̂
2 = v + 1

m
.  Here, v is a bulk-specific variance that 20 

aggregates the effects of sampling of individuals into bulks, sampling of DNA into the pooled 21 

sample, and PCR sampling during library preparation, and m is read depth at a SNP.  v is 22 
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common to all SNPs in a the bulk while the read depth will vary among SNPs.  The simple null 1 

hypothesis that ∆pEL = 0 (allele frequency is the same across bulks) is evaluated with 2 

transformed allele frequencies as: 3 

E[ x̂E − x̂L ] = 0          (1a) 4 

Var[ x̂E − x̂L ] = Var[ x̂E ]+ Var[ x̂L ] = 1

mE

+ 1

mL

+ vE + vL     (1b) 5 

Given values for Em , Lm , Ev , and Lv , we can calculate the likelihood of any observed difference 6 

from the normal density function.  The read depths in a sample are directly observed while the v 7 

terms are estimated from a genome-wide aggregation of data (procedure described below). 8 

A likelihood ratio test statistic (LRT) for a difference between bulks requires a maximum 9 

likelihood estimator for the common allele frequency (same in each bulk): 10 

xi
* = x̂iEwiE + x̂iLwiL

wiE + wiL

         (2) 11 

Here, iEx̂  and iLx̂ are the estimates from each bulk at site i and w terms are the reciprocal of the 12 

bulk/site-specific variances.  The log-likelihood of the data under the null model is: 13 

LLi = −(x̂iE − xi
* )2

2σ̂ iE
2 + −(x̂iL − xi

* )2

2σ̂ iL
2

       (3) 14 

Here, σ̂ iB
2 = 1

miB

+ viB  for B=E or B=L.  This can be compared to an unconstrained model, where 15 

iLiE xx ≠ , with a separate mean estimated for each bulk.  Since there is only one observation 16 

(allele frequency) in each sample, the estimate is simply the observation, and the log-likelihood 17 

of the unconstrained model becomes zero.  The LRT is then -2 times equation (3), and a p-value 18 

for the test is obtained from a chi-square distribution with 1 degree of freedom.  19 

 20 
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These calculations can be generalized to consider two contrasts (∆pEL from different populations 1 

or generations) simultaneously.  Table 1 outlines three models appropriate to test for 2 

heterogeneity of such contrasts.  These models are nested: M1 is a special case of M2, M2 a 3 

special case of M3.  Comparing two generations within a population, a significant LRT for M1 4 

vs. M2 indicates a marginal effect (average divergence) between bulks across the two 5 

generations.  A significant test for M2 vs. M3 indicates heterogeneous divergence, ∆pEL differs 6 

between generations (i.e. there is an interaction between generation and bulk divergence).  7 

Contrasting M1 v. M3 represents an overall test for significant divergence across both years 8 

because it is the sum of the two LRTs from the former tests.  The degrees of freedom are 1 for 9 

the former tests, and 2 for the latter.   10 

Calculating the likelihoods of M1 and M3 requires no additional derivations beyond 11 

equations (2)-(3) as each is a sum of the log-likelihoods for each population. For M2, the MLEs 12 

for the 3 parameters are: 13 

xL1
* = (σ̂ E1 +σ̂ E2 +σ̂ L 2 )x̂L1 + (x̂E1 − x̂E2 + x̂L2 )σ̂ L1

(σ̂ E1 +σ̂ L1 +σ̂ E2 +σ̂ L2 )
      (4a) 14 

xL 2
* = (σ̂ E1 +σ̂ L1 +σ̂ E2 )x̂L 2 + (x̂E2 − x̂E1 + x̂L1)σ̂ L 2

(σ̂ E1 +σ̂ L1 +σ̂ E2 +σ̂ L 2 )
      (4b)

 
15 

α * = (σ̂ E 2 +σ̂ L2 )(x̂E1 − x̂L1) + (σ̂ E1 +σ̂ L1)(x̂E2 − x̂L2 )

(σ̂ E1 +σ̂ L1 +σ̂ E2 +σ̂ L2 )
      (4c) 16 

, where 1 and 2 simply designate the population (or generation) being considered.  The log-17 

likelihood of the data for M2 is: 18 

LL = −(x̂E1 − [xL1
* + α *])2

2σ̂ E1
2 + −(x̂L1 − xL1

* )2

2σ̂ L1
2 + −(x̂E2 − [xL2

* + α *])2

2σ̂ E 2
2 + −(x̂L2 − xL2

* )2

2σ̂ L2
2

  (5) 19 
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Figure 1 illustrates some key features regarding the marginal and interaction tests as 1 

applied to data such as ours (typical read depths and bulk-specific variances).  As expected, if the 2 

observed Δp is the same in both populations (or generations), the LRT for an interaction test (M2 3 

v M3) is 0.  When the opposite is true (equal magnitude Δp, but different sign), the LRT for the 4 

marginal effect test (M1 v M2) is zero (note that, when the results for negative Δp2
 are plotted 5 

instead of the positive values displayed in Figure 1, the solid line follows the dotted line 6 

trajectory and vice versa).  When Δp is non-zero in only one population (or generation), both 7 

tests are equally powered (the dashed and solid black line are perfectly overlapping when Δp2
= 8 

0).  As observed average Δp increases, so does the LRT for marginal effects, regardless of 9 

whether Δp1 ≠ Δp2
.  The interaction LRT increases as Δp1

 and Δp2
 diverge.  For a fixed 10 

difference between Δp1
 and Δp2

, the interaction LRT increases as average Δp increases.  For 11 

example, the interaction LRT is 7.08 when Δp1
is 0.75 and Δp2

is 0.25 (i.e. divergence between 12 

Δp1 and Δp2 is 0.5), but is much higher (21.93) when Δp1
is 1.0 and Δp2

is 0.5.  However, 13 

heterogeneity is necessarily limited for very large Δp (since each population has a maximum 14 

value of 1) unless the direction of effect differs between populations.  For polygenic traits, Δp 15 

nearing 1 or -1 is unlikely except when greatly exaggerated by sampling.  For example, a locus 16 

that exhibits an additive effect of 0.5 phenotypic standard deviations (2a = 1.0), has an expected 17 

Δp of 0.44 (if p = 0.5), although the observed Δp can be greater owing to chance. 18 

