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Abstract

Microbes in fragmented environments profit from yield-efficient metabolic strategies, which allow for a

maximal number of cells. In contrast, cells in well-mixed, nutrient-rich environments need to grow and

divide fast to out-compete others. Paradoxically, a fast growth can entail wasteful, yield-inefficient modes of

metabolism and smaller cell numbers. Therefore, general trade-offs between biomass yield and growth rate

have been hypothesized. To study the conditions for such rate/yield trade-offs, we considered a kinetic model

of E. coli central metabolism and determined flux distributions that provide maximal growth rates or maximal

biomass yields. Maximal growth rates or yields are achieved by sparse flux distributions called elementary

flux modes (EFMs). By implementing a framework we call Flux-analysis Enzyme Cost Minimization (fECM),

we screened all EFMs in the network model and computed the biomass yields and the minimal amount

of protein requirements, which we then use to estimate the growth rates. In a scatter plot between the

growth rates and yields of all EFMs, a trade-off shows up as a Pareto front. At reference glucose and oxygen

levels, we find that the rate/yield trade-off is small. However, in low-oxygen environments, a much clearer

trade-off emerges: low-yield fermentation EFMs allow for a growth 2-3 times faster than the maximal-

yield EFM. The trade-off is therefore strongly condition-dependent and should be almost unnoticeable at

high oxygen and glucose levels, the typical conditions in laboratory experiments. Our public web service

www.neos-guide.org/content/enzyme-cost-minimization allows users to run fECM to compute enzyme

costs for metabolic models of their choice.
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Introduction

Metabolic networks, their dynamics, and their regulation are shaped by evolutionary selection. When nutri-

ents are in excess and the environment is well mixed, fast-growing bacterial cells will outcompete others. Un-

der this selection pressure, organisms should evolve to maximize their growth rate. Indeed, microbiologists

use the terms growth rate and fitness almost synonymously. As much as such well-mixed rich environments

are common in laboratory settings, natural environments are much more diverse. In fragmented ecological

niches with limited resources, there is no direct competition during the growth phase, and fecundity deter-

mines the evolutionary success regardless of growth speed. This puts a selection pressure on biomass yield

rather than growth because the number of offspring for bacteria in a limited-nutrient environment is directly

proportional to the biomass yield of their catabolism (for a given cell size).

At first glance, high growth rate and yield could be expected to go hand in hand: imagine a cell that can

produce more offspring for the same amount of nutrient (i.e., higher yield); then it seems logical that it would

reproduce quickly (i.e., produce more offspring per hour). However, this is not what we see in experiments.

Many fast-growing cells employ low-yield metabolic pathways, e.g., bacteria that, when grown on glucose,

display respiro-fermentative metabolism at high growth rates even though a complete respiratory growth

would have a higher yield per mole of glucose. Similarly, yeast cells that produce ethanol (Crabtree effect)

and cancer cells that product lactate (Warburg effect) in the presence of oxygen seem to waste much of the

carbon that they take up (see [1] for a review of these strategies and hypotheses). These yield-inefficient

strategies observed in completely unrelated organisms have lead to the suggestion that fast growth and high

cell yield may even exclude each other due to physico-chemical reasons (e.g. following thermodynamic

principles [2, 3]). This hypothesis has been supported by simple cell models, in which lower thermodynamic

forces or higher enzyme costs in the high-yield pathways caused a rate/yield trade-off.

In [4], two versions of the glycolysis, both common among bacteria, have been compared in terms of ATP

yield on glucose and by of enzyme demand (or, equivalently, their ATP production rate at a given enzyme

investment). At a given glucose influx, the Embden-Meyerhof-Parnas (EMP) pathway yields twice as much

ATP, but requires about 4.5 as much enzyme than the Entner-Doudoroff (ED) pathway. Thus, it was hypoth-

esized that cells under yield selection will use the EMP pathway while those under rate selection would use

the ED pathway. The economics of other metabolic choices, e.g. respiration versus fermentation, and the

resulting trade-offs, remain to be better quantified (some recent approximations have been performed for

yeast [5] and E. coli [6]).

Several lab-evolution experiments with fast-growing microorganisms have been conducted to bring the

rate/yield hypothesis to the test, with varying levels of success. Growth rate and yield of microbial strains

have been compared between different wild-type and evolved strains [8–11]. Most of these studies found

poor correlations between growth rate and yield. Novak et al. [9] found a negative correlation within

evolved E. coli populations, indicating a rate/yield trade-off. One of the few examples of bacteria evolving

for high yield in the laboratory was the work of Bachmann et al. [12]. In their protocol, each cell is kept in

a separate droplet in a medium-in-oil suspension, simulating a fragmented environment, and the offspring

are mixed only after the nutrients in each droplet are depleted. This creates a strong selection pressure for

maximizing biomass yield. Indeed, the strains gradually evolved towards higher yields at the expense of

their growth rate, again indicating a trade-off between the two objectives. However, most of the evidence

relies on laboratory experiments in which microorganisms may behave sub-optimally, and the existence of

rate-yield trade-offs remains debatable.

How can we study rate/yield trade-offs by models? A major difficulty is the prediction of cell growth rates

and their dependence on the metabolic state. For exponentially growing cells, the rate of biomass synthesis

per cell dry weight – typically measured in grams of biomass per gram cell dry weight per hour – is equal to
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Figure 1: Rate/yield trade-offs in metabolism and the prediction of growth-optimal fluxes. (a) Pareto
front in the rate/yield scatter plot (schematic drawing). Elementary flux modes (EFMs) are represented
by points, indicating their biomass yield and the maximal achievable growth rate (in a given simulation
scenario). The Pareto-optimal EFMs define a convex hull within which all fluxes must reside [7] (mock
data). Although there can be non-elementary, Pareto-optimal flux modes, they must lie within a narrow area
defined by the Pareto-optimal EFMs inside the convex hull (light brown area). (b) Computing the cost of
metabolic fluxes and finding optimal flux modes. In a hypothetical example model, the space of metabolic
flux distributions is spanned by three EFMs. Each point in this space represents a stationary flux mode. Flux
modes with a fixed benefit (predefined biomass production rate) form a triangle. Each flux mode defines
an optimality problem for enzyme cost as a function of metabolite levels. The enzyme cost as a function on
the metabolite polytope is shown as an inset graphics. Minimizing this enzyme cost is a convex optimality
problem. By solving this problem, we obtain the optimal metabolite and enzyme levels and the minimal
enzyme cost for the chosen flux distribution. (c) By evaluating the minimal enzyme cost in every point of
the flux polytope, we obtain a kinetic flux cost function. Since this function is concave, at least one of the
polytope vertices (i.e., an EFM) must be cost-optimal. The search for optimal flux modes is thus reduced to
a screening of EFMs.

the specific growth rate µ. At balanced growth, the relative amounts of all cellular components are preserved

over time, including the protein fraction associated with enzymes that catalyze central carbon metabolism.

