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Abstract: After a series of reports uncovered various methodological problems with functional 
magnetic resonance imaging (fMRI) research, considerable attention has been given to principles 
and practices to improve reproducibility of neuroimaging findings, including promotion of 
openness, transparency, and data sharing. However, much less attention has been given to use of 
open access neuroimaging datasets to conduct replication studies. A major barrier to reproducing 
neuroimaging studies is their high cost, in money and labor, and utilizing such datasets is an 
obvious solution for breaking down this barrier. The Human Connectome Project (HCP) is an 
open access dataset consisting of extensive behavioral and neuroimaging data from over 1,100 
individuals and there are numerous ongoing HCP-harmonized studies of lifespan and disease that 
will ultimately release data through HCP infrastructure. To bring attention to the HCP and 
related projects as an important resource for conducting replication studies, I used the HCP to 
conduct a replication of a highly cited neuroimaging study that showed correspondence between 
resting state and task brain networks.  
 
Recent reports on reproducibility in psychology research have produced alarming findings that 
have drawn attention to this issue in many scientific disciplines, not just psychology.1,2,3 The 
Open Science Collaboration (2015) attempted to replicate 100 psychology studies but succeeded 
in replicating only 39,4 and a survey by the journal Nature of 1,576 researchers showed that more 
than 70% of researchers have tried and failed to reproduce another scientist’s experiment and 
more than half reported failing to reproduce their own experiments.5 Various strategies have 
been proposed to improve the reliability and efficiency of scientific research2, including the use 
of registered reports, adopted by more than 40 journals to date to both enhance and incentivize 
reproducibility.6 The field of neuroimaging using functional magnetic resonance imaging (fMRI) 
has come under fire many times in the past decade when research meant to evaluate best 
practices in data analysis turned up several dramatic problems. For example, work by Vul et al. 
(2009) found that extremely high correlations between brain activation and personality measures 
in a large collection of neuroimaging studies arose because of circular analysis practices,7 work 
by Bennett et al. (2010) reported brain activation during a social cognition task in a dead salmon 
as an illustration of the inadequacy of commonly used corrections for multiple comparisons,8 and 
a recent publication by Eklund et al. (2016) revealed that parametric statistical methods 
implemented in many common neuroimage analysis software packages are invalid for cluster-
wise inference, calling into question findings from a number of fMRI experiments.9 This last 
report has generated a great deal of controversy10–14 (see also 
http://www.ohbmbrainmappingblog.com/blog/keep-calm-and-scan-on) and has drawn attention 
to efforts within the neuroimaging community to identify best practices for fMRI research, from 
study design to data collection, to data analysis (http://www.humanbrainmapping.org/cobidas). 
Most recently, Nature Neuroscience published a Focus issue on Human Brain Mapping that 
presents several articles discussing these issues in more detail, including how to define what 
constitutes reproducibility in fMRI research.15,16  
 
While considerable attention is being given to the principles and practices to improve 
reproducibility in neuroimaging studies using MRI, including data sharing17 and existing 
repositories (see NeuroImage issue 1:24 (Part B) for detailed descriptions of several 
repositories18), less attention is being given to the actual existing neuroimaging datasets that are 
now available to facilitate such studies.19–23 Indeed, a major barrier to conducting reproducibility 
studies is the cost in both money and labor that it takes to perform neuroimaging studies, and 
these open datasets represent one of the best options for breaking down this barrier, in addition to 
presenting opportunities to publish original research. A recent study was published that perfectly 
illustrates the power of open access data and how we, as researchers, can think about using 
shared data to replicate our research, while still conducting original research. Zhao et al. (2017)24 
drew data from one existing neuroimaging repository23 to conduct an original research study on 
the relationship between cortical thickness and neuroticism in individuals with alcohol use 
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disorder, then drew data from a different neuroimaging repository22 to replicate the findings. 
Such studies demonstrate how replication truly enhances any research study by making 
publications more compelling and increasing our confidence in the findings.  
 