 19 

Simulations: We developed a simulation framework to confirm the behavior of our testing 20 

procedures under different scenarios, using the real data to calibrate these simulations.  We 21 

average the observed allele frequencies in the two samples (e.g. Early and Late) to set p for each 22 

population/year and incorporate sampling error using observed read counts and v terms.  We 23 
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 11

simulated new values for each site and sample by adding to the population/year allele frequency 1 

a deviation due to sampling error as well as a deviation due to an effect (a) of that site.  For the 2 

sampling error deviation, we add a value drawn from N[0, σ̂ iB
2 ], recalling that the sampling 3 

variance at a site, σ̂ iB
2

, is the sample-specific variance (v) plus 
1

m
.  We first investigated the 4 

behavior of our testing procedure under a purely neutral scenario (i.e. a = 0 for all sites).  These 5 

simulations confirm that our Likelihood Ratio Tests follow the predicted null distributions (chi-6 

square with 1 d.f. for M1 vs M2, chi-square with 2 d.f. for M1 vs M3) if a SNP is neutral (no 7 

effect on phenotype). 8 

 9 

Next, we consider scenarios where a subset of SNPs exhibit a constant effect on ∆pEL, to 10 

provide a baseline for comparison of observed heterogeneity in ∆pEL.  Given that sampling bulks 11 

is a form of truncation selection, the expected allele frequency difference between early and late 12 

flowering plants can be calculated given values for the effect size (a) and the intensity of 13 

selection (i): 14 

P
E

ai
pppp

σ
)1( −−=          (6a) 15 

P
L

ai
pppp

σ
)1( −+=           (6b) 16 

P
EL

ai
ppp

σ
)1(2 −−=Δ          (6c) 17 

where p is the overall frequency in the population (FALCONER AND MACKAY (1996), ch 11).  The 18 

intensity of selection was determined using a truncated normal distribution in which 10% of 19 

individuals exceed the truncation point (i = 1.755).  This was based on approximations of 20 
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population size during sampling periods relative to full bloom.  We grossly approximate the 1 

distribution of standardized allelic effects, 
P

a

σ
, by assuming that some fraction of sites are 2 

neutral with respect to flowering time (1 - f0) and have a = 0, while the remaining sites have 3 

nonzero effect of constant magnitude, c (the sign of c is chosen randomly for each site).  For 4 

each of the four contexts in which we investigated heterogeneity (IM, Q, 2013, and 2014), we 5 

performed a heuristic search for values of f0 and c that generate a distribution of LRT for the 6 

marginal effect test (M1 v. M2) that closely matches the distributions from the real data.  Our 7 

matching criteria is based on the observed proportion of sites exceeding specified values of LRT, 8 

in this case Pr[LRT>10] and Pr[LRT>15].  Here, we aim to match the tails of the LRT 9 

distribution as this information pertains most directly to f0 and c (given that f0 is likely small).  10 

To accumulate this information into a single measure (Zdiff) we sum the standardized difference 11 

between simulated and real data.   12 

Zdiff = abs(Pr[X > 10]sim − Pr[X > 10]real )

Pr[X >10]real

+ abs(Pr[X > 15]sim − Pr[X > 15]real )

Pr[X > 15]real

 13 

 14 

Materials and Methods 15 

Plant Collection and phenotyping: The three populations are located in the central Oregon 16 

cascades: Quarry (44.3454243 N, 122.1362023 W), IM (44.402217 N, 122.153317 W), and BR 17 

(44.373238 N, 122.130675 W) and described in detail in (MONNAHAN et al. 2015).  In a 18 

particular population and year, we sampled early and late flowering plants according to the 19 

following scheme.  First, we established several parallel transects, perpendicular to the slope of 20 

the hillside, totaling ~30 m.  We then divided each transect into 30 cm intervals.  We chose 21 

sampling times based on density of flowering plants along a transect.  For the early flowering 22 
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plants, we sampled a transect as soon as 2 flowering plants could be found within ~15 cm on 1 

either side of the transect within each 30 cm interval.  We estimate this to correspond to about 5-2 

10% of the total population.  For the late flowering plants, we waited until plants density was 3 

similar to the early sampling event.  If a particular interval along a transect had several flowering 4 

plants within 15 cm on each side, we randomly selected the two plants nearest the transect line.  5 

Whole plants were collected and stored in dry ice until frozen at -20° C.  Since collection times 6 

were dependent on density of flowering plants, sample times varied across populations and 7 

across years (see Supplemental Table 1 for collection dates).  Early bulks were collected earlier 8 

in 2014 for all populations.  The late bulk for Q was collected earlier in 2014.  There was a very 9 

hot and dry spell that wiped out the BR population shortly after collecting the Early bulk; 10 

therefore, we did not perform an Early/Late contrast for Browder Ridge in 2014. 11 

 12 

Sequencing and SNP calling: We extracted DNA from each individual collected over 2013 and 13 

2014.  Individuals’ DNA was pooled in equal amounts corresponding to the year, population, 14 

and bulk in which they were collected.  Each pooled sample was whole-genome sequenced on an 15 

Illumina HiSeq 2500 (paired-end 100bp reads).  The 2013 samples were sequenced in three 16 

High-Output lanes, while the 2014 samples were sequenced with two High-Output lanes.  Two 17 

additional lanes (Rapid-Runs) were performed in order to equilibrate coverage across samples.  18 

We combined data from all lanes to create 10 fastq sets corresponding to each of the sampling 19 

bulks and ran Scythe (https://github.com/vsbuffalo/scythe) and Sickle (JOSHI AND FASS 2011) for 20 

each fastq file to remove adaptors and trim low quality sites, respectively.  We mapped reads to 21 

the M. guttatus v2 genome build using BWA and removed PCR duplicates using Picard Tools.  22 

We then called SNPs using the GATK UnifiedGenotyper with the down-sampling feature 23 
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suppressed (‘-dt NONE’). The read counts in the variant call file corresponding to each of the 1 

sampling bulks are the input for subsequent likelihood analyses.  A SNP was included for ∆pEL 2 

within a sample only if read depth per bulk was 25-100 reads and allele frequency (both bulks 3 

combined) was between 0.05 and 0.95.  We imposed the upper bound of 100 reads to exclude 4 

paralogous mappings.  5 

 6 

Estimation of v terms: In equations (1)-(5), the bulk-specific variance terms (v) are treated as 7 

known constants.  Prior to hypothesis testing, we estimate these variances using a procedure 8 

similar to that in KELLY et al. (2013).  We first perform a series of pairwise contrasts (difference 9 

in transformed allele frequencies at each site) between the four bulks within a population (6 10 

pairwise contrasts for IM and Q; 3 for BR).  Under the assumption that divergence among the 11 

bulks will be random for most of the genome, each of these contrasts will be centered on zero 12 

with a variance equal to the sum of the individual sample variances (i.e. the two v terms plus 13 

each sample’s variance due to read depth).  We estimateVar[ x̂1 − x̂2 ] using the interquartile 14 

range (Supplemental Appendix 1) of the genome-wide distribution of x̂1 − x̂2
, which is robust to 15 

the presence of outliers (SNPs that are correlated with flowering time or divergent across 16 

generations).  We also estimate the read depth variance as the average of (
21

11

mm
+ ) across all 17 

SNPs for the contrasted samples (1 and 2).  Following equation (1b), the two v values are equal 18 

to the estimated total variance for the contrast minus the read depth variance.  Repeating this 19 

entire process for the remaining 5 pair-wise contrasts ultimately produces 6 equations that are a 20 

function of 4 unknowns.  This system is overdetermined (i.e. there are more equations than 21 

unknowns), and so we utilize the method of General Least Squares to obtain an optimal 22 

compromise for the v terms (LYNCH AND WALSH 1998) as well as an estimate of their sampling 23 
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variance.  The only additional information necessary to calculate the v terms are estimates of the 1 

(co)variance of the 6 contrast variances, which we obtain by jackknifing the original data set of 2 

read counts, recalculating the contrast variances after deleting a portion (0.1) of the original data.  3 