If a metabolic strategy achieved the same biomass synthesis rate, but with a lower cost in terms of total

enzyme mass, evolution would have the chance to reallocate the freed protein resources to other cellular

processes that contribute to growth, and thus increase the cell’s growth rate. Thus, a growth-optimal strategy

will be one that minimizes enzyme cost (at a given rate of glucose-to-biomass conversion) [13]. This drive

for low enzyme or nutrient investments should be reflected in the choice of metabolic strategies: if low-

yield pathways provide higher metabolic fluxes per enzyme investment, this leads to a growth advantage

[13–17]. Thus, the rate-yield trade-off in cells reflects a trade-off between enzyme efficiency and substrate
efficiency in metabolic pathways. On the contrary, if cells can choose between a substrate-efficient and an

enzyme-efficient pathway, they face a growth-yield trade-off. Since the enzyme cost of a pathway depends

on substrate concentrations, this trade-off is likely to be condition-dependent.

The relation between protein investments and biomass yield YX/S , which we measure in grams of biomass

per mole of carbon source carbons (i.e. per 1/6 mole of glucose), is not immediately clear. If the rate

of carbon uptake qS were known, we could directly relate the yield and growth rate, using this formula:

YX/S = µ
qS

. However, since changing metabolic fluxes affect carbon uptake, yield, and growth rate at the

same time, it is difficult to gain insight about the relation between µ and YX/S without understanding the

changes in qS . Some metabolic models (in particular, classical Flux Balance Analysis (FBA)) place a fixed

upper bound on qS , effectively assuming a fixed relation between growth rate and biomass yield. Of course,

rate-yield trade-offs cannot be explored in this way. Here, we take a different approach, which combines

kinetic modeling with elementary flux mode analysis.

Elementary flux modes (EFMs) describe the fundamental ways in which a metabolic network can operate
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[18–21]. Among the possible steady-state flux modes, EFMs are minimal in the sense that they do not

contain any smaller subnetworks that can support steady-state flux modes [18, 19, 21]. The EFMs of a

metabolic network can be enumerated (even though a large number of EFMs may preclude this in practice).

Each EFM has a fixed yield, defined as the output flux divided by the input flux, and is easy to compute. The

maximal possible yield is always achieved by an EFM. EFMs might be expected to have very simple shapes,

but since biomass production requires many different precursors, biomass-producing EFMs can be highly

branched (e.g. Figure 2A). All biomass-producing EFMs are thermodynamically feasible, and in a model

with predefined flux directions, the set of steady-state flux distribution is a convex polytope spanned by the

EFMs.

EFMs have a remarkable property that makes them well-suited for studying rate/yield trade-offs: in a given

metabolic network, the maximal rate of biomass production at a given enzyme investment is always achieved

by an EFM [7, 22]. Therefore, to find flux modes that maximize growth, we only need to enumerate the

EFMs and assess them one by one. Since biomass yield is a fixed property of EFMs, we can observe rate/yield

trade-offs simply by plotting yields versus growth rates of all EFMs (Figure 1(a)).

To study metabolic strategies and trade-offs in microbes, we developed a new method for predicting cellular

growth rates achievable by each EFM. To do so, we consider a kinetic model of metabolism and and deter-

mine an optimal enzyme allocation pattern in the network, realizing the required EFM and a predefined rate

of biomass production at a minimal total enzyme investment. This optimization can be efficiently performed

using the newly developed method of Enzyme Cost Minimization (ECM) [23]. For each EFM, the optimized

enzyme amount at unit biomass flux is then translated into a mass doubling time of the proteins (i.e. the

amount of time that metabolism would have to be running just to duplicate all the enzymes). Assuming that

the protein fraction of the cell dry weight is a constant, this can further be translated into a cell growth rate

by a semi-empirical formula described below. Building on recent developments in the field [7, 22, 23], we

can then effectively scan the space of feasible flux modes and define a region of Pareto-optimal strategies

– i.e., flux modes that maximize growth at a given yield or maximize yield at a given growth rate. The

shape of this Pareto front tells us whether a rate/yield trade-off exists. We focus our efforts on the cen-

tral metabolism of E. coli, because these fast-growing bacteria have often been used for experiments on the

rate/yield trade-off and because of their well-studied enzyme kinetics.

Results

Computing the cell growth rate achievable by an elementary flux mode (EFM)

Flux-analysis Enzyme Cost Minimization (fECM) is a method for finding optimal metabolic states in kinetic

models, i.e., flux distributions that realize a given flux objective (e.g., a given biomass production rate) at

a minimal enzyme investment. These are the flux distributions that can be expected to allow for maximal

growth rates. The fundamental difference between fECM and constraint-based methods is the underlying

kinetic model. For scoring a flux profile, rather than using approximations such as the sum of fluxes [24] (or

other linear/quadratic functions of the flux vector [25]), we directly the total amount of required enzyme

predicted by a kinetic model.

To compute the optimal enzyme investments for a given flux mode, we use Enzyme Cost Minimization

(ECM), a method that uses metabolite log-concentrations as the variables and can be quickly solved using

convex optimization [23]. ECM finds the most favorable enzyme and metabolite profiles that support the

provided fluxes – i.e. the profiles that minimize the total enzyme cost at a given biomass formation flux

and therefore maximizes the specific biomass formation flux. The minimal enzyme cost of all EFMs can be
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computed in reasonable time (a few minutes on a shared server).

Given the enzyme demands, we next ask: how fast can a cell grow at the given metabolic fluxes and enzyme

abundances? The steady-state cell growth rate is given by the biomass production rate divided by the

biomass amount. Focusing on enzymes in central metabolism of E. coli, we first try to answer what is the

total amount of enzyme required (Emet) to produce biomass at a given rate (vBM) in a kinetic model. Then,

we define the enzyme doubling time in hours as τmet ≡ ln(2)·Emet

vBM
. This is the time a cell would need to

reproduce all its metabolic enzymes if it didn’t have to produce any other biomass. Since E. coli cells contain

also other proteins and biomass constituents, the real doubling time is longer and depends on the fraction of

metabolic enzymes within the total biomass. This fraction, however, decreases with the growth rate as seen

in experiments [26] and as expected from trade-offs between metabolic enzymes and ribosome investment

[27]. Here, we use the approximation T = 7.4 · τmet + 0.51[h] derived in the Methods section. The resulting

growth rate (in h−1), µ = ln(2)
T , is a decreasing function of the enzyme cost (Emet).

