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Dissociable effects of surprising rewards  

on learning and memory 
Rouhani, N., Norman, K. A. & Niv, Y. 

 
The extent to which rewards deviate from learned expectations is tracked by a signal 
known as a “reward prediction error”, but it is unclear how this signal interacts with 
episodic memory. Here, we investigated whether learning in a high-risk environment, 
with frequent large prediction errors, gives rise to higher fidelity memory traces than 
learning in a low-risk environment. In Experiment 1, we showed that higher magnitude 
prediction errors, positive or negative, improved recognition memory for trial-unique 
items. Participants also increased their learning rate after large prediction errors. In 
addition, there was an overall higher learning rate in the low-risk environment. Although 
unsigned prediction errors enhanced memory and increased learning rate, we did not find 
a relationship between learning rate and memory, suggesting that these two effects were 
due to separate underlying mechanisms. In Experiment 2, we replicated these results with 
a longer task that posed stronger memory demands and allowed for more learning. We 
also showed improved source and sequence memory for high-risk items. In Experiment 3, 
we controlled for the difficulty of learning in the two risk environments, again replicating 
the previous results. Moreover, equating the range of prediction errors in the two risk 
environments revealed that learning in a high-risk context enhanced episodic memory 
above and beyond the effect of prediction errors to individual items. In summary, our 
results across three studies showed that (absolute) prediction error magnitude boosted 
both episodic memory and incremental learning, but the two effects were not correlated, 
suggesting distinct underlying systems.  
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Reward prediction errors – phasic signals that track the difference between actual 
and expected outcomes – play a well-established role in updating stored information 
about the values of different choices in reinforcement learning. It is less clear, however, 
what role reward prediction errors play in the formation of episodic memories given that 
reinforcement learning and episodic memory have been traditionally studied separately. 

Reward prediction errors are known to modulate dopamine release. Dopamine, in 
turn, modulates processing in the hippocampus, a key structure for episodic memory. 
This dopaminergic link therefore provides a potential mechanism for reward prediction 
errors to affect episodic memory. However, there are several ways by which reward 
prediction errors could potentially influence episodic memory. First, memory formation 
might be affected by the signed reward prediction error (i.e., expected minus actual 
reward); dopamine release tracks this signed prediction error, increasing when an 
experienced outcome is better than expected, and decreasing when the outcome is worse 
than expected (Schultz, Dayan, & Montague, 1997). If a signed prediction error signal 
influences episodic memory, we would expect a positive prediction error to improve 
memory whereas a negative prediction error would worsen it.  

A second possibility is that the magnitude of the prediction error could influence 
episodic memory regardless of the sign of the error, enhancing memory for events that 
are either much better or much worse than expected. The effects of unsigned prediction 
errors are thought to be mediated by the locus-coeruleus-norepinephrine (LC-NE) 
system, which demonstrates a phasic response to unexpected changes in stimulus-
reinforcement contingencies, regardless of sign, in both reward and fear learning (for a 
review, see Sara, 2009), and modulates increases in learning rate, i.e. the extent to which 
a learner updates their values, following large unsigned prediction errors (Behrens, 
Woolrich, Walton, & Rushworth, 2007; McGuire, Nassar, Gold, & Kable, 2014; Nassar 
et al., 2012). Importantly, recent evidence also indicates that the locus coeruleus co-
releases dopamine with norepinephrine, giving rise to dopamine-dependent plasticity in 
the hippocampus (Kempadoo, Mosharov, Choi, Sulzer, & Kandel, 2016; Takeuchi et al., 
2016). This latter pathway thereby provides a mechanism whereby unsigned prediction 
errors could affect episodic memory, by modulating hippocampal plasticity. 

In our study, we set out to measure how both signed and unsigned reward 
prediction errors affect episodic memory formation. We also wanted to measure the 
effect of risk context (i.e., whether unsigned prediction errors were large or small, on 
average, in a particular environment) on episodic memory. Previous work on the effects 
of risk context show that dopamine signals scale to the reward variance of the learning 
environment (Tobler, Fiorillo, & Schultz, 2005), allowing for greater sensitivity to 
prediction errors in lower variance contexts. Moreover, behavioral learning rate and 
BOLD responses in the dopaminergic midbrain and striatum have been shown to reflect 
this adaptation, with higher learning rates and an increased striatal response to prediction 
errors when the reward variance is lower (Diederen, Spencer, Vestergaard, Fletcher, & 
Schultz, 2016). We therefore expected higher learning rates in a low-risk context, but it 
was unclear whether this effect would interact with episodic memory. If anything, we 
expected opposite effects, such that a high-risk context would induce better episodic 
memory, as increased arousal may lead to enhanced encoding of all items.  

To investigate the effect of prediction errors and risk context on the structure of 
memory, we asked participants to learn by trial and error which of two types of images, 
indoor or outdoor scenes, led to higher rewards. Trial-unique indoor and outdoor images 
were presented in two different contexts or ‘rooms,’ with each room associated with a 
different degree of outcome variance (although indoor and outdoor images in the two 
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rooms were matched in value, on average). At a later stage, memory for the scenes was 
assessed through recognition memory (‘item’ memory), identification of the room the 
item belonged to (‘source’ or context memory; Exp. 2-3), and the ordering of a pair of 
items (‘sequence’ memory). Choice trials further confirmed memory for the outcomes 
associated with the scenes. 