The small sampling variance, and thus standard errors, for the v terms justifies treating these 4 

values as constants in our analyses and simulations (Supplemental Appendix 1). 5 

 6 

Structural variants: Initial genotyping confirmed that five structural variants (inv5, inv6, inv8, 7 

inv10, and D) were segregating in one or more of the populations.  Two of the variants, inv6 and 8 

the meiotic drive locus (D), were previously only known to segregate within IM.  The others 9 

were mapped in crosses between annual and perennial genotypes of M. guttatus.  We cannot 10 

identify a single diagnostic SNP for any of these features (recognizing alternative orientations 11 

from alternative SNP bases).  For inv6 and D, the derived haplotype is associated with a single 12 

predominant nucleotide sequence over >4mb, but the ancestral orientation is internally variable.  13 

For the other inversions, both alternative orientations harbor many distinct sequences.  For each 14 

feature however, there are differences in SNP allele frequency between the populations of 15 

sequences within each orientation.  We thus developed a SNP set that is predictive of orientation 16 

for each inversion.   17 

We used a collection of ten fully sequenced inbred lines from the IM population to 18 

generate the SNP sets for inv6 and D (FLAGEL et al. 2014; LEE et al. 2016).  PCR based 19 

genotyping of length polymorphic markers indicate that four of the ten lines carry the derived 20 

orientation at D, while two of ten have the derived orientation for inv6.  We found 11,848 SNPs 21 

for the Drive locus in which at least 5/6 of the non-drive lines harbor the alternative base (the 22 

Drive haplotype is always Reference base because the Reference genome is based on a line 23 
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homozygous for Driver).  These SNPs are located within three distinct intervals on chromosome 1 

11 of the genome build (5.7-11.6 Mb, 13.9-14.1 Mb, 16.6-21.1 Mb) because the region is 2 

misassembled in the reference genome sequence (HOLESKI et al. 2014).  We identified 26,739 3 

SNPs for inv6 in which the two lines homozygous for the derived orientation are fixed for the 4 

alternative base and the other eight lines are fixed for reference in the genomic interval 1.34-7.61 5 

Mb of chromosome 6 (LEE et al. 2016).   6 

To develop a predictive SNP set for inv5, inv8, and inv10, we assembled and interrogated 7 

ten whole genome sequences, one plant from each of five annual populations (MAR3, REM8-10, 8 

CAC6G, LMC 24, and SLP19) and five perennial populations (TSG3, BOG10, YJS6, SWB, and 9 

DUN).  All data is available from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra).  10 

The relevant genomic regions are 10-18 Mb of chromosome 5 (inv5), 1.5-7.0 Mb of chromosome 11 

8 (inv8), and 2.0-6.0 Mb of chromosome 10 (inv10).  To include a SNP in the diagnostic set for a 12 

feature, we required that the reference base predominate in annuals and vice versa: At least 3 13 

lines of each type were called and at most one contradiction (annual line is alternative or 14 

perennial line is reference) was tolerated.  With these conventions, the reference base within a 15 

structural variant identifies the derived orientation for D, the ancestral orientation for inv6, and 16 

the annual orientation for the other three loci.  We averaged ∆pEL across SNPs within a feature to 17 

estimate the change in orientation frequencies between Early and Late flowering plants.  Because 18 

the correlation between SNP alleles (reference vs alternative) and orientation is imperfect, the 19 

average SNP ∆pEL should underestimate the magnitude of ∆pEL for inversion orientations. 20 

 21 

Results 22 
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Polymorphism: After filtering, we identified approximately 7.5 million SNPs, most of which 1 

were segregating in more than one population.  However, the pattern of shared polymorphism is 2 

asymmetric (Supplemental Figure 1).  For SNPs in IM or BR with a minor allele frequency of at 3 

least 10%, 94% are segregating in the samples from the other two populations.  This is nearly 4 

complete overlap given that a population sample with as few as 25 reads is counted (and an allele 5 

at ≤10% population frequency will often fail to be sampled).  In contrast, Quarry has a higher 6 

frequency of intermediate frequency SNPs that are rare or fixed in IM and BR.  SNPs in the 10-7 

90% range in Quarry are not evident in other populations about 25% of the time.   8 

 9 

Tests for association with flowering time: We first tested for significant ΔpEL
within each 10 

population/year and then performed the structured hypothesis testing of Table 1.  For the former, 11 

the Quarry population exhibited an order of magnitude greater number of significant sites 12 

(Genome-wide FDR = 0.1) than IM and BR considering both years of the study together (Table 13 

2A).  Generally, ΔpEL  tends to be larger in magnitude and more variable in Quarry than in IM 14 

(Supplemental Figure 2).  Across years, 2013 exhibits many more significant ΔpEL
 than 2014 15 

(~2-3 fold reduction in 2014). These tests depend on the bulk-specific variance for each sample 16 

reported in Table 2B.  If each plant in each bulk contributed equally to the DNA library, then v = 17 

0.005.  Several samples are only slightly elevated from this value (e.g. IM, 2014 Early), but the 18 

inflation evident in other samples (e.g. BR, 2013 Late) indicate substantial differential 19 

representation of sampled genomes in the pool of sequence-suitable DNA.  20 

Figure 2 (top) shows the genome-wide distribution of significant sites for each of the 21 

three populations from 2013.  Here, we observe no overlap of significant SNPs among the 22 

different populations (Figure 2, Bottom).  However, when we divide the genome into 30 kb or 1 23 
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Mb windows, we find that these significant sites are often found in common regions.  At both 1 

scales, Quarry shares many more significant regions with IM and BR than the latter share with 2 

each other.  In 2014, there is more overlap despite fewer significant tests (8 SNPs were shared 3 

between IM and Quarry).  Furthermore, we find few sites to be significant across years within 4 

populations: 9 for Quarry and 2 for IM.   5 

The lack of overlap among populations is partially due to significant SNPs in Quarry that 6 

are not segregating in the other populations. The heterogeneity/interaction test of Table 1 is 7 

limited to SNPs passing filter in multiple samples (in both populations for a given year or in both 8 

years for a given population).  Results for the three distinct tests (marginal effect, heterogeneity, 9 

overall) across the four different contexts are reported in Table 3.  As expected, the two contexts 10 

displaying the strongest evidence for significant ΔpEL  are Quarry and 2013.  However, the 11 

relative proportion of sites that exhibit a marginal effect versus an interaction effect varies 12 

greatly with context.  In IM, a nearly equal number of sites are significant for marginal and 13 

interaction tests, while in Quarry the vast majority of significant tests are for marginal effects.  14 

Similarly, there are relatively few interactions across the two populations in 2014, whereas 2013 15 

is characterized by an almost equal number of SNPs with variable ΔpEL .  Importantly, 16 

significance for the marginal effect test (M1 v M2) should not be interpreted to mean genuinely 17 

fixed effects.  Figure 1 indicates that QTL with variable effects can inflate the test statistic for 18 

marginal effects (oftentimes more than the heterogeneity test) if ΔpEL has the same direction in 19 

each sample. 20 

 21 

Simulations of loci with consistent effects:  To evaluate the results of Table 3 and other features 22 

of the data, we calibrated a model of consistent QTL effects for each context (see Supplemental 23 
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Table 2 for summary of best matching parameter sets; top match was used for simulations).  1 

Testing on these simulated data generates a comparable number of significant tests for marginal 2 

effects (M1 vs M2): 4749 for real, 6526 for simulated, across contexts (values in parentheses in 3 