We can now compute the minimal total enzyme cost associated with a given flux mode, and we know that

flux modes that minimize this cost will also maximize growth. So how can we find an optimal flux mode?

Under some reasonable model assumptions, and no matter how the kinetic model parameters are chosen,

the enzyme-specific biomass production rate, and therefore growth, is maximized by elementary flux modes

[7, 22]. What is the reason? If we consider all feasible flux modes, constrained to predefined flux directions

and to a fixed biomass production rate, these flux modes together form a convex polytope in flux space,

called benefit-constrained flux polytope (see Figure 1(b)). The vertices of this polytope are EFMs. Since

the flux cost function is concave [7], any cost-optimal flux mode must be a vertex of the flux polytope, and

therefore be an EFM. Thus, in fECM, we can screen all EFMs, score each of them by the minimal necessary

enzyme cost per unit of biomass production flux, and determine the growth-maximizing mode.

To summarize, rate-yield trade-offs in metabolism can be studied by considering a kinetic metabolic model

(with rate laws and rate constants, external conditions such as glucose and oxygen levels, and constraints on

possible metabolite and enzyme levels), screening all of its metabolic steady states, and computing growth

rate and yield for each of them. Finally, the EFM with the maximal growth rate is chosen. However, our

method provides not only the growth-optimal flux mode, but also the full spectrum of growth rates and

yields of all EFMs. The growth-yield diagram, a scatter plot between the two quantities, shows the possible

trade-offs between the two objectives. An EFM that is not beaten by any other EFM in terms of both growth

rate and yield is called Pareto-optimal. By connecting these Pareto-optimal points by straight lines, we obtain

their convex hull (see Figure 1(a)). If we could evaluate the growth rates and yields for all metabolic states

in the model (including non-elementary flux modes), the resulting rate/yield points would form a compact

set, and this entire set would be enclosed in the convex hull of the EFM points. The Pareto-optimal EFMs

therefore mark the best compromises between growth rate and yield that are achievable in the model. By

inspecting the rate/yield diagram, we can tell, for the set of all metabolic states, whether there is an extended

Pareto front or a single solution that optimizes both rate and yield. While every EFM has a constant yield

that never changes, its growth rate is condition dependent. Therefore, the entire picture and the emergence

of rate-yield trade-offs can vary between conditions. We demonstrate this for one case study: the central

metabolic network of E. coli.

Metabolic strategies in E. coli central metabolism

To study optimal metabolic strategies in E. coli, we applied our method to a model of central carbon

metabolism, which provides precursors for biomass production. Our model is a modified version of the

model presented in [28] and comprises glycolysis, the Entner-Doudoroff pathway, the TCA cycle, the pen-

tose phosphate pathway and by-product formation (SI Figure S4). Precursors and cofactors, provided by
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Figure 2: Metabolic strategies in a model of E. coli central carbon metabolism. (a) Network model of
E. coli central metabolism. The reaction fluxes, defined by the Elementary Flux Mode (EFM) max-gr, are
shown by colors. In our reference conditions – i.e. high extracellular glucose and oxygen concentrations –
this EFM has the highest growth rate among all EFMs. It uses the TCA cycle at the right amount to satisfy its
ATP demand and does not secrete any organic carbon. Cofactors are not shown in the figure, but exist in the
model. (b) Partitioning of the biomass producing EFMs. Each EFM represents a steady metabolic flux mode
through the network. (c) Spectrum of growth rates and yields achieved by the EFMs. The labeled EFMs are
listed in Table 1.
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Acronym∗ Biomass yield
(g/C-mol)

Growth rate†

(h−1)
Oxygen
uptake

Acetate
secretion

Lactate
secretion

max-gr 18.6 0.739 0.49 0 0
pareto 20.8 0.699 0.42 0 0
max-yield 22.1 0.422 0.39 0 0
ana-lac 2.1 0.258 0 0 0.92
aero-ace 15.8 0.520 0.21 0.35 0
exp 17.7 0.409 0.29 0.22 0

∗max-gr: maximum growth rate; max-yield: maximum yield; pareto: a Pareto optimal EFM with higher growth rate than max-yield,
and higher yield than max-gr; ana-lac: anaerobic lactate fermentation; aero-ace: aerobic acetate fermentation; exp: experimentally
measured flux distribution †Growth rate is given for the reference conditions, where [glucose] = 100 mM, and [O2] = 0.21 mM.

Table 1: Focal EFMs representing different growth strategies. Metabolic fluxes are given in carbon moles
(or O2 moles) per carbon moles of glucose uptake. For more details, see Supplementary Table S4.

central metabolism, are converted into macromolecules (“biomass”) by a variety of processes. These pro-

cesses are not explicitly covered by our network model, but summarized in a biomass reaction. Reaction

kinetics are described by modular rate laws [29], with enzyme parameters obtained by balancing [30] a

large collection of literature values. Parameter balancing yields consistent parameters in realistic ranges,

satisfying thermodynamic constraints, and in optimal agreement with measured parameters.

All EFMs were scaled to a standard biomass production of 1, and their yields are defined as grams of biomass

produced per mole of carbon atoms taken up in the form of glucose. EFMs that contain both oxygen-sensitive

enzymes and oxygen-dependent reactions cannot be used by the cell. After removing such EFMs, we ob-

tained 567 EFMs that produce biomass under aerobic conditions and 336 under anaerobic conditions, of

which 97 can operate under both conditions (Figure 2(b)). Statistical properties of the EFMs (size distri-

bution, usage of individual reactions, and similarity between EFMs and a measured flux distribution) are

shown in Supplementary Figure S7. Some EFMs have very similar shapes, and we used the t-SNE layout

algorithm to arrange all EFMs by their similarities (see Supplementary Figure S6). To avoid any biases in

our growth predictions, we considered all EFMs that have a non-zero biomass yield, even those that con-

tain physiologically unreasonable fluxes. For example, the futile cycling between PEP and pyruvate (by the

combined activity of pyruvate kinase (pyk) and pyruvate water dikinase (pps) wastes ATP and is generally

expected to be suppressed by strict enzyme regulation [31]. Such EFMs were consistently predicted to show

low growth rates and had no effect on the outcomes of our study.