 
Experiment 1 

 
In Experiment 1, we assessed whether reward prediction errors interact with 

episodic memory for rewarding events. Participants learned the values of two types of 
images (indoor or outdoor scenes) in two learning contexts (‘rooms’). The two learning 
contexts, while matched for mean value, had different degrees of reward variance (‘risk’) 
such that the rewards associated with images in the ‘high-risk room’ gave rise to higher 
absolute prediction errors than in the ‘low-risk room’.  

 
Method 

 
Participants  

Two hundred participants initiated an online task using Amazon Mechanical Turk 
(MTurk), and 174 completed the task. We obtained informed consent online, and 
participants had to correctly answer questions checking for their understanding of the 
instructions before proceeding; procedures were approved by Princeton University’s 
Institutional Review Board. Participants were excluded if they (1) had a memory score 
(A’: sensitivity index in signal detection; Pollack & Norman, 1964) of less than 0.5, or (2) 
missed more than three trials. These criteria led to the exclusion of ten participants, 
leading to a final sample of 164 participants.  
 
Procedure 

Participants learned by trial and error the value of two types of images (indoor or 
outdoor scenes) in two rooms defined by different background colors. In each room, one 
type of scene was worth 40¢ on average (low-value ‘scene’) and the other worth 60¢ 
(high-value ‘scene’). The average values of the scenes were matched across rooms, but 
the reward variance of the high-risk room was more than double that of the low-risk room 
(high-risk σ = 34.25, low-risk σ = 15.49). Participants were told that in each room one 
type of scene is worth more than the other (a ‘winning’ scene) and were asked to indicate 
the winner after viewing all images in a room. After the two learning blocks (one high-
risk and one low-risk), participants completed a risk attitude questionnaire (DOSPERT, 
Weber, Blais, & Betz, 2002) that served to create a 5-10 minute delay between learning 
and memory tests. Participants then completed an item recognition task, after which they 
made choices between previously seen images. 
 
Learning: On each trial, participants were shown a trial-unique image (either an indoor or 
outdoor scene) for 2 seconds. Participants were then given 5 seconds to estimate how 
much that type of scene is worth on average in that room (from 1 to 100 cents). The 
image was then presented again for 3 seconds along with its associated reward (see 
Figure 1A). Participants were told that their payment was not contingent on how accurate 
their guesses were, but instead was solely determined by the rewards they received (they 
were told that they would be paid a portion of the rewards they received, approximately 
¼ of the actual outcomes). They were also instructed to pay attention to the images 
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themselves as they would get a chance to choose between them later on in the 
experiment. There were 16 trials in each room (8 outdoor and 8 indoor). Rewards were 
20¢, 40¢, 80¢, 100¢ (twice each) for the high-risk–high-value scene, 0¢, 20¢, 60¢, 80¢ 
for the high-risk–low-value scene, 45¢, 55¢, 65¢, 75¢ for the low-risk–high-value scene 
and 25¢, 35¢, 45¢, 55¢ for the low-risk–low-value scene. An identical sequence of 
rewards was applied across participants within rooms, with the order of the rooms (and 
risk levels) randomized.  
 
Memory: After completing the risk questionnaire, participants were presented with a 
surprise recognition memory test in which they were asked whether different scenes were 
old or new (see Figure 1B) as well as their confidence for that memory judgment (from 1 
‘guessing’ to 4 ‘completely certain’). There were 32 test trials, including 16 old images (8 
from each room) and 16 foils. Participants were then asked to sequence 8 pairs of images 
(that were not included in the recognition memory test) by answering ‘which did you see 
first?’ (see Figure 1B) and by estimating how many trials apart the images had been from 
each other. Each pair belonged to either the low (4 pairs) or the high-risk room (4 pairs). 
 
Choice: Finally, participants were asked to choose between pairs of previously seen 
images for another chance to receive their associated reward, thus assessing memory for 
their outcomes (see Figure 1C). The pairs varied in either belonging to the same room or 
different rooms and some were matched for reward and/or average scene value in order to 
determine which feature of reward learning gave rise to a choice preference. The choices 
were presented without feedback.  
 
Statistical Analysis: Analyses were conducted using paired t-tests, repeated measures 
ANOVAs, and generalized linear mixed-effects models (R lme4 package, Bates et al., 
2015). All results reported below (t-tests and ANOVAs) were confirmed using linear or 
generalized mixed-effects models treating subject as a random effect (for both the 
intercept and slope of the fixed effect in question). 
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Results  
 