Table 3).  However, the constant effect models are otherwise generally inconsistent with the real 4 

data.  The simulations never produced (genome-wide) significant heterogeneity tests (no false 5 

positives), but they were abundant in the real data.  Additionally, the number of significant 6 

outcomes in the overall test (M1 vs M3) was invariably far less than for the marginal test in the 7 

simulations, but the opposite is true in the real data (recall that the overall test incorporates signal 8 

from both marginal and interaction tests).  These discrepancies between simulated and real data 9 

indicate genuine variability in ΔpEL at shared SNPs, particularly across years within IM and 10 

across populations within 2013. 11 

Further evidence comes from the covariance of ΔpEL across samples (Figure 3; 12 

Supplemental Figures 3 – 6).  If genetic effects are constant, this covariance should be 13 

substantially positive.  Sampling error in estimates for ΔpEL will reduce the strength of 14 

association, but this effect is reiterated in simulations, which are subject to the same degree of 15 

sampling variance in ΔpEL .  In all contexts, simulations using best-matching parameters 16 

generated an easily detectable positive correlation between ΔpEL estimates.  The real data does 17 

not reiterate this pattern.  The most striking difference is seen in the 2013 tests (Figure 3 Left) 18 

followed by IM (Supplemental Figure 6), both of which have near-zero slopes for the real data, 19 

but a strong positive slope for the simulated data. For 2014 and Quarry, the real data exhibits a 20 

noticeable positive correlation, which is in agreement with their preponderance of significant 21 

marginal-effect tests.  In 2014, the slopes for the real and simulated data are near parallel 22 

(Supplemental Figure 4), whereas in Quarry the slope for the simulated data is substantially more 23 
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positive (Supplemental Figure 5).  The covariance in ΔpEL  across populations (or years) provides 1 

a quantitative measure of QTL of (in)consistency (Figure 3 Right).  There is evidence of both 2 

consistent and variable ΔpEL  sites, but the relative proportion varies across populations and over 3 

time.  4 

An interesting secondary conclusion from the simulations is that the lack of overlap of 5 

significant tests from single ΔpEL estimates (Figure 2, bottom left) is not compelling evidence for 6 

heterogeneous effects.  Even when effects are constant, as implemented in the simulations, 7 

shared significance is rare due to an abundance of false negatives.  For example, for a pair of 8 

populations where consistent effects are relatively frequent and strong (f0 = 0.1 and a = 0.3), we 9 

found only 353 SNPs to be simultaneously significant out of 26,748 that were deemed significant 10 

in either population individually. 11 

 12 

Structural variation: The five structural polymorphisms show strong, but highly variable, effects 13 

on flowering time (Figure 4).  The first observation is that the Drive locus, which was previously 14 

known to be polymorphic only in IM and one other population (CASE et al. 2016), is segregating 15 

in Quarry. The Drive allele, which enjoys a segregation advantage in female gametes (FISHMAN 16 

AND SAUNDERS 2008), is elevated in late flowering samples in IM in both years and in Quarry in 17 

2013.  It is enriched in early flowering plants in Quarry in 2014.  inv8, which had previously 18 

been described mainly as a fixed difference between ecotypes, is also segregating in Quarry.  We 19 

find no evidence for an inv8 effect in IM, probably because the perennial orientation is rare due 20 

to strong local selection (PUZEY et al. 2016). However, the strong effects in Quarry are consistent 21 

with the perennial orientation delaying flowering.  Results for inv6, inv5, and inv10 are 22 
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ambiguous, and it is not clear that the latter two loci are polymorphic in these populations (full 1 

results reported in Supplemental Table 4). 2 

There is also a clear impact of inv8 on our SNP-level analyses.  In Figure 2, significant3 

ΔpEL
 are evenly dispersed with the exception of chromosome 8 (Supplementary Table 3), which 4 

has ~5 times more than any other chromosome. This inflation is entirely attributable to inv8 5 

within Quarry (3281 of the 3,333 significant tests on chromosome 8 are due to Quarry, 2026 of 6 

which are within inv8).  Figure 5 (top) shows a very high density of SNPs significant for the 7 

marginal-effect test within inv8, and these SNPs are among the highest observed LRTs (see 8 

Supplemental Figure 7 for comparison with interaction effect test).  Figure 5 (bottom) plots allele 9 

frequency over time for the sites with positive ΔpEL  (higher reference frequency in early bulk) 10 

and in the 99.95 percentile of the LRT for marginal effect in each population.  These SNPs 11 

produce remarkably consistent oscillations in both IM and Quarry, but are almost entirely non-12 

overlapping (only 4 of the SNPs in Figure 5 and Supplemental Figure 8 are common across 13 

populations).  This discrepancy is, again, partly due to the presence of inv8 in Quarry.  In Quarry, 14 

306/1921 (15.9%) of the SNPs in the 99.95 marginal-effect LRT percentile are from inv8, 15 

whereas only 30/1730 (1.7%) are in inv8 for IM.  Also, nearly all of these 306 inv8 SNPs in 16 

Quarry exhibit positive ΔpEL
(281/306 = 91.8%), indicating that the reference (annual) 17 

orientation is at higher frequency in early flowering plants.  In both populations, there is a 18 

tendency towards positive ΔpEL  for these consistent SNPs (918 positive ΔpEL
versus 812 19 

negative ΔpEL
in IM; 1255 positive ΔpEL

versus 666 negative ΔpEL
in Quarry).  This tendency is 20 

exaggerated in Quarry even after accounting for the effect of inv8 (974 positive versus 641 21 

negative sites are non-inv8).  Interestingly, we find that a majority of sites in this 99.95 percentile 22 

are at overall high reference frequency in both populations, with many of these sites fixed for the 23 
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reference allele in either the early or late flowering plants (note the high density of sites in the 1 

upper portion of Figure 5 and Supplemental Figure 8).  2 

 3 

Discussion 4 

Our question is the extent to which the loci generating intra-population variation in 5 

quantitative traits are consistent within a species.  Is the average effect of a QTL similar in 6 

neighboring populations, or even in the same population from one generation to the next?  We 7 

develop a likelihood based testing procedure to distinguish consistent and heterogeneous effects 8 

and then apply the procedures to genomic data from ten population samples.  Synthesizing 9 

multiple aspects of the results across populations and years, the experiment strongly supports 10 

heterogeneity of QTL effects.  This suggests appreciable lability of allelic effects in nature and 11 

underscores the importance of a broad sampling of natural variation in genetic mapping studies.  12 

Additionally, the results inform the potential for, or perhaps the expected scale at which, parallel 13 

or repeated evolution may occur.  In the following sections, we discuss explanations for the 14 

observed variation within and among populations and their implications for evolution in nature.  15 

 16 

Why does ΔpEL  vary across time and space?   17 

We map loci from the difference in allele frequency between the earliest and latest 18 

flowering plants in a population, ΔpEL .  The expected value for ΔpEL  depends on allele 19 

frequencies, the selection intensity, the phenotypic variance, and the average effect of alleles 20 