The spectrum of possible growth rates and yields is shown in a rate/yield diagram (Figure 2(c)). The growth

rates refer to our reference conditions – [glucose] = 100 mM, [O2] = 0.21 mM. While the yields (as im-

mediate properties of the EFMs) are condition-independent, growth rate depends on enzyme requirements

and therefore on kinetics and external conditions such as nutrient levels. If we assume that all EFMs require

identical total enzyme amounts for the same glucose uptake rate, growth rates and yields would be propor-

tional. Alternatively, if we assume that all EFMs require the same total enzyme amounts for the same rate of

biomass production, all EFMs would have exactly the same growth rate, regardless of the yield. Both these

näıve assumptions are replaced by our kinetic model and the fECM method, as described above.

To compare some typical metabolic strategies, we focused on 5 particular flux modes with different char-

acteristics and followed them across varying external conditions and kinetic parameter values. These five

EFMs and an experimentally determined flux distribution (denoted exp [32]; for calculations see Supple-

mentary Text S4.1) are marked by colors in Figure 2(b) and listed in Table 1 and we refer to them as focal
EFMs. Their full flux maps (produced using software from [33]) can be found in the SI section S5.2. As an

example, the map for max-gr is also included in Figure 2(a). max-yield, as mentioned earlier, has the highest

yield. This EFM does not produce any by-products nor does it use the pentose-phosphate pathway. max-gr
has a slightly lower yield, but reaches the highest growth rate (0.739 h−1) in our reference conditions and
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Figure 3: Fluxes in uptake and secretion reactions, shown for all EFMs. (a) Oxygen uptake per glucose
taken up. Flux values for the different EFMs are shown by colors in the rate/yield diagram (point positions
as in Figure 2b). The EFMs with the highest growth rate consume only intermediate levels of oxygen.
The following diagrams show (b) acetate secretion, (c) lactate secretion and (d) succinate secretion, each
normalized by glucose uptake.

uses the pentose-phosphate pathway with a relatively high flux. In addition, we chose another EFM from the

Pareto front whose growth rate and yield are somewhere between the two extreme EFMs (denoted pareto).

Curiously, the EFMs comprising the Pareto front span only a relatively narrow range of biomass yields (18.6

– 22.1). This is not a trivial finding, and other choices of parameters or extracellular conditions can lead

to much broader Pareto fronts, as we observe in low oxygen conditions (Figure 4(c)). In such cases, the

trade-off between growth rate and yield becomes much more pronounced.

We have also added two by-product forming modes to our set of focal EFMs: an anaerobic lactate fermenting

mode (ana-lac) with a very low yield (2.1 g/C-mol) and an aerobic acetate fermenting mode (aero-ace) with

a medium-high yield (15.2 g/C-mol). Interestingly, the growth rate of the anaerobic lactate fermenting

mode (ana-lac) is still about one third of the maximal growth rate, even though its yield is ∼10 times

lower, thanks to the lower enzyme cost of the PPP and lower glycolysis compared to the TCA cycle and

oxidative phosphorylation (per mol of ATP generated). This recapitulates a classic rate-versus-yield problem,

associated with overflow metabolism. Some acetate producing EFMs have the highest growth rate of all by-

product producing EFMs, which might explain why E. coli in fact excretes acetate in aerobic conditions,

rather than lactate or succinate. Nevertheless, none of these by-product forming EFMs has a higher growth

rate than max-gr and therefore they are not Pareto optimal. As we will see later, this fact is also subject to

change when conditions are different, specifically at lower oxygen levels.

To associate high yields or high growth rates with specific reaction fluxes or chemical products, we selected

four uptake or secretion reactions, computed their fluxes in the different EFMs, and visualized them by

colors in the rate/yield diagram (Figure 3). The best-performing EFMs (in the top-right corner) consume

intermediate amounts of oxygen and do not secrete any acetate, lactate or succinate. Another group of EFMs

(visible in red in Figure 3(b)) consume slightly less oxygen, but secrete large amounts of acetate. This aer-

obic fermentation exhibits lower biomass yields compared to pure respiration, but it maintains comparable
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growth rates, suggesting that a lower demand for enzyme compensates for the lower yield. Other important

fluxes are shown in Supplementary Figure S8.

The growth rates associated with metabolic strategies depend on environmental con-
ditions and enzyme parameters

To study how optimal EFMs and the resulting growth rates vary across external conditions, we varied a single

model parameter and traced its effects on the growth rate. Figure 4(a) shows how a decreasing external

oxygen concentration affects growth: lower oxygen levels need to be compensated by higher enzyme levels in

oxidative phosphorylation, which again lowers the growth rate (Figure 4(b)). However, EFMs that function

anaerobically, such as ana-lac, are not affected (see SI Figure S16 for the enzyme allocations). Therefore,

the rate/yield tradeoff becomes much more prominent at low oxygen levels, with a Pareto front spanning a

wide range of growth rates and yields (Figure 4(a)).

The effects of varying glucose levels can be studied in a similar way (SI Figure S11): at a lower glucose

concentration, the PTS transporter becomes less efficient and in order to maintain the flux, cells must com-

pensate for this by expressing more of the associated PTS genes. This increases the total enzyme cost, and

therefore slows down growth. At very low glucose concentrations, as low as 10−5 mM, the cost of the trans-

porter completely dominates the enzyme cost (see Figure 5(b) and SI Figure S16 for a breakdown of the

enzyme allocations). Note that in our model, the PTS transporter is the only glucose transporter available,

therefore it is used by all of the EFMs, and the monotonic relationship between glucose concentration and

growth rate is universal. Nevertheless, the exact shape of this glucose/growth plot, known as the Monod

curve [34, 35], depends on the PTS flux and on many other parameters that differ between EFMs (see SI

Figure S17).

By varying both glucose and oxygen levels at the same time, we can screen environmental conditions and see

which EFM reaches the highest growth rate. This overview of winning strategies across the glucose/oxygen

phase diagram is summarized in Supplementary Figure S12(a). We find that there are more than 20 different

EFMs that achieve a maximal growth rate at least in one of the scanned conditions. To simplify this picture,

we chose to present a single feature at a time and overlay it on the phase plot to have a birds-eye view of the

winning strategies in different regions (Figure 4(c)-(f)). As expected, the oxygen uptake rate (Figure 4(d))

decreases when oxygen levels are low. This pattern occurs across the entire range of glucose levels, but the

transition – from full respiration to acetate overflow (Figure 4(e)) and then to anaerobic lactate fermentation

EFMs (Figure 4(f)) – is shifted slightly the lower the glucose levels are. Interestingly, in extremely low glucose

concentrations (0.1 µM), this transition cannot be seen in our plot as the fully respiring EFM pareto exhibits

the highest growth rate even at the lowest oxygen levels tested (SI Figure S12(a)).