One of the datasets used in the aforementioned study by Zhao et al (2017) is the data from the 
Washington University-University of Minnesota (Wu-Min) Human Connectome Project 
(HCP),22 an NIH-funded initiative to map the human brain connectome. In brief, behavioral and 
neuroimaging data were collected in more than 1,100 participants and the HCP have made the 
data publicly available (https://www.humanconnectome.org). They have released behavioral data 
spanning myriad domains including: health and family history (physical health assessments, 
menstrual cycle factors, family history of psychiatric and neurological disorders), alertness (Mini 
Mental Status Exam, Pittsburgh Sleep Questionnaire), cognition (episodic memory, executive 
function - cognitive flexibility and inhibitory processing, fluid intelligence, language – reading, 
decoding and vocabulary comprehension, processing speed, impulsivity, spatial orientation, 
sustained attention, verbal episodic memory, and working memory), emotion (emotion 
recognition, negative affect, psychological well-being, social relationships, stress and self 
efficacy), motor function (endurance, locomotion, dexterity, grip strength), personality (five 
factor NEO model), psychiatric and life function (Achenbach Adult Self-Report, syndrome 
scales and DSM-oriented scales, and psychiatric history), sensory function (audition, olfaction, 
pain, taste, vision, contrast sensitivity), and substance use (breathalyzer and drug test, alcohol 
and tobacco use 7-day retrospective, alcohol and tobacco use and dependence, illicit drug use, 
marijuana use and dependence). Twins and siblings were recruited for the study, with full 
genotyping data to be released soon (https://humanconnectome.org/about/pressroom/). A full 
catalog of the assessments done by the HCP that are available through the HCP ConnectomeDB 
database for housing and disseminating HCP data can be found in their online Data Dictionary 
(https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-
+500+Subject+Release) and in Hodge et al. (2016).25  
 
Multi-modal neuroimaging data are also available from the HCP, including high spatial 
resolution structural and diffusion tensor imaging data and high spatial and temporal resolution 
task and resting state functional MRI (fMRI) data at 3T. 3T data were collected in over 1100 
participants, retest data in 46 participants, multimodal 7T MRI data in 184 participants, and 
magnetoencephalography (MEG) data in 95 participants. Task fMRI data were collected during 
seven different tasks chosen to cover multiple domains of function and optimized to activate as 
many functional nodes, or regions of the brain, as possible.26 In addition, the HCP collected four 
15 minute runs of r-fMRI data in each participant.27 Notably, the raw neuroimaging data and 
minimally pre-processed denoised resting state data, pre-processed and first-level statistical 
parametric maps from general linear modeling of the task fMRI data, and soon to be released 
genetics data are all available to researchers. HCP data are accessible by ordering the 
Connectome-In-A-Box (http://www.humanconnectome.org/data/connectome-in-a-box.html) 
directly from the HCP (to create local installations of the HCP data) or by accessing the data via 
the cloud through Amazon Web Services, which allows users to analyze HCP data without 
having to set up a local installation (which would require 100 TB of disk space). In addition, 
HCP data and analysis pipelines are detailed in several published reports22,26,27,28 and all imaging 
data processing scripts have been provided by the HCP to facilitate standardization of analysis 
methods. Details of the informatics tools developed by the HCP to enable high throughput data 
collection, automated analysis, and data sharing can be found in published reports.25,29 
 