(equation 6c; FALCONER AND MACKAY (1996), pg 200).  We controlled selection intensity with 21 

our sampling method, but it is clear that each of the other three components varied across space 22 

or time in this experiment.  Allele frequency differences are clearly important in explaining the 23 
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differences among populations.  Many intermediate frequency SNPs in Quarry that exhibited 1 

significant ΔpEL  are fixed (or at least nearly so) within IM and BR.  We attribute the elevated 2 

genomic and phenotypic variation in Quarry to recent hybridization of annual and perennial 3 

genotypes of M. guttatus (MONNAHAN et al. 2015).  IM and BR are annual populations, and 4 

although each has high polymorphism, they produce far fewer significant ΔpEL .   5 

Quarry is about twice as divergent from each annual population as the annuals are from 6 

each other: Genome-wide FST  = 0.132 (Quarry versus IM), 0.124 (Quarry versus BR), and 0.065 7 

(BR versus IM; Supplemental Table 3 from (MONNAHAN et al. 2015)).  This is important not 8 

only because ΔpEL is proportional to p(1-p) at the SNP in question, but also because divergence 9 

among populations will also affect the distribution of genomic backgrounds in which that SNP is 10 

expressed.  Changes in average effect with genomic background (epistasis) has been 11 

demonstrated in greenhouse studies of M. guttatus for numerous life history traits, including 12 

flowering time (KELLY AND MOJICA 2011; MONNAHAN AND KELLY 2015a; MONNAHAN AND 13 

KELLY 2015b).   14 

Differences in the environment must also be important and can alter ΔpEL  in several 15 

ways.  Despite the physical proximity of these populations, they differ dramatically in a number 16 

of environmental variables that affect flowering time.  Quarry is a south-facing population, IM 17 

faces west, and BR faces east; each experiences differing sun exposure.  The Quarry site clears 18 

of snow earliest in the season (and thus enjoys a longer growth interval) and also has a much 19 

shallower grade, particularly in comparison to Iron Mountain.  The primary water source for 20 

these plants is from snowmelt, and the shallow grade means that water moves slower and 21 

perhaps lasts longer for Quarry.  Lastly, the edaphic substrate differs greatly between 22 

populations; dirt and gravel at Quarry whereas the other two populations grow on a shallow bed 23 
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of moss atop bedrock.  Roots penetrate much deeper at Quarry allowing plants access to 1 

additional water and perhaps a different nutrient profile compared to the other populations.   2 

Genotype-by-environment (GxE) interactions are routinely observed in QTL experiments 3 

and can be appreciable in magnitude relative to the marginal effect across environments 4 

(SCHEINER 1993).  GxE can change the average effect across populations if there is spatial 5 

variation in environmental variables.  GxE is the most likely cause of temporal heterogeneity in6 

ΔpEL (e.g. IM in Table 3), because other factors such as differences in allele frequency (and thus 7 

the distribution of genetic backgrounds) should be relatively limited between successive 8 

generations within a population.  A major temporal fluctuation between the two years of this 9 

study was time of snow melt (i.e. beginning of the growing season).  Snow cleared in May of 10 

2013, but as early as mid-March in 2014.  There was also a late bout of rain in mid-July 2014 11 

extending an already elongated growing season.  Furthermore, epistasis and GxE may 12 

themselves interact.  Significant three-way interactions (GxGxE) have been documented in both 13 

field and laboratory studies (CAICEDO et al. 2004; ZHU et al. 2014; JOSEPH et al. 2015; 14 

MONNAHAN AND KELLY 2015b).   15 

In addition to GxE, environmental variation can alter ΔpEL via at least two other routes.  16 

First, the predicted ΔpEL is inversely proportional to the phenotypic standard deviation of the 17 

trait.  Thus, a shift in environmental conditions that increases the environmental component of 18 

variation will reduce ΔpEL , all else equal.  Consistent with this effect, the phenotypic variance in 19 

flowering time was elevated in 2014 relative to 2013 (a greater number of days accrued between 20 

early and late collections in both IM and Quarry) while the number of significant ΔpEL
tests was 21 

reduced (2014 count less than half the 2013 count across IM and Quarry).  A second effect of 22 

environmental variation on ΔpEL is indirect.  Sustained spatial heterogeneity in environmental 23 
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variables will generate divergent selection and consequent local adaptation.  This may be a major 1 

cause of allele frequency differences among populations, which subsequently generate 2 

differences in ΔpEL . 3 

The context with the greatest consistency of effects was between years in Quarry (Table 4 

3; Figure 3), which may be attributable in part to the hybrid nature of this population.  This 5 

population was established no more than 40 generations ago when a rock quarry fell into disuse 6 

and was subsequently colonized by nearby M. guttatus.  Extensive linkage disequilibrium (LD) 7 

confirm that the population remains highly admixed (MONNAHAN et al. 2015), which likely 8 

reflects both recent formation and continued immigration.  Nearly all polymorphic SNPs in IM 9 

and BR also segregate in Quarry, but the reverse is not true.  Alternative “alleles” may be fairly 10 

substantial haplotypes; descendent from annual or perennial ancestors (or immigrants).  Such 11 

alleles will be “large-effect” if they aggregate the effects of numerous linked polymorphisms.  12 

The average ΔpEL  in this context should be larger relative to estimation error, increasing the 13 

number of significant tests for a marginal effect (Table 3), and positive, given the annual nature 14 

of the reference genome and typically delayed flowering in perennials (see final paragraph in 15 

Results).  The high LD should also inflate the number of non-causal SNPs exhibiting significant 16 

ΔpEL , hitch-hikers in the terminology of (MAYNARD SMITH AND HAIGH 1974).  While Quarry 17 

has greater actual genetic variation in flowering time, LD should further inflate the number of 18 

significant tests.  LD could also exaggerate our observation in the temporal consistency of ΔpEL  19 

across years (Figure 5).   20 

The results from Quarry underscore a number of general points about the analysis.  First, 21 

while there are thousands of significant SNPs across populations/years, the number of 22 

functionally important variants is likely much smaller.  A causal locus for flowering time will 23 
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“pull” on neighboring SNPs in LD; an effect most pronounced in Quarry but not negligible in IM 1 

or BR.  Whole genome sequencing of lines from IM indicates substantial LD among SNPs at the 2 

gene level (inter-SNP distances of hundreds to a few thousand bp; (PUZEY et al. 2016)).  In 3 

principle, assortative mating owing to differences in flowering time might generate substructure 4 

within populations.  If strong enough, such structure might allow LD among unlinked SNPs.  In 5 

the present study, we do not find strong internal structure.  Divergence measured as Fst is much 6 

lower between Early and Late flowering plants within populations (about 1-2%) than it is 7 

between populations (12-13% between Quarry and IM or BR). 8 

 9 

Measuring effects for a highly polygenic trait  10 

A recent study of body pigmentation in fruit flies provides a striking contrast to our 11 

results.  ENDLER et al. (2016) compared populations of Drosophila melanogaster from Europe 12 

and South Africa using a similar bulked-segregant approach.  In contrast to the results here, they 13 

found relatively consistent architecture across populations.  Genome-wide significant tests were 14 

contained within two genic regions, both shared between Europe and South Africa.  One 15 

important difference is that ENDLER et al. (2016) measured phenotypes from animals reared 16 

under common laboratory conditions, thus limiting GxE interactions.  A second critical 17 

difference is the nature of the traits under study.  Coloration phenotypes in both plants and 18 

animals are frequently (although not always) influenced by a few major factors (EPPERSON AND 19 