While glucose concentrations are relatively easy to adjust experimentally, the steady-state oxygen concen-

tration in the local environment of cells growing exponentially is quite difficult to measure. Therefore, there

is a long standing debate regarding the exact conditions the E. coli cells experience in batch cultures. This

makes our prediction for the transition point from acetate fermentation to full respiration hard to validate.

Nevertheless, our model predicts that at a constant level of [O2], E. coli will tend to fully respire at lower

glucose levels, and secrete acetate at high glucose levels. Qualitatively, this prediction is in agreement with

experimental evidence from chemostats [36], where cells start to secrete acetate only at high dilution rates

(i.e. when the glucose level is high as well).

Cell growth rates and choices of metabolic strategies do not only depend on external conditions, but also

on enzyme parameters. As an example case, we varied the kcat value of triose-phosphate isomerase (tpi)
and studied its effects on the rate/yield diagram. Not surprisingly, slowing down the enzyme decreases the

9

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2017. ; https://doi.org/10.1101/111161doi: bioRxiv preprint 

https://doi.org/10.1101/111161
http://creativecommons.org/licenses/by/4.0/


growth rate (Supplementary Figure S18). But to what extent? Two of our focal EFMs (max-gr and pareto)

are completely unaffected by this kcat value, since they do not use the tpi reaction at all. The growth rates

of all other focal EFMs, however, are strongly decreased. To study the effect of parameter changes more

generally, we predicted the growth effects of all enzyme parameters in the model by computing their growth

sensitivities, i.e., the first derivatives of the growth rate (or biomass-specific enzyme cost) with respect to

the enzyme parameter in question (see Supplementary Files). Growth sensitivities are informative for more

than one reason. On the one hand, parameters with large sensitivities are likely to be under strong selection

pressures (where positive or negative sensitivities indicate a selection for larger or smaller parameter values,

respectively). On the other hand, these parameters have a big effect on growth predictions, and precise

estimates of these parameters are critical to obtain reliable models. Even for the same reaction, some

parameters can have a much higher growth sensitivity than others. For example the sensitivities of the kcat
and KM values of pgi are low, but the growth rate is very sensitive to the Keq value.

Finally, to systematically study the choice between metabolic pathways we can “switch off” pathways by

discarding all EFMs that use a certain pathway. Based on this restricted set of EFMs, and on our previous

analysis of the full network, we can easily run an analysis of the restricted network without any need for new

optimization runs. Unlike Flamholz et al., [4], we can now study the choice between the (high ATP yield,

high enzyme demand) EMP and (low ATP yield, low enzyme demand) ED versions of glycolysis as part of

a whole-network metabolic strategy, which also involves the choice between respiration and fermentation,

or combinations of them. Moreover, we can compare the effect of constraining the model to use only one

of these pathways across the different environmental conditions, specifically the external concentrations of

glucose and oxygen. By calculating the (condition-dependent) growth defects of the two pathway knock-

outs compared to the wild-type, we can assess the importance of each of the pathways to the fitness in

that condition (see SI section S3.6). As shown in Figure 6, at relatively low oxygen levels and medium-

high glucose levels (10 µM – 100 mM) cells profit considerably from employing the ED pathway, therefore

knocking it out would decrease growth rate by up to 25%. The EMP pathway has a much more limited

advantage (up to 10%), and only in a narrow range of low-oxygen conditions.
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Figure 4: Growth and rate/yield trade-offs depend on external glucose and oxygen levels. (a) Predicted
growth rates and yields of all aerobic EFMs, at the reference oxygen level (0.21 mM) and at low levels (2.1
µM). Since only the growth rate is affected, but not the yield, vertical lines connect between the two values.
(b) Growth rates as a function of external oxygen concentration for the six focal EFMs. The oxygen con-
centration directly affects the rate of oxidative phosphorylation (reactions oxphos and sdh), hence changes
in oxygen require enzyme changes to keep the fluxes unchanged. The ana-lac EFM (non-respiring) does
not depend on oxygen and shows an oxygen-independent growth rate. All other focal EFMs show similar
responses, except for max-gr which uses a higher amount of oxygen and thus has a steeper slope, which
causes it to lose its lead when oxygen levels are below 1 mM. In general, growth increases with oxygen level
and saturates around 10 mM. The changes in required enzyme levels are shown in SI Figure S16. Colors
of EFMs correspond to panel a. (c) Maximal growth rate reached at different external glucose and oxygen
levels. (d)-(f) The same plot, with oxygen uptake, acetate secretion, and lactate secretion shown by colors.
The distinct areas in this “landscape” correspond to different optimal EFMs, representing different metabolic
strategies (compare SI Figure S12).
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Figure 6: Growth rates achieved by using EMP glycolysis, ED glycolysis, or both. (a) Growth at varying
external glucose and oxygen levels for simulated wild-type E. coli. Same data as in Figure 4(c), shown as
a heatmap. Bacteria can employ two glycolytic pathways: the Embden-Meyerhof-Parnas (EMP) pathway
that is common also to eukaryotes, and the Entner-Doudoroff (ED) pathway, which provides a lower ATP
yield, but at a much lower enzyme cost [4]. (b) A simulated ED knockout strain can only rely on the EMP
pathway. The heatmap shows the relative increase in growth rate of the wild-type strain (i.e. if the ED
pathway is reintroduced to the cell). The ED pathway provides its highest advantage in very low oxygen and
medium to low glucose levels. Similarly, (c) shows the increase in growth rate for reintroducing the EMP
pathway, which provides its highest advantage glucose concentrations below 10 µM. (d) A direct comparison
of the two knockouts, where blue areas mark conditions where shifting from EMP to ED is beneficial and red
areas mark conditions where shifting from ED to EMP is favored. The strong blue region of low oxygen and
medium glucose levels might corresponds to the environment of bacteria such as Z. mobilis that indeed use
the ED pathway exclusively [37]. The same data are shown as surface plots in Supplementary Figure S19.
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Discussion

Our case study in E. coli shows that although there is no strict coupling of growth rate and biomass yield, the

existence of a rate/yield trade-offs strongly depends on the circumstances. This might come as no surprise,

since yield can kinetically influence growth in two contrary ways. On the one hand, high-yield strategies

produce biomass at a lower glucose influx, and this lower influx allows for lower enzyme investments and

therefore for higher growth rates. On the other hand, high-yield pathways leave a smaller amount of Gibbs

free energy to be dissipated in reactions [38] and, therefore, must be compensated by higher enzyme levels

that lead to lower growth rates [39–41]. The second relation may be obscured by a second substrate such

as oxygen, which provides additional driving force. If the first relation dominates, there may be a single

EFM that maximizes both growth and yield; if the second relation dominates, there will be a trade-off, i.e.,

a Pareto front formed by several EFMs. In our simulations, the extent of this trade-off strongly depended on

conditions and kinetic parameters. At high oxygen levels, our growth-maximizing solution showed almost

the maximal yield and the Pareto front was very narrow. Under low-oxygen conditions, low-yield strategies

showed the highest growth rates and a broad Pareto front emerged.