Learning  

Participants learned the average values of the high and low-value scenes better in 
the low-risk than in the high-risk room, as assessed by the deviation of their value 
estimates from the true averages of the scene values (t(163) = 14.52, p < 0.001; Figure 
2A). Computing explicit prediction errors (i.e., the difference between the guess and the 
actual outcome) for the different rooms and scenes revealed that there were higher 
prediction errors in the high-risk room (t(163) = 36.77, p < 0.001; Figure 2B), as 
expected. Moreover, there was an interaction between risk and scene value such that 
participants overestimated the value of low-value scenes (resulting in negative prediction 
errors) and underestimated the value of high-value scenes (resulting in positive prediction 
errors) to a greater extent in the high-risk room than in the low-risk room, on average 
(F(1,163) = 141.2, p < 0.001; Figure 2C). This demonstrates more difficulty in separating 
the values of the scenes in the high-risk room, consistent with previous findings showing 
that when people estimate the means of two largely overlapping distributions, they tend 
to average across the two distributions, thereby grouping them into one category instead 
of separating them into two (Gershman & Niv, 2013).  
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CHOICE
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the value of this 
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Submit
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Figure 1. Task Design. A: Example learning trial. On each trial, participants were shown an 
image (“cue”), and were asked to estimate how much on average that type of scene (indoor or 
outdoor) was worth (“estimate”). They then saw the image again with a monetary outcome 
(“reward”). Each image appeared on one trial only. B: Memory tests. Participants completed item 
recognition, source (Exp. 2,3) and sequence memory tasks. C: Choice task. Participants chose 
between previously seen images that were matched for reward outcome, risk context, and/or 
scene value.   

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2017. ; https://doi.org/10.1101/111070doi: bioRxiv preprint 

https://doi.org/10.1101/111070
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

Memory by Risk and Prediction Error 
As predicted, high-risk items were remembered better than low-risk items (z = 

2.37, p = 0.02, β = 0.31; Figure 3A). To test the effect of reward prediction errors on item 
memory, we first calculated trial-by-trial prediction errors by subtracting participants’ 
value estimates from the reward outcome they observed. We then used both signed and 
unsigned (absolute) prediction errors as regressors, together with a risk-level regressor in 
a mixed-effects logistic regression model of memory accuracy. We did not find signed 
prediction errors to influence memory (prediction error: z = 0.71, p = n.s., β = 0.04; risk: 
z = 2.29, p = 0.02, β = 0.30). Instead, we found that higher magnitude prediction errors 
enhanced memory regardless of the sign of the prediction error and explained the 
modulation of memory by risk (absolute prediction error: z = 3.36, p < 0.001, β = 0.23; 
risk: z = 0.9, p = n.s., β = 0.10; Figure 3B). This effect was significant also when 
controlling for reward outcome (absolute prediction error: z = 3.94, p < 0.001, β = 0.26; 
reward: z = 0.45, p = n.s., β = 0.02) and value estimates (absolute prediction error: z = 
3.93, p < 0.001, β = 0.26; value: z = -0.09, p = n.s., β = -0.005), and when analyzing the 
high and low-risk items separately, (high: z = 1.90, p = 0.05, β = 0.18; low: z = 2.17, p = 
0.03, β = 0.24). Reward prediction errors therefore affected episodic memory, such that 
larger deviations from one’s predictions, in any direction, enhanced encoding of items. 
Finally, there was no difference in sequence memory (the correct ordering of two images 
seen during learning) between pairs experienced in high and low-risk rooms (z = 0.11, p 
= n.s., β = 0.02).       
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Figure 2. Experiment 1, learning results. A: Average estimates for the high and low-value scenes as a function of trial 
number for the high and low-risk rooms. Participants learned better in the low-risk room, indicated by the proximity of 
their guesses to the true values of the scenes (dashed horizontal lines). Cent values represent the outcome participants 
received on that trial (after entering their value estimate). B: Density plot of prediction errors in each room. There were 
more high-magnitude prediction errors in the high-risk in comparison to the low-risk room. C: There was an interaction 
for positive and negative prediction errors between risk context and scene value, such that participants overestimated 
the low-value scene and underestimated the high-value scene to a greater extent in the high-risk room. Error bars 
represent standard error of the mean.   
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Learning Rate by Risk and Prediction Error 
We also examined the effects of risk and prediction errors on the reward learning 

process itself. For this we calculated a trial-by-trial learning rate !"	as the proportion of 
the current prediction error $" − &"	that was applied to update the value for the next 
encounter of the same type of scene, &"'(. Note that this is derived directly from the 
standard reinforcement learning update equation: &"'(	=  &" + !" $" − &" : 

In agreement with recent findings (e.g. Diederen et al., 2016), we found that average 
learning rate was higher in the low-risk than in the high-risk room (t(163) = 3.37, p < 
0.001; Figure 4A). Moreover, higher absolute prediction errors increased learning rates 
above and beyond the effect of risk in a mixed-effects linear model of learning rate 
(absolute prediction error: t = 3.30, p = 0.001, β = 0.07; risk: t = 4.67, p < 0.001, β = 0.16; 
Figure 4B). These results show that greater absolute prediction errors enhance value 
updating, and further that learning rates adapt to the reward variance of the context 
suggesting greater sensitivity to prediction errors in a lower risk environment. Controlling 
for absolute prediction error, we did not however find learning rate to predict memory on 
the current trial (learning rate: z = 0.85, p = n.s., β = 0.08; absolute prediction error: z = 
3.42, p < 0.001, β = 0.20), nor the subsequent trial (learning rate: z = 0.56, p = n.s., β = 
0.05; absolute prediction error: z = 3.06, p = 0.002, β = 0.19), demonstrating that learning 
rate increases were not correlated with memory even though both were enhanced by 
higher magnitude prediction errors. 