CLEGG 1988; JORON et al. 2006; STEINER et al. 2007; SMITH AND RAUSHER 2011).  In contrast, 20 

flowering time is a highly polygenic trait with extensive environmental influence (COUPLAND 21 

1995; SIMPSON AND DEAN 2002).   22 
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The best examples of “major loci” in the present study are the structural polymorphisms 1 

segregating in IM and Quarry (Figure 4).  Our ΔpEL estimates at these loci are, in one sense, 2 

likely the most precise in the experiment because each is based on an average across many SNPs.  3 

This averaging should minimize estimation error due to finite sequence depth, although not due 4 

to the finite sampling of individuals into bulks. Admittedly, we are likely underestimating the 5 

magnitude of ΔpEL for the inversions owing to imperfect association between “diagnostic” SNPs 6 

and the actual alternative alleles (inversion orientations).  Assuming underestimation to be 7 

minor, and noting that the additive variance contributed by a QTL is 2p(1-p)a2 (FALCONER AND 8 

MACKAY 1996), we use observed ΔpEL values to estimate the variance contribution of QTL.  An 9 

observed ΔpEL of 0.1 (like inv8 in Quarry, 2013) is predicted for a locus that explains almost but 10 

not quite 1% of the phenotypic variance.  If ΔpEL = 0.15 (like the Drive locus in Quarry, 2013), 11 

the locus explains 1.5% of the phenotypic variance.  While these calculations are coarse, they do 12 

emphasize that major flower time loci are decidedly quantitative in their effects. 13 

Many of our estimates for ΔpEL at significant SNPs are large in magnitude (greater than 14 

0.4; Figure 3, left).  However, when considering single SNPs, it is essential to recognize that 15 

magnitude is inevitably overestimated in the pool of significant tests (BEAVIS 1994; IOANNIDIS 16 

2008).  For this reason, the simulation study is fundamental to our conclusion of genuine 17 

heterogeneity in the effects of flowering time loci.  Our simulations reiterate the stochastic 18 

processes generating exaggerated values for ΔpEL  and, also, the ascertainment process by which 19 

overestimated values are used for subsequent analyses.  These factors are clearly important.  For 20 

example, the association of ΔpEL between two populations with data generated from constant 21 

effect loci is positive (red line of Figure 3), but the slope is greatly reduced from 1, which would 22 

be the slope of the regression if there were no estimation error.  It is the fact that the covariance 23 
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of ΔpEL between samples within each context is significantly lower than predicted (Figure 3, 1 

right), after accounting for error and ascertainment, which indicates heterogeneity. 2 

Our SNP-level hypothesis testing framework was developed to address two basic issues.  3 

The first was to provide statistical evidence regarding the marginal effects of QTLs (averaged 4 

over populations) as well as the heterogeneity of effects (across populations).  The second issue 5 

is proper accounting for multiple sources of error inherent to serial sampling in Poolseq studies.  6 

Despite best efforts in DNA quantification, pipetting, etc., variable representation of individuals 7 

among the sequenced reads is unavoidable.  Contingency tables based directly on read counts 8 

(e.g. chi-square, Fisher’s exact test) ignore all sampling events prior to the last; essentially 9 

treating each read as an independent draw from the ancestral population.  Supplemental Table 5 10 

illustrates that contingency table tests can be substantially anti-conservative with respect to our 11 

method, at least when the bulk specific sampling variance is non-trivial.  Tail p-values can be 12 

1000-fold lower using Fisher’s exact test or chi-square.  However, the comparisons also indicate 13 

that our likelihood ratio test can occasionally produce lower p-values than the table analyses if 14 

the average allele frequency is close to 0 or 1. Such SNPs will usually not be genome-wide 15 

significant because there is limited scope for differences in allele frequency between samples if 16 

the average is close to 0 or 1.  Still, this observation reminds that the arcsin square-root transform 17 

does not generate true normality; it just affords a better approximation.  18 

 19 

Flowering time loci  20 

Two qualitatively different kinds of loci are investigated in this experiment.  The first are 21 

structural polymorphisms, previously mapped in M. guttatus although not necessarily known 22 

from these populations.  The second are SNPs outside of these regions in (presumably) freely 23 
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recombining parts of the genome.  While the strength of evidence for flowering time effects of 1 

this latter class may be weaker, they potentially provide much finer resolution.  For the structural 2 

variants, we cannot distinguish the effects of polymorphisms across the hundreds of genes within 3 

each inversion.  For other significant SNPs, we located each in relation to putative flowering 4 

time genes (based on M. guttatus v2 genome annotation; https://www.phytozome.jgi.doe.gov).  5 

We considered all SNPs significant for the M1 v M3 test in the genic region of a candidate gene 6 

or ±2 kb of the flanking DNA.   7 

In Quarry, 46 significant SNPs were located to flowering time genes.  These include 8 

genes from the photoperiod pathway and gibberellic acid pathway, as well as multiple interacting 9 

genes within each pathway.  Gibberellic acid has direct effects on floral development, but also 10 

indirectly influences flowering time via its effects on germination and general growth regulation 11 

(MOURADOV et al. 2002).  Seven of the 12 candidates in this pathway are gibberellin 12 

oxygenases, which generally degrade GA and its precursors (WUDDINEH et al. 2015).  Three of 13 

these (Migut.M00902, Migut.M00908, and Migut.M00909) are on a 50 kb stretch of chromosome 14 

13 and all show highly consistent ΔpEL across years ( Δp13 = −0.36  and Δp14 = −0.24 ).  15 

Interestingly, two of these genes (Migut.M00908 and Migut.M00909) were also identified in IM 16 

and exhibit a similar pattern across years ( Δp13 = −0.44  and Δp14 = −0.26 ).  In addition, both 17 

Quarry and IM identified GAI (Migut.H01666) as a candidate, a transcription factor that 18 

represses GA responses (PENG et al. 1997).  In aggregate, these results support the GA pathway 19 

as a general source of natural variation in flowering time. 20 

Critical photoperiod requirements are typically much longer for perennial M. guttatus, 21 

with most perennials (and even some annuals) requiring vernalization upon previous exposure to 22 

short-day conditions (FRIEDMAN AND WILLIS 2013).  In Quarry, a SNP ~1.5 kb downstream of 23 
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VERNALIZATION1 (VRN1; Migut.H02193) shows a consistent difference across years (1 

Δp13 = 0.54  and Δp14 = 0.27).  This SNP is within the major photoperiod and vernalization QTL 2 

mapped by Friedman and Willis (2013).  While VRN1 is a “vernalization” gene, it is 3 

transcription-responsive to photoperiod (DUBCOVSKY et al. 2006) and has distinct effects on 4 

flowering time apart from vernalization (LEVY et al. 2002).  ELF6 (Early Flowering; 5 

Migut.F01729) (CLOUSE 2008), a repressor of the photoperiod pathway, also shows consistently 6 

higher reference base frequency in the early flowering samples ( Δp13 = 0.29  and Δp14 = 0.20; 7 

significant for both the M1 v M2 and M1 v M3 tests).  Significant SNPs were also found 8 

adjacent to ELF 3 and ELF4 (Migut.E01551 and Migut.J00944, respectively), and again, the 9 

reference base frequency was higher in early flowering plants.  However, ΔpEL was less 10 

consistent across years (ELF3: Δp13 = −0.07  and Δp14 = 0.38; ELF4: Δp13 = 0.55  and 11 