Experimental results indicating rate-yield trade-offs are difficult to interpret; as shown in [9], the original

cell populations might be far from the trade-off line, and a selection for growth may push the populations

and individuals closer to it. Selection for growth rate and selection for yield would be needed to demonstrate

trade-offs experimentally. From our simulation results, we expect the experimental results to be as scattered

as they are. It would be interesting to see whether the experimental results are in fact condition-dependent

(e.g. dependent on oxygen availability).

Our standard conditions used in this paper describe almost saturating glucose and oxygen concentrations,

which are comparable to typical laboratory conditions. However, different conditions are used in different

experiments, and actual oxygen concentrations are very hard to estimate (the question of oxygen availability

may be as complex as in yeast, where it has been suggested that oxygen may diffuse too slowly to supply

the mitochondria with enough oxygen [42]). Furthermore, it is very difficult to obtain realistic values

for the affinity of the reactions to oxygen, so even very precise knowledge of the oxygen concentration

would not suffice. Under these standard conditions we do not predict a pronounced trade-off, although we

know E. coli uses a lower-yield acetate producing strategy. We do find, however, that the acetate producing

mode is optimal in lower oxygen levels (Figure 4(e)), suggesting that the cells might be perceiving a lower

concentration of oxygen than the ambient conditions (0.21 mM). Moreover, our strain might not be optimally

adapted; recently it has been shown that different strains of E. coli show different phenotypes and the strain

we used for the data in this paper is not the fastest growing one [43].

To predict metabolic fluxes and growth rates, we developed a new method in which enzyme cost minimiza-

tion, a numerically efficient method to predict metabolic fluxes and enzyme profiles ab initio, is combined

with an exhaustive screening of EFMs, i.e., potentially optimal flux modes. Unlike other numerical opti-

mization or screening methods (as, e.g., in [44] and [17]), it allows us to optimize metabolic states directly.

To translate enzyme-specific biomass production rates into growth rates, we used a nonlinear formula that

accounts for the growth-rate dependent composition of the proteome. The enzyme cost calculations made

by fECM are only based on a network model, on kinetic enzyme properties, and on a few transparent model

assumptions. No flux or proteome measurements are used. We use common modular rate laws because

they yield realistic results and guarantee strict convexity ([23]; Joost Hulshof, personal communication).

Furthermore, the optimized enzyme cost is a concave function in flux space [7, 22]. The combination of

convexity and concavity facilitates fast optimization of fluxes and enzyme levels for each condition and set

of parameters. Moreover, we chose to implement the optimization on the NEOS platform, which makes it

easy to scale up and run multiple screens in parallel (e.g. of external conditions or knock-out libraries). Our
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implementation of fECM can also handle other rate laws and is freely available to the community via our

website (see Methods).

Our model predicts a much higher maximal biomass yield than the yield measured in batch cultures (22.1

vs 11.8 [gr dry weight per mole carbon] [45]), while the predicted growth rate is slightly lower (0.74 vs

0.89 h−1). For the experimentally determined flux mode, we overestimate the yield (17.7 vs 11.8 [32])

and underestimate the growth rate (0.41 vs 0.61) as well. The overestimation of the yield (which solely

depends on the stoichiometric model structure) might be caused by the fact that some waste products or

processes that dissipate energy are missing in our model. The low predicted growth rates might result from

our simplistic conversion of enzyme costs into growth rates, a part of the method that could be improved.

However, we expect that these over- and underestimations occur consistently across EFMs and will not affect

the qualitative results of this study.

Our calculations of growth rates rely on a large number of kinetic constants. Uncertainties in these param-

eters will introduce uncertainties into all our predictions, but methods with fewer unknown parameters all

have there own drawbacks. Stoichiometry-based methods (e.g. FBA without any additional flux constraints)

do not require such parameters, but would not even be able to address rate/yield trade-offs because their

model assumptions force growth rates and yields to be proportional (see Figure S13). More recent FBA

methods that bound or minimize the presumable enzyme demand (such as FBA with flux minimization [24],

molecular crowding [25], or constrained allocations [46]) can address such trade-offs and predict low-yield

flux modes, but these follow quite straightforward from the inputs as these methods are unable to comprise

the complex interactions between reactions due to shared metabolites. The assumption, that some (or all)

enzymes operate always at their maximal capacity, leads to an overestimation of growth rates because it

ignores the “unused enzyme fraction” [47], e.g. enzymes that are not bound their ligand due to low satura-

tion levels. The term itself may be misleading: as suggested by our fECM results, enzymes may work below

their maximal rates not because they are deliberately left unused, but because of the fact that reactions, to

be thermodynamically and kinetically efficient, require high substrate and low product levels. This causes

contradicting requirements in different reactions, and even in the best possible compromise, many enzymes

will be used inefficiently. One could also employ a simplified version of fECM that resembles methods as-

suming enzymes work at their maximal capacity, relating fluxes and enzyme levels not by rate laws, but by

a simple proportionality. For example, assuming that all enzymes work at their maximal speed (as given

by their kcat values), the fECM optimization would become obsolete: using the enzyme weights and kcat

values, we could directly translate any flux mode into a total required amount of enzyme by a simple linear

formula which does not depend on metabolite concentrations (external or internal). This simplified version

is used by satFBA [48], with the addition that the weights of the exchange reactions can be varied to reflect

differential saturation of the transporter enzymes, which allows for the investigation of changing external

conditions (similar to our Figure 4(c)). In previous work [23], we showed that this simplified rate law pro-

vides inferior predictions for enzyme concentrations, and as expected, the growth rate prediction is harmed

as well. The growth rate would be overestimated by a factor of about 2.4 (see supplementary figure S3)

and, more severely, the growth differences between EFMs would be distorted. This overestimation is purely

an artifact and has no biological interpretation, therefore results form these “linear” methods that agree

with measurements could actually have wrong assumptions and have to be carefully interpreted. Given the

overestimation of the growth rate, it seems quite surprising that these methods can actually be quite predic-

tive (e.g. [6]). In the case of Resource Balance Analysis (RBA) [49], the overestimation of growth rates is

avoided by using experimentally measured apparent kcat values, which are lower than the actual kcat values

and capture the fact that enzymes work below their full efficiency. In RBA simulations, where growth rate

is a simulation parameter, different apparent kcat values are chosen for different growth rates, reflecting the

fact that enzyme efficiencies depend on metabolite levels [23], which vary between growth rates.
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Beyond the high uncertainty in kinetic constants, it seems that the fluxes employed by “true wild-type”