αt =

Vt+1 − Vt

Rt − Vt

BA

Figure 3. Experiment 1, recognition memory results. A: Recognition memory was better for high-risk items. B: There 
was better memory for high absolute prediction error items (controlling for risk context). Item memory was binned by 
the quartile values of prediction errors within each risk room. Each dot represents the average value within that 
quartile. Error bars represent standard error of the mean.   

BA

scene

Figure 4. Experiment 1, learning rate results. A: Learning rate was higher in the low-risk context. Average learning 
rate plotted by risk context and scene value. B: Both absolute prediction errors and a low-risk context increased 
learning rate. Learning rates were binned by prediction errors (each dot represents the average prediction error within 
the binned range). Error bars represent standard error of the mean.   
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Choice by Reward and Value Difference 
In the last test, participants were asked to make choices between pairs of 

previously-seen images that were matched for risk context, scene value, and/or reward 
outcome. We separately analyzed pairs that had matched reward outcomes and pairs that 
had unmatched outcomes. As the difference between the rewards previously associated 
with the two images increased, subjects chose the more rewarding image more often in a 
mixed-effects logistic regression model of choice (z = 6.40, p < 0.001, β = 0.54; Figure 
5A). For choices with matched reward outcomes, in contrast, we could expect subjects to 
be indifferent between the two images. We instead found that subjects relied on their 
original value estimates for the two options in order to make their choices, such that the 
more they had valued one scene relative to the other, the more likely they were to choose 
it (z = 3.74, p < 0.001, β = 0.01; see Figure 5B). Importantly, the modulator of choice 
here was the initial guess of the value of the scene, rather than the outcome actually 
associated with the image (which was identical for the two images in question). We 
additionally found that, even when the two options had led to different rewards, the 
difference in initial value estimates for the scene was a significant predictor of choice, 
when controlling for the difference in actual reward outcome (value estimate difference: z 
= 2.27, p = 0.02, β = 0.16; reward difference: z = 7.25, p < 0.001, β = 0.52). We did not 
find risk level, the true average scene value, nor the difference in absolute prediction 
error between the images to additionally influence choice preference.      

Experiment 2 
 

Experiment 1 showed that deviations from predictions enhance episodic memory 
for the items that were associated with those predictions. We also demonstrated that both 
risk context and absolute prediction errors modulate learning rate. In particular, learning 
rate was higher in a low-risk environment, suggesting greater sensitivity to prediction 
errors during learning in this context, and further, in both contexts, high absolute 
prediction errors increased learning rate; however, we did not find learning rate to predict 
memory. Lastly, although we expected participants to select the more rewarding option 
when given a choice, we found that participants’ choices were also influenced by their 
own predictions of the value of that scene. 

Notably, in contrast to standard reinforcement learning settings, our experiment 
involved only 16 trials of learning in each context, 8 for each ‘scene’. This initial learning 
phase is characterized by increased prediction errors and uncertainty relative to later 
learning, which might affect the relationship between prediction errors and episodic 
memory. Additionally, participants in Experiment 1 all experienced the same reward 

A B

Figure 5. Experiment 1, choice results. A: For choices between options with different reward outcomes (each dot 
represents the actual reward difference) participants chose the image representing a larger reward. B: For choices 
between options with matched reward outcomes (each dot represents the average of the value differences binned by 
quartile), participants chose the image that they had valued more. Error bars represent the standard error of the mean. 
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sequence, which inadvertently introduced regularities in the learning curves that could 
have also influenced initial learning and memory results. Finally, in this relatively short 
experiment, average memory performance was near ceiling (A’ = 0.90). In Experiment 2, 
we therefore sought to replicate the results of Experiment 1 while increasing the number 
of learning and memory trials and randomizing reward sequence. With more trials, we 
were also able to test for sequence memory for items that were presented further apart in 
time, and we included a measure of source memory, a marker of episodic memory for the 
context of the probed item (i.e., which room the item belonged to). 
 

Method 
 
Participants  

Two hundred participants initiated an online task run on Amazon Mechanical 
Turk, and 148 completed the task. Following the same protocol as in Experiment 1, 
twelve subjects were excluded from the analysis leading to a final sample of 136 
participants. 
 
Procedure 
 The procedure was the same as in Experiment 1 but with some changes to 
learning, memory and choice. As in Experiment 1, rewards had a mean of 60¢ for the 
high-value scene and 40¢ for the low-value scene (high-risk–high-value scene: 20¢, 40¢, 
60¢, 80¢, 100¢; high-risk–low-value scene: 0¢, 20¢, 40¢, 60¢, 80¢; low-risk–high-value 
scene: 40¢, 50¢, 60¢, 70¢, 80¢; low-risk–low-value scene: 20¢, 30¢, 40¢, 50¢, 60¢). We 
increased the number of learning trials from 16 to 30 trials per room, and we pseudo-
randomized the reward sequence such that the rewards were drawn at random and were 
sampled three times without replacement. 

During the item memory test, we asked participants to indicate whether items 
identified as ‘old’ belonged to the first or second room (see Figure 1B), as a measure of 
source memory. Additionally, given that sequence memory improves with greater 
distance between events (DuBrow & Davachi, 2013), we asked participants to order 
items that were further apart than in Experiment 1(13-14 trials apart). Finally, in the 
choice task, participants chose only between pairs matched for reward outcome.  
 