Δp14 = 0.04).  The direction of these differences ( ΔpEL usually positive) may reflect the fact that 12 

the reference genome is based on an annual genotype.  Thus, the reference base is more likely to 13 

be the “annual” allele in an annual/perennial population.  Lastly, GIGANTEA (Migut.C00380), a 14 

major photoperiod response regulator that interacts with multiple ELF transcription factors 15 

(MISHRA AND PANIGRAHI 2015), exhibited a significant interaction across years in Quarry, with 16 

Δp13 = −0.25  and Δp14 = 0.14 .   17 

Both IM and Q also have significant SNPs in a tandem pair of GDSL-motif lipase genes 18 

(Migut.M01081 and Migut.M01082) as well as an RNA ligase gene (Migut.N02091).  The former 19 

belong to a class of lipases with broad, ecologically-relevant functions including microbial 20 

defense (OH et al. 2005; KWON et al. 2009), morphogenesis and development (RIEMANN et al. 21 

2007; LEE et al. 2009), and abiotic stress responses (HONG et al. 2007).  While these genes may 22 

play a direct role in promoting/hindering development, it may just as well function in defense of 23 
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a pest associated with early or late season conditions.  RNA-ligase is involved in the maturation 1 

of tRNAs, and it was recently discovered that mutants of an RNA-ligase gene in Arabidopsis 2 

thaliana exhibited defects, specifically, in auxin-related growth processes (LEITNER et al. 2015). 3 

The structural polymorphisms provide clear evidence of flowering time effects (Figure 4 

4), although without gene-level resolution.  However, the estimates for phenotypic and fitness 5 

effects for entire karyotypes is valuable when considering the evolutionary dynamics of these 6 

polymorphisms.  The results for inv8 are fully consistent with expectations based on previous 7 

studies of this locus.  Alternative orientations distinguish annual and perennial ecotypes of M. 8 

guttatus and QTL mapping reveals large effects of inv8 on flowering time, anthocyanin 9 

production, and growth-related traits (LOWRY AND WILLIS 2010).  As in the mapping study, our 10 

experiment shows that the perennial orientation delays flowering, and its presence confirms the 11 

annual/perennial origin of this population.  This study provides the most direct evidence of inv8 12 

segregating within a natural population, contributing to phenotypic variation; although 13 

polymorphism in other populations is suggested (TWYFORD AND FRIEDMAN 2015).   14 

The strong effect of the meiotic drive locus on flowering time is more surprising.  15 

However, field experiments have demonstrated Drive effects on both male and female fitness 16 

components (FISHMAN AND KELLY 2015), which may depend on flowering time.  Direct effects 17 

of this locus on developmental timing have been documented in a greenhouse experiment 18 

(SCOVILLE et al. 2009).  It is possible that some delay in flowering is due to the reduction in 19 

pollen viability caused by the Drive karyotype.  Bee pollinators discriminate against flowers with 20 

lower viable pollen (CARR et al. 2014) and lack of visitation prolongs flower lifespan (ARATHI et 21 

al. 2002).  Finally, the derived orientation of inv6 was associated with earlier flowering in IM in 22 

2014, but not the previous year (Figure 4).  Several greenhouse studies have shown inv6 effects 23 
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on days to flower (LEE 2009; SCOVILLE et al. 2009) although the direction of effect varies with 1 

genetic background and perhaps the sequence of the ancestral orientation (which is highly 2 

variable and different among experiments).   3 

 4 

Conclusion 5 

We have developed and implemented a method to map genomic regions affecting 6 

ecologically-relevant traits directly within natural populations, while accounting for estimation 7 

error in observed allele frequencies.  Replicated comparative mapping can inform fundamental 8 

biological questions such as how the evolutionary trajectories of local populations will transform 9 

an entire species.  Uniform selection across a species range generated by climate change might 10 

set the stage for parallel evolution, but at what scale will parallelism occur?  As sequencing costs 11 

continue to decrease, the number of populations and range of distribution that can be surveyed 12 

will increase.  Though our study focuses on a narrow geographic range, it provides a baseline 13 

understanding for how genomic variation in flowering time varies across neighboring 14 

populations and from generation to generation.   15 

While most flowering time loci varied between populations and over time, a subset 16 

exhibited fairly consistent effects.  These consistent loci, which include large structural variants, 17 

such as inversions, and genes in known flowering time pathways, are most likely to evolve in 18 

parallel if populations were to experience uniform selection on flowering time.  The actual 19 

degree of parallelism will depend on genetic factors (e.g. the distribution of additive and 20 

dominance effects), demographic factors (e.g. population sizes, growth rates, and migration), and 21 

selective factors (e.g. strength and consistency of selection on flowering time).  However, the 22 

existence of consistent loci supports the growing body of evidence that parallel evolution can 23 
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occur from the recruitment of standing genetic variation (PIGEON et al. 1997; COLOSIMO et al. 1 

2005; JONES et al. 2012).  Statistical considerations aside, this consistency also supports the 2 

utility of mapping studies to identify a subset of loci that are general contributors to natural 3 

variation within and between populations. 4 

In contrast, the observed variation in genomic architecture testifies to the influence of 5 

divergent environmental conditions and genomic backgrounds on the average effects exhibited 6 

by segregating variants.  For highly polygenic traits such as flowering time, we would almost 7 

certainly expect to find some loci to have evolved in parallel, but this would likely account for a 8 

relatively minor portion of the total selection response.  Furthermore, a lack of parallelism at the 9 

genetic level would not imply that populations did not have access to the same standing variation 10 

and thus evolutionary trajectories.  Rather, it could simply reflect the idiosyncratic interplay 11 

between the factors outlined above.  Additional studies will help determine whether variation in 12 

genomic architecture is a trait- or species-specific phenomenon as well as highlight those genes 13 

that are consistently important drivers for natural variation. 14 

  15 
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Tables 1 

 2 

Table 1. Models to establish significance of marginal and heterogeneous genetic 3 

effects across the two contrasts (between years or between populations) within a 4 

context.   5 

  6 

Model Description Parameter Constraints 

M1 No difference between E/L xE1 = xL1; xE 2 = xL 2
   

M2 ∆pEL consistent  xE1 = xL1 +α;

xE 2 = xL 2 +α
   

M3 ∆pEL variable  xE1 ≠ xL1; xE 2 ≠ xL 2
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 1 

(A) # Significant Tests # Total Tests 

2013 2014 2013 2014 

IM 590 247 3798948 4488418 

Q 9450 3086 4248012 5089848 

BR 14 -- 3715897 -- 

 2 

(B) 