E. coli are vaguely defined. Recent data shows that even closely-related strains of E. coli sometimes use

drastically different metabolic strategies, even though we expect their metabolism to be mostly identical

[43]. Interestingly, a few of these strains do not display any respiro-fermentative metabolism in aerobic

environments, but rather use a fully respiratory strategy without secreting any byproducts. Furthermore, the

growth rate of these strains is among the highest. This finding raises questions regarding the universality

of the rate/yield trade-off principle and supports our conclusion that it is almost non-existent in highly

oxidative conditions.

Being based on enzyme kinetics, fECM is fully quantitative and allows modelers to address a great variety

of questions. Unlike other flux prediction methods, our method can account for allosteric regulation and for

the quantitative effects of external conditions such as oxygen concentration, kinetic parameters, and enzyme

costs (see Supplementary Figure S2). The fact that our model can account for low glucose concentrations

also implies that our method can be used to describe chemostat settings, while in flux-only methods every-

thing would just scale linearly with a lower glucose uptake flux. In a chemostat the steady-state growth

rate is externally controlled by setting the dilution rate, and the steady-state glucose level reaches a value

that supports exactly this growth rate. There are likely trade-offs between growth at low and high oxygen

concentrations and our model can be used to estimate these (see SI Figure S17). In standard conditions

we do not see a trade-off between growth rates at high and low glucose, perhaps explaining why there is

no significant negative selection on the Monod constant in the long term experimental evolution of E. coli,
where rate selection could have been expected [51].

Once an fECM analysis has been run, additional analyses require only very little additional effort. For ex-

ample, parameter sensitivities or uncertainties caused by small parameter variations can be easily computed

without re-running any optimizations: all necessary sensitivities can be obtained from the existing results

(see Supplementary Text S4.2 and S4.3). Moreover, the decomposition into EFMs already provides all infor-

mation that is needed to study gene knock-outs. To simulate a single or multiple knock-out, we simply need

to exclude all affected EFMs from our analysis (Supplementary Figure S2f). The yield of knock-out mutants

and the yield-related epistatic interactions between knock-outs have been computed before (see SI Figure

S21), but the growth rates of the knock-out mutants and their epistatic effects under different conditions

have not been computed so far (see Supplementary Figure S20).

fECM can be extended, both to larger network models and by incorporating more detailed kinetic infor-

mation than we did in this paper. Bigger networks will bring two main challenges: data availability and

calculation issues. The EFMs of a large network would greatly increase in number. A subsampling of EFMs

can be problematic because depending on model conditions, the high-growth EFMs may easily be missed

(see SI section S3.1). However, a promising avenue is to subdivide large networks by setting all strongly

connected metabolites external [52] and predefining their concentrations. These concentrations could also

be varied to assess their effects on predicted metabolic strategies. The resulting subnetworks can then be

analyzed independently, and their EFMs can be combined to yield favorable, global, elementary flux dis-

tributions. As stated earlier, the convexity of the enzyme cost minimization problem for individual EFMs

allows for large networks to be solved with fECM (as noted by e.g. [53]). Predictions with fECM will be

strengthened by more accurate knowledge of enzyme properties. Although kinetic information about en-

zymes in the central carbon metabolism of E. coli is relatively complete, we still had to fill some missing gaps

by parameter balancing [30]. To make the model parameters more precise, one could take temperature and

pH into account [30]. The biomass composition of E. coli depends on the growth rate. Considering such

a growth-dependent biomass composition is likely to improve the predictions, but requires changes to the

algorithm. Ideally, model results should be self-consistent, i.e., the predicted growth rate should match the

growth rate for which the biomass composition has been assumed. This challenge can perhaps be solved by
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an iterative procedure in which we assume a certain growth rate, choose the corresponding biomass compo-

sition, predict the resulting optimal growth rate, update the biomass composition, and so on. However, along

with the different biomass composition, the set of EFMs will change in every iteration step, and it is unclear

whether this procedure is bound to converge. Another open question concerns models with non-enzymatic

reactions, which can effectively render the flux-polytope non-convex, possibly leading to non-elementary

growth-optimal flux modes. Finally, we could study optimal EFMs and growth rates at different predefined

rates of ATP consumption, implemented by a flux constraint. Since non-EFMs can be optimal with additional

flux constraints, the algorithm for finding the possible optimal flux modes will have to be adjusted. Since

these new points can be found by interpolating between EFMs we expect that an efficient algorithm can be

developed, perhaps building onto the concept of elementary flux vectors [54, 55].

Although the importance of efficient protein allocation for reaching high growth rates has often been stressed

(reviewed in [56]), real cells may not always minimize enzyme cost. Lactococcus lactis, for example, can

display a metabolic switch associated with large changes in growth rate, but without any changes in protein

investments [57]: these cells could save enzyme resources, but do not do so – possibly because unused

enzyme provides other benefits, e.g., being prepared for metabolic changes to come. In order to capture

such behavior in optimality approaches, other optimization criteria could be considered, such as additional

flux constraints, extra ATP production for maintenance or stress, or a need for robustness. If different EFMs

provide growth rates close to the optimal one, these EFMs, or maybe mixtures of them, may coexist in

a single cell population. Mixtures of EFMs could also provide resistance, as single EFMs are inherently not

robust against a repression of one of the active enzymes. To model such flux patterns in a population, instead

of considering only one optimal EFM, we could consider a set of EFMs close to the optimal growth rate (e.g.

between 99% and 100% of the optimal growth rate), because selection between these EFMs may be rather

weak. Averaging over these EFMs could yield smoother transitions when parameters are varied, e.g., in the

condition-dependent enzyme expression or the usage of alternative pathways. Specific fluxes over a range of

conditions, such as shown in Supplementary Figure S12, could be averaged over a set of suboptimal EFMs

as well, to give a more robust prediction of population behavior. As mentioned before, a sensitivity analysis

can indicate selection pressures on kinetic parameters. However, larger changes such as how to evolve from

using one EFM to another are still a challenge. Our method can be used to sketch a fitness landscape and

predict what mutations would be necessary for such larger transitions.