Results  
 

Learning  
As in Experiment 1, participants learned better in the low-risk than in the high-

risk room (assessed by the average deviation of subject’s value estimates from the true 
means of the scene values; t(135) = 13.11, p < 0.001; Figure 6A). They experienced 
larger absolute prediction errors in the high-risk room (t(135) = 39.65, p < 0.001; Figure 
6B), and there was again an interaction between risk and scene value such that subjects 
overestimated the value of the low-value scene, and underestimated the high-value scene 
to a greater extent in the high-risk room throughout learning (F(1,135) = 77.5, p < 0.001; 
Figure 6C).  
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Memory by Risk and Prediction Error 
By increasing the number of learning and memory trials, we significantly reduced 

average memory performance from Experiment 1 (A’ = 0.86, t(275.23) = 3.04, p = 
0.003). We nevertheless replicated the main results of Experiment 1: high-risk items were 
better remembered than low-risk items (z = 2.51, p = 0.01, β = 0.19; Figure 7A), and 
higher absolute prediction errors enhanced memory for those events (absolute prediction 
errors: z = 3.44, p < 0.001, β = 0.16; risk: z = 1.76, p = 0.08, β = 0.14, Figure 7B). Like in 
Experiment 1, this effect was significant when controlling for reward outcome (absolute 
prediction error: z = 4.14, p < 0.001, β = 0.18; reward: z = -1.71, p = n.s., β = -0.06) as 
well as for value estimates (absolute prediction error: z = 4.15, p < 0.001, β = 0.19; value: 
z = -1.16, p = n.s., β = -0.04). 

In addition, for the items correctly identified as old, we found better source 
memory for high-risk items (z = 2.05, p = 0.04, β = 0.25, Figure 7C). This effect was not 
modulated by absolute prediction error. Rather, it was a context effect: the source of a 
remembered image was better remembered if that item belonged to a high-risk context 
(absolute prediction errors: z = -0.60, p = n.s., β = -0.03; risk: z = 2.17, p = 0.03, β = 
0.27). To verify that participants were not simply attributing ‘remembered’ items to the 
high-risk context, we looked at the proportion of high-risk source judgments for 
recognition hits and false alarms separately. We did not find a greater proportion of high-
risk source judgments for false alarms, indicating that participants were not biased to 
report that ‘remembered’ items belonged to a high risk context (for high-risk hits: mean = 
0.57, standard error = 0.02; for false alarms: mean = 0.49, standard error = 0.04; chance 
response is at 0.50). In this experiment, participants also exhibited better sequence 
memory for pairs from the high-risk context (z = 2.70, p = 0.007, β = 0.56, Figure 7D). 
Although we did not see this effect in Experiment 1, in Experiment 2 we had pairs that 

B

A low risk high risk

C

scene

scene

Figure	6.	Experiment 2, learning results. A: Average estimates for the high and low-value scenes as a function of trial 
number for the high and low-risk rooms. Participants learned better in the low-risk room, indicated by the proximity of 
their guesses to the true values of the scenes (dashed horizontal lines). B: Density plot of prediction errors in each 
room. There were more high-magnitude prediction errors in the high-risk in comparison to the low-risk room. C: There 
was an interaction for positive and negative prediction errors between risk context and scene value, such that 
participants overestimated the low-value scene and underestimated the high-value scene to a greater extent in the high-
risk room. Error bars represent standard error of the mean.   
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were separated by more trials (distant items were 13 and 14 trials apart). Indeed, greater 
distance predicted better sequence memory, controlling for risk (distance: z = 1.92, p = 
0.05, β = 0.39; risk: z = 2.70, p = 0.006, β = 0.56). We therefore replicated our original 
results and further showed that other forms of episodic memory, source and sequence 
memory, were also enhanced in a high-risk context.  

Learning Rate by Risk and Prediction Error 
 We replicated the results of Experiment 1 with respect to learning rates as well: 
participants had higher learning rates for the low-risk relative to the high-risk room, and 
higher absolute prediction errors additionally increased learning rates (absolute prediction 
errors: t = 5.12, p < 0.001, β = 0.09; risk: t = 7.01, p < 0.001, β = 0.18; Figure 8A-B). 
Controlling for absolute prediction error, we again did not find learning rate to predict 
memory on the current trial (learning rate: z = -0.29, p = n.s., β = -0.01; absolute 
prediction error: z = 4.44, p < 0.001, β = 0.20), nor the subsequent trial (learning rate: z = 
0.68, p = n.s., β = 0.03; absolute prediction error: z = 3.53, p < 0.001, β = 0.17). 
 