Browder 

Ridge 

Iron 

Mountain 
Quarry 

2013 Early 0.0323 0.0141 0.0153 

2013 Late 0.0355 0.0200 0.0212 

2014 Early 0.0165 0.0066 0.0083 

2014 Late -- 0.0110 0.0130 

 3 

Table 2.  (A) Number of significant sites for the individual ΔpEL  tests.  (B) The 4 

estimates for v, the bulk-specific variance that aggregates the sampling events prior 5 

to sequencing, for each sample. 6 

  7 
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Context 

Consistent 

Effect 

M1 v M2 

Heterogeneity 

of Effect 

M2 v M3 

Overall 

Effect 

M1 v M3 # tests 

IM  155 (101) 154 (0) 705 (3) 3458706 

Q 3429 (5216) 262 (0) 4802 (1106) 3840040 

2013 869 (1203) 697 (0) 3086 (222) 2416806 

2014 296 (6) 10 (0) 392 (2) 3193898 

 1 

Table 3.  A summary of significance testing for the models of Table 1 is reported for 2 

each context.  The contrasts are across years within IM and Quarry and across 3 

populations in 2013 and 2014, respectively.  The number of genome-wide significant 4 

tests is reported for both the real data followed (in parentheses) by those obtained 5 

from simulation.  Simulations were conducted assuming consistent genotypic effects 6 

(a) and generated with best-matching values of f0 and c.   7 

  8 
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Figure Legends 1 

Figure 1.  Likelihood Ratio Test values for the consistent effect (M1 v M2) and interaction 2 

(M2 v M3) test as a function of allele frequency difference in the two populations.  Note that 3 

solid and dashed lines are perfectly overlapping for Δp2 = 0 .  In all cases, 
1
m

= v = 0.025  for 4 

both populations in the contrast. 5 

 6 

Figure 2.  Top: –log10(p) for significant ΔpEL test (FDR=0.1) for each population in 2013. 7 

Blue = Quarry, Green = Iron Mountain, and Red = Browder Ridge.  Bottom: Overlap in 8 

significance across populations in 2013.  Left to right: individual sites, 30 kb windows, and 9 

1 Mb windows.  A window was considered to be in common between two populations if 10 

both populations possessed at least one significant site within the window boundaries.   11 

 12 

Figure 3.  Left:  ΔpEL in Quarry versus IM in 2013 for simulated (red) and real (grey) data.  13 

Only sites in which LRT > 15 for the individual ΔpEL  in IM are shown.  Right:  Covariance in 14 

ΔpEL  for sites (LRT > 15 for the test of M1 v M3) across time (see bars for IM and Q) and 15 

space (2013 and 2014).  Confidence intervals are observed 5th and 95th percentiles from 16 

bootstrap distribution generated with 100 replicates. 17 

 18 

Figure 4.  Mean allele frequency divergence between early and late flowering plants for 19 

three structural variants.  Error bars are +/- SE taken across the SNPs within each 20 

feature/population/year.   21 

 22 
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Figure 5. –log10(p) for the marginal-effect test plotted along chromosome 8 (Top).  On 1 

bottom, reference frequency across the four sampling events for sites in the 99.95 2 

percentile of the marginal-effect test that exhibit a positive ΔpEL .  Left = Quarry, Right = Iron 3 

Mountain.  Color indicates whether site is within the chromosome 8 inversion (blue) or not 4 

(red).   5 

 6 

Supplemental Material 7 

 8 

Supplemental Appendix 1.  Description of estimation of v terms as well as their sampling 9 

variance. 10 

 11 

Supplemental Table 1. Collection dates for each sampling event. 12 

 13 

Supplemental Table 2.  Parameter values for simulated data for each of the four test 14 

types: IM, Q, 2013, and 2014, as well as their fit to the observed distributions likelihood 15 

ratio tests comparing Model 1 versus Model 2.  Values for Pr[X>10] and Pr[X>15] for the 16 

real data are: 0.0043186 and 0.00053546 for IM, 0.0062383 and 0.0010148 for Q, 17 

0.0052888 and 0.00074395 for 2013, and 0.0036069 and 0.000434581 for 2014. 18 

 19 

Supplemental Table 3.  Number of significant sites on each chromosome, as well as the 20 

rate of significant sites per Mb.  Tally includes all sites regardless of which population/year 21 

they were deemed significant in.   22 

 23 
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Supplemental Table 4.  Mean allele frequency difference between early and late flowering 1 

plants for structural variants.   2 

 3 

Supplemental Table 5.  Comparison of Fisher’s exact test, contingency table analysis, and 4 

our likelihood ratio test for read counts from chromosome 1 in Browder Ridge.  Results 5 

contained in separate spreadsheet. 6 

 7 

Supplemental Figure 1.  Venn diagrams depicting sites passing filter in one or more of the 8 

populations Top: 2013, Bottom: 2014.   9 

 10 

Supplemental Figure 2.  Genome-wide averages of ΔpEL  and ΔpEL  
2  (proportional to 11 

variance), calculated in 1 Mb windows. 12 

 13 

Supplemental Figure 3. Left: ΔpEL in Quarry versus IM in 2013 for simulated (red) and 14 

real (grey) data.  Only sites in which LRT > 15 for the individual ΔpEL  in IM are shown. 15 

Right: Same as left except only sites in which LRT > 15 for the individual ΔpEL  in Q are 16 

shown.  Values used for simulation:  f0=0.08 a=0.205 17 

 18 

Supplemental Figure 4. Left: ΔpEL in Quarry versus IM in 2014 for simulated (red) and 19 

real (grey) data.  Only sites in which LRT > 15 for the individual ΔpEL  in IM are shown. 20 

Right: Same as left except only sites in which LRT > 15 for the individual ΔpEL  in Q are 21 

shown.  Values used for simulation:  Top) f0=0.145 a=0.115.  Bottom) f0=0.06 a=0.16.   22 
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 1 

Supplemental Figure 5. Left: ΔpEL in 2013 versus 2014 in Quarry for simulated (red) and 2 

real (grey) data.  Only sites in which LRT > 15 for the individual ΔpEL  in 2013 are shown. 3 

Right: Same as left except only sites in which LRT > 15 for the individual ΔpEL  in 2014 are 4 

shown.  Values used for simulation: Top) f0=0.065 a=0.215 Bottom) f0=0.10 a=0.19 5 

 6 

Supplemental Figure 6. Left: ΔpEL in 2013 versus 2014 in IM for simulated (red) and real 7 

(grey) data.  Only sites in which LRT > 15 for the individual ΔpEL  in 2013 are shown. Right: 8 

Same as left except only sites in which LRT > 15 for the individual ΔpEL  in 2014 are shown.  9 

Values used for simulation:  Top) f0=0.20 a=0.125.  Bottom) f0=0.20 a=0.13 10 

 11 

Supplemental Figure 7.  Significant sites (FDR = 0.1) for test of marginal-effect (top) and 12 

interaction effect (bottom) for each of the four contexts on chromosome 8.   13 

 14 

Supplemental Figure 8.  Reference frequency across the four sampling events for sites in 15 

the 99.95 percentile of the marginal-effect test that exhibit a positive ΔpEL  (left; same as 16 

Figure 5) and those that exhibit a negative ΔpEL  (right).  Top = Quarry, Bottom = Iron 17 

Mountain.  Color indicates whether site is within the chromosome 8 inversion (blue) or not 18 

(red).   19 

 20 
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Data Deposition: BioProject PRJNA336318.  BioSamples: SAMN05508935, SAMN0550981, 1 

SAMN0550982, SAMN0550983, SAMN0550984, SAMN0550985, SAMN0550986, 2 

SAMN0550987, SAMN0550988, SAMN0550989, and SAMN0550990. 3 
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