Although kinetic approaches to flux optimization pose some challenges, they are a necessary and useful

addition to existing constraint-based flux analysis methods. Only with relatively assumption-free methods

we can address fundamental issues of unicellular growth and cell metabolism, such as the trade-off between

growth rate and biomass yield.

Methods

Flux and enzyme profiles for maximal enzyme-specific biomass production

A metabolic state is characterized by its enzyme levels, metabolite levels, and fluxes. The relationships be-

tween all these variables are defined by rate laws and are condition- and kinetics-dependent. Our algorithm

finds optimal metabolic states in the following way. The elementary flux modes of a network, which consti-

tute the set of potentially growth-optimal flux modes, are enumerated. Now we consider a specific model

condition, defined by a choice of kinetic constants and external metabolite levels in the kinetic model. For

this condition, we first compute the growth rates for all EFMs. To determine the optimal metabolic strategy

– the one expected to evolve in a selection for fast growth – we then choose the EFM with the highest growth
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rate.

To determine the growth rate of an EFM, we predefine a biomass production rate vBM, scale the EFM to

realise this production rate, and compute the enzyme demand by applying ECM. Computing the enzyme

demand involves an optimisation of metabolite levels c and enzyme levels E by ECM. Thus, in summary, the

optimal state (v, c,E) can be found efficiently by a nested screening procedure. First, we consider all feasible

flux modes v, requiring stationary and a predefined biomass production rate vBM. For each flux mode v, we

consider all possible logarithmic metabolite concentration profiles ln c, where an upper and a lower bound

is set for each metabolite. For each such profile, we compute the necessary enzyme levels El and obtain

the total enzyme cost Emet. Since the cost function with respect to logarithmic metabolite concentrations is

convex, it can be easily minimized; and since the optimized cost, as a function of fluxes, is concave, we need

not screen the flux space exhaustively, but can restrict our search to elementary flux modes. This yields an

optimization over all the possible states of our kinetic model.

ECM and NEOS online tool

Enzyme Cost Minimization has been recently applied to a similar kinetic model of E. coli’s central carbon

metabolism network [23]. It uses a given flux distribution (in our case, given by an EFM) to formulate

the enzyme concentrations as explicit functions of their substrate and product levels. We then score each

possible enzyme concentration profile by the total enzyme mass concentration Emet =
∑
l βlEl (in mg l−1),

where βl denotes the molar mass of enzyme l in Daltons (mg mmol−1) and enzyme concentrations are

measured in mM (i.e., mmol l−1). Written as a function of the logarithmic metabolite levels, Emet is a

convex function; this greatly facilitates optimization and allows us to find the global minimum efficiently.

Our online service for enzyme cost minimization and is freely available to the community. Users can run

ECM for their own models. For the model in this paper, the optimization for one flux distribution takes

several seconds, and for the complete set of all EFMs several minutes on a shared Dell PowerEdge R430

server with 32 intel xeon cores. Details can be found on the web page describing this case study (http:

//www.neos-guide.org/content/enzyme-cost-minimization).

Computing growth rates from enzyme-specific biomass production rates

The cell growth rate can be approximately computed from the enzyme cost of biomass production. In

the spirit of Scott et al. [27], the growth rate of a cell is given by µ = vBM/cBM, where cBM is the biomass

concentration, i.e. the amount of biomass per cell volume and vBM is the rate of biomass production (amount

of biomass produced per cell volume and time). We further define the enzyme-specific biomass production

rate rBM = vBM/Emet, which would be exactly equal to the growth rate if the entire cell biomass were

composed of central metabolism enzymes (i.e. the ones directly accounted for in Emet). Since that is

not the case, we account for the conversion between Emet and cBM using the following approximation

Emet/cBM = αprot(a− b µ), where αprot = 0.5 is the fraction of protein mass out of the cell dry weight, and

a = 0.27, and b = 0.2[h] are fitted parameters that approximate the proteomic fraction dedicated to central

metabolism (as a linear function of the growth rate [27]). As shown in Supplementary Text S1.3, we obtain

the following formula

µ =
αprot a vBM

Emet + b αprot vBM
. (1)

Note that in our model, the biomass flux, vR70, is always set to 1 [mM s−1] and by pure unit conversion we

obtain vBM = 7.45 × 107[mg l−1 h−1]. As shown in the previous subsection, the total enzyme mass concen-
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tration is given by the formula Emet =
∑
l βlEl in units of [mg l−1], so it requires no further conversion. The

final formula for growth rate is thus

µ =
1.01 × 107 [mg l−1 h−1]∑
l βlEl + 7.45 × 106 [mg l−1]

. (2)

Therefore, maximizing the growth rate µ is equivalent to minimizing
∑
l βlEl. See Supplementary Text S2.4

for more details.

The connection between biomass rate, the total enzyme mass concentration, and the growth rate can also

be understood through the cell doubling time. We first define the enzyme doubling time τmet ≡ ln(2)
rBM

=
ln(2)·Emet

vBM
, which represents the doubling time of a hypothetical cell comprised only of central metabolism

enzymes. The doubling time of a whole cell would thus be

T =
ln(2)

µ
=

τmet

αprot a
+

ln(2) b

a
= 7.4 · τmet + 0.51[h] (3)

Growth sensitivities

The sensitivities between enzyme parameters and growth rate can be approximated in the following way. A

parameter change that slows down a specific reaction could to be compensated by increasing the enzyme

level in the same reaction, thus keeping all metabolite levels and fluxes unchanged. For example, as a cat-

alytic constant decreases by a factor of 0.5, the enzyme level needs to increase by a factor of 2. More gener-

ally, the cost increase for an enzyme follows from the simple formula ∆cost = (
kcat,old
kcat,new

−1) [old enzyme cost].

For other parameters, this local enzyme increase could be simply computed from the reaction’s rate law.

However, instead of adapting only one enzyme level, the cell may also adjust other enzyme levels, accept a

change in metabolite levels, and therefore decrease its total cost even further. The additional cost decrease is

only a second-order effect: for small parameter variations, it can be neglected, and the first-order local and

global cost sensitivities are therefore identical (proof in SI section S4.2). Sensitivities to external parameters

(e.g., extracellular glucose concentration) can be computed similarly. The growth sensitivities for a given

EFM can be easily computed by multiplying the enzyme cost sensitivities by the derivative between growth

rate and enzyme cost in a reference state.
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