 
 
 
 
 

A B

C D

Figure 7. Experiment 2, memory results. A: Recognition memory was better for high-risk items. B: Absolute 
prediction errors enhanced item memory while controlling for risk context. Item memory was binned by the quartile 
values of prediction errors within each risk room, each dot represents the average value within that quartile. C: For 
correctly remembered items, source memory was better for high-risk items. D: A high-risk context and distance 
between items (number of trials between pairs) increased sequence memory. Error bars represent the standard error of 
the mean.   
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Choice by Value Difference 
In this experiment, all choices were between images with matched reward 

outcomes. We replicated the results of Experiment 1 such that choice was predicted by 
the difference in subjects’ initial value estimates for the scenes (z = 2.78, p = 0.005, β = 
0.18, Figure 9). In particular, even in this better-powered test (12 choice trials as 
compared to 4 choice trials with matched outcomes in Experiment 1), we did not see 
evidence for preference of images from one risk context versus the other (z = -1.56, p = 
n.s., β = -0.08). 

Experiment 3 
 
 In Experiment 2, we doubled the number of training trials and replicated the 
results of Experiment 1 while extending the memory enhancement effects of high-risk 
learning to source and sequence memory. Nevertheless, a possible confound of the effects 
of risk on memory and learning in both experiments is that there was higher overlap 
between the outcomes for the indoor and outdoor scenes in the high-risk context as 
compared to the low-risk context. The distributions shared values from 20¢ to 80¢ (Exp. 
1 & 2) in the high-risk room, but only 45¢ to 55¢ (Exp. 1) and 40¢ to 60¢ (Exp. 2) in the 
low-risk room. This greater overlap in the high-risk context could have made learning 
more difficult in comparison to the low-risk room, and therefore influenced the effects of 
absolute prediction error on subsequent memory. To test for this possibility, in 

A B

scene

Figure 8. Experiment 2, learning rate results. A: Learning rate was higher in the low-risk context. Average learning 
rate plotted by risk context and scene value. B: Both absolute prediction errors and a low-risk context increased 
learning rate. Learning rates were binned by prediction errors (each dot represents the average prediction error within 
the binned range). Error bars represent standard error of the mean.   

Figure 9. Experiment 2, choice results. For choices between options 
with matched reward outcomes, participants chose the scene that they 
had valued more. Each dot represents the average of the value 
differences binned by quartile. Error bars represent the standard error 
of the mean. 
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Experiment 3 we made the learning conditions in the two rooms more similar by 
eliminating any overlap between the scene values.  
 

Method 
 
Participants  
 We conducted a simulation-based power analysis on the effect of absolute 
prediction errors on item memory to achieve 80% power. This revealed that we would 
have sufficient power to replicate the results of Experiments 1 and 2 with as few as 55 
participants. As a result, we had 100 participants initiate the study, of which 86 
completed the task. Three participants were excluded based on our exclusion criteria (see 
Experiment 1) leaving a sample of 83 participants.   
 
Procedure 
 We followed the same procedure as Experiment 2 but changed the rewards such 
that they had a mean of 80¢ for the high-value scene and 20¢ for the low-value scene, and 
there was no overlap between the rewards from the two scenes (high-risk–high-value 
scene: 60¢, 70¢, 80¢, 90¢, 100¢; high-risk–low-value scene: 0¢, 10¢, 20¢, 30¢, 40¢; low-
risk–high-value scene: 70¢, 75¢, 80¢, 85¢, 90¢; low-risk–low-value scene: 10¢, 15¢, 20¢, 
25¢, 30¢).  
 

Results  
 
Learning  
 As in Experiment 1 and 2, participants learned better in the low-risk than in the 
high-risk room (t(82) = 6.28, p < 0.001; Figure 10A). However, learning in the two 
rooms was more similar here than in Experiment 2, as assessed by comparing subject 
learning differences between high and low risk contexts for Experiment 2 and 3 
(t(148.98) = 1.84, p = 0.03; subject learning for each room was calculated by averaging 
trial-by-trial deviations of value estimates from the true means of the scene values). In 
contrast to the first two experiments, the range of prediction errors in the two rooms was 
also more similar in comparison to Experiment 1 and 2 (Figure 10B). As in previous 
experiments, there was an interaction between risk and scene value such that subjects 
overestimated the low-value scene and underestimated the high-value scene more in the 
high-risk than in the low-risk room, on average (F(1,82) = 23.02, p < 0.001; Figure 10C). 
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Memory by Risk and Prediction Error 
 We replicated the results of Experiments 1 and 2, and further found separate 
effects of context and unsigned prediction error on memory. A high-risk context and 
higher absolute prediction error enhanced memory for items, even with both predictors in 
the same model indicating independent effects (absolute prediction error: z = 2.24, p = 
0.02, β = 0.12; risk: z = 2.58, p = 0.009, β = 0.24, Figure 11A-B). This effect was again 
significant when controlling for reward outcome (absolute prediction error: z = 2.72, p = 
0.007, β = 0.15; reward: z = -0.38, p = n.s., β = -0.02) and value estimates (absolute 
prediction error: z = 2.70, p = 0.007, β = 0.15; value: z = -0.74, p = n.s., β = -0.03). We 
again found better sequence memory for high risk items, while controlling for the effect 
of distance (risk: z = 2.47, p = 0.01, β = 0.57; distance: z = 2.36, p = 0.02, β = 0.55). For 
source memory, we did not have the power to detect the effect in Experiment 2, and this 
difference was not statistically significant although it was in the same direction.  

It is worth noting here that there was a stronger effect of context in modulating 
memory than in Experiments 1 and 2 (the context effect remained when controlling for 
absolute prediction errors, unlike in Experiments 1 and 2). When learning between the 
two rooms was more similar, an independent effect of risk in increasing memory became 
apparent. One possible explanation for this finding is that memory-boosting effects of 
reward prediction errors might “spill over” to adjacent trials, enhancing memory for those 
items as well. To test for these “spill over” effects in the high-risk context, we measured 
whether previous and subsequent absolute prediction errors proactively or retroactively 
strengthened memory, while controlling for the absolute prediction error experienced on 
that trial. We did not find these effects for previous absolute prediction error (z = -1.71, p 
= n.s., β = -0.13) nor subsequent absolute prediction error (z = -0.93, p = n.s., β = -0.08), 

B

A low risk high risk

C

scene

scene

Figure 10. Experiment 3, learning results. A: Average estimates for the high and low-value scenes as a function of trial 
number for the high and low-risk rooms. Participants learned better in the low-risk room (although the difference in 
learning between risk rooms was more similar than in Exp. 1 & 2). B: Density plot of prediction errors in each room. 
There were more high-magnitude prediction errors in the low-risk room, making the range of prediction errors more 
similar between rooms than in Exp. 1 & 2. C: There was an interaction for prediction errors between risk context and 
scene value, such that participants overestimated the low-value scene and underestimated the high-value scene to a 
greater extent in the high-risk room. Error bars represent the standard error of the mean.   

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2017. ; https://doi.org/10.1101/111070doi: bioRxiv preprint 

https://doi.org/10.1101/111070
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 15	

suggesting that this context effect may be due to general memory enhancement in a more 
arousing context.  

 
Learning Rate by Risk and Prediction Error 
 As in Experiments 1 and 2, absolute prediction errors increased learning rates in 
both rooms, and there was a trend for higher learning rates in the low-risk room (absolute 
prediction error: t = 3.33, p < 0.001, β = 0.06; risk: t = 1.84, p = 0.06, β = 0.06; Figure 
11A-B). We again did not find learning rate to predict memory on the current trial (z = -
0.26, p = n.s., β = -0.01), nor the subsequent trial (z = -1.22, p = n.s., β = -0.08) while 
controlling for the effect of absolute prediction error on the current trial. 

Choice by Value Difference 
As in Experiment 2, all choices (12 trials) were between images with matched 

reward outcomes. We replicated the results of Experiment 1 and 2, such that participants 
were more likely to choose the scene that they had initially valued more (z = 3.98, p < 
0.001, β = 0.29, Figure 13).  
 

 

BA

scene

Figure 12. Experiment 3, learning rate results. A: There was a trend for higher average learning rate in the low-risk 
context. B: Absolute prediction errors increased learning rate. Learning rates were binned by prediction errors (each 
dot represents the average prediction error within the binned range). Error bars represent standard error of the mean.  

A B

Figure 11. Experiment 3, recognition memory results. A: Recognition memory was better for high-risk items. B: Both 
absolute prediction errors and a high-risk context independently enhanced memory. Item memory was binned by the 
quartile values of prediction errors within each risk room. Each dot represents the average value within that quartile. 
Error bars represent the standard error of the mean. 
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General Discussion 
 

Our aim was to determine how reward prediction errors influence memory and 
decision making, above and beyond their known influence on learning. In Experiment 1, 
we demonstrated that unsigned, or absolute prediction errors enhanced memory for a 
rewarding event. That is, items that were accompanied by a large prediction error, 
whether positive (receiving much more reward than expected) or negative (receiving 
much less reward than expected) were better remembered in a subsequent test. We 
additionally found that risk context and absolute prediction errors modulated trial-by-trial 
learning rate – learning rate was higher in a low-risk environment, and for items that were 
accompanied by larger prediction errors. Notably, although unsigned prediction errors 
increased learning rate and enhanced memory, we did not find a trial-by-trial relationship 
between learning rate and memory. Moreover, a higher risk context led to lower learning 
rates but better memory on average, emphasizing distinct underlying mechanisms.  

In Experiment 2 we allowed for more learning in each room and replicated all the 
effects from Experiment 1, while further demonstrating that a high-risk context improved 
source and sequence memory. In Experiment 3, we set out to test whether risk per se 
affected learning and memory, or if our findings could be attributed to the higher overlap 
between the reward distributions of the two options in the high-risk context. For this, we 
eliminated the overlap in outcome distributions in both contexts, and reproduced the 
original results. This manipulation resulted in a more similar range of prediction errors in 
both risk contexts, which allowed us to demonstrate an effect of context on episodic 
memory that was separate from the effect of absolute prediction errors. 

Previous work has shown both a collaboration between learning and memory 
systems, such as boosting of memory for items experienced during reward anticipation  
(Adcock et al., 2006) including oddball events (Murty & Adcock, 2014), as well as a 
competition between the systems, where the successful encoding of items experienced 
prior to reward outcome is thought to interfere with striatal prediction errors (Wimmer, 
Braun, Daw, & Shohamy, 2014). Here we showed how learning mechanisms, namely 
absolute prediction errors, impact episodic memory for the actual rewarding event, 
similar to the enhanced encoding of unexpected paired associates (Greve, Cooper, Kaula, 
Anderson, & Henson, 2017). 

An effect of (signed) dopaminergic prediction errors from the VTA to the 
hippocampus would have predicted an asymmetric effect on memory, such that memories 
benefit from a positive prediction error (signaled by an increase in dopaminergic firing 
from the VTA), but not a negative prediction error (signaled by a dip in dopaminergic 
firing). Instead, we found that the absolute magnitude of prediction errors, regardless of 

Figure 13. Experiment 3, choice results. For choices between options with 
matched reward outcomes, participants chose the scene that they had valued 
more. Each dot represents the average of the value differences binned by 
quartile. Error bars represent standard error of the mean.  
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the sign, affected memory. This mechanism perhaps explains the finding that extreme 
outcomes are recalled first, are perceived as having occurred more frequently, and 
increase preference for a risky option (Ludvig, Madan, & Spetch, 2014; Madan, Ludvig, 
& Spetch, 2014).   

The mnemonic effects of unsigned prediction errors, likened to surprise and 
contributing to arousal, have been linked to the noradrenergic locus coeruleus, and are 
thought to bias encoding of relevant or “high priority” stimuli (Clewett, Schoeke, & 
Mather, 2014; Mather, Clewett, Sakaki, & Harley, 2015; Miendlarzewska, Bavelier, & 
Schwartz, 2016). Our finding that absolute prediction errors influenced subsequent 
memory fits with the mechanism described in the Introduction, whereby the locus 
coeruleus-norepinephrine (LC-NE) system responds to salient (surprising) events, and 
dopamine co-released with norepinephrine in the locus coeruleus strengthens 
hippocampal memories (Kempadoo et al., 2016; Takeuchi et al., 2016). This proposed 
mechanism would seem to imply that increases in learning rate (previously linked to 
norepinephrine release) and enhanced memory (linked to dopamine release) should be 
correlated across trials, given the hypothesized common cause of LC activation. 
However, we found that – across trials – increases in learning rate were uncorrelated with 
enhanced memory, suggesting that the actual mechanism may involve additional (or 
different) steps from the one described above.  

In our task, learning rate not only increased with the magnitude of prediction 
error, but also changed with the risk of the environment. In line with our results, recent 
work shows that learning rate scales to reward variance, with higher learning rates in 
lower variance contexts (Diederen & Schultz, 2015; Diederen et al., 2016). Greater 
sensitivity to the same magnitude prediction errors in a low- versus a high-variance 
environment demonstrates adaptation to reward context, where in a low-risk context, 
even small prediction errors are more relevant to learning than they would be when there 
is greater reward variance. This heightened sensitivity to changes in the low-risk 
environment, however, was not associated with improved episodic memory in our 
experiments. In fact, in Experiment 3, we found that memory was better for high-risk 
items, even when controlling for trial-by-trial variance in reward prediction error. The 
opposing effects of risk on learning rate and episodic memory again suggest distinct 
underlying mechanisms, in agreement with work characterizing learning and memory 
systems as separate and even antagonistic given the task at hand (Foerde, Braun, & 
Shohamy, 2012; Wimmer et al., 2014). 

To explain the beneficial effect of high-risk environments on episodic memory, 
we hypothesized that better memory for high prediction error events could potentially 
“spill over” to surrounding items, in line with work showing that inducing an “encoding” 
state (such as through the presentation of novel items) introduces a lingering bias to 
encode subsequent items (Duncan & Shohamy, 2016; Duncan et al., 2012). These effects, 
however, did not explain how risk context modulated memory in our task, as we did not 
find prediction error events to additionally improve memory for adjacent items. Instead, 
we attribute this context effect to improved encoding when in a more aroused state, 
although future studies should more directly characterize the link between arousal and 
enhanced memory in risky environments. 

Finally, when given a choice, people preferred scenes that had been previously 
associated with greater reward outcomes. Surprisingly, however, when choosing between 
images that had the same reward outcomes, people preferred the ones they had initially 
guessed would lead to a higher reward. This perhaps points to anticipatory dopaminergic 
activation at image onset (Adcock et al., 2006) influencing later preference, regardless of 
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the actual outcome (and its associated subsequent disappointment). In particular, we did 
not find an effect of absolute prediction error or risk context on choice, which could be 
due to the statistical power of our task in detecting an effect, or could demonstrate that 
item memory may not necessarily guide value-based choice. This latter point is echoed in 
a recent study showing that memory for the values associated with items, as opposed to 
just item recognition, predicts value-based decision making, which highlights the role of 
enriched episodic memory (instead of decontextualized recognition) in supporting 
adaptive decision making (Murty, FeldmanHall, Hunter, Phelps, & Davachi, 2016). Even 
though we did not find absolute prediction error or risk context effects on later choice 
preference, it remains to be determined whether memories enhanced by large prediction 
errors may still bias decision making by prioritizing which experiences are sampled or 
reinstated during value-based decision making.  
 In conclusion, we show that surprising rewards and high-risk contexts improve 
memory, revealing that error and risk modulate memory in addition to the mnemonic 
effects of high rewards previously reported in the literature. We further demonstrated that 
absolute prediction errors, associated with locus coeruleus modulation, have dissociable 
effects on learning rate and memory, pointing to separate influences on incremental 
learning and episodic memory.  
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