The ConnectomeDB, which is the platform for housing and disseminating the HCP data, is the 
foundation for the Connectome Coordination Facility (CCF). The CCF is an NIH-supported 
dissemination platform for the HCP data and data from numerous other NIH-funded HCP 
harmonized studies that are currently being conducted that will also be open access, including 
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HCP Lifespan Babies, HCP Lifespan Children, HCP Aging, Developing HCP, as well as data 
from thirteen additional large-scale HCP-harmonized studies funded through the Connectomes of 
Human Diseases mechanism (https://grants.nih.gov/grants/guide/pa-files/PAR-14-281.html) 
covering diverse illnesses, such as Alzheimer’s Disease, epilepsy, frontotemporal degeneration, 
anxious misery, early psychosis, low vision and blindness, anxiety and depression. Once all of 
the HCP-style data from these studies are made available through the ConnectomeDB, it will be 
an amazing resource of data collected across studies that are all harmonized with each other, 
including overlapping deep-phenotyping and neuroimaging protocols, that can be used to 
replicate studies involving not only behaviors and the brain connectome in healthy individuals, 
but also in disease and development. Given the wide range of populations, diseases, and data 
from the HCP-style studies that will eventually be open access, raising awareness of the HCP 
itself for conducting replication studies will surely inspire graduate students, post-doctoral 
researchers, and investigators to consider replicating their own research and the research of 
others as an enhancement to their own work. In the rest of this research report, I demonstrate the 
power of the HCP imaging data for replication studies by using the neuroimaging data to 
replicate a seminal research report that has had a very high impact on the neuroimaging and 
neuroscience community but would be very challenging to replicate without access to data like 
the HCP.  
 
In 2009, Smith et al published a paper in the Proceedings of the National Academy of Sciences30 
that showed that the collection of brain networks that are “active” while a person is resting and 
engaged in idle thought (e.g., resting state networks or RSNs) correspond to the same functional 
networks used by the brain to perform tasks. This study showed for the first time the extent to 
which the set of RSNs consistently observable using fMRI during rest match the functional 
networks utilized by the brain during tasks and provided strong supporting evidence to an 
emerging literature showing that RSNs observable with fMRI were not simply due to non-neural 
physiological effects. Smith et al has been cited at least 1,550 times, in the top 1% of highly cited 
papers in Neuroscience and Behavior (Web of Science) and possibly more than 2,200 times 
(Google Scholar), underscoring its importance to the neuroscience and neuroimaging 
communities. Given the significance of this study, it would be reassuring if the main findings 
were replicated in an independent study. However, the Smith et al. study is challenging to 
replicate because one needs imaging data collected during the performance of many different 
tasks covering myriad behavioral domains to identify the full repertoire of task networks. Smith 
et al. were able to utilize the BrainMap database31 in combination with resting state fMRI data to 
investigate the links between RSNs and task activation networks. Using the BrainMap database, 
which is the largest database of human brain activation study results obtained using 
neuroimaging techniques, allowed them to pool together imaging results reported from more 
than 1600 published studies of brain function over a wide range of experimental paradigms to 
derive the full repertoire of the brain’s functional task networks. Thus, to replicate the findings in 
the Smith et al. study, one would need access to task fMRI data spanning many different tasks 
and functional domains, and resting state fMRI data. The HCP imaging data represent just such a 
dataset, with fMRI data collected during seven different tasks chosen to cover multiple domains 
of function, including emotion processing, incentive processing, language, motor, relational 
processing, social cognition, and working memory, and at rest, and are thus these data are ideally 
suited for replicating the Smith et al. study. 
 
The Smith et al. study has not been particularly controversial because it is supported by 
converging evidence from many other studies and lines of research.32,33,34 However, replication 
of such an influential study is still critically important. For example, consider another highly 
cited influential study conducted by Strack, Martin & Stepper (1998) on the facial feedback 
hypothesis. That study has been cited more than 1600 times (Google Scholar) and is a common 
concept in introductory psychology texts and courses. This hypothesis is also supported by 
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numerous related studies, and as such, became readily accepted in the psychology community. 
However, seventeen subsequent attempts to replicate the results resulted in heterogeneous 
findings, which motived a recent registered research report to conduct a meta-analysis of the 
replications.35 In the end, the meta-analysis was not able to replicate the findings of this seminal, 
widely accepted research study, underscoring the importance of replication of seminal influential 
studies, even if the findings are readily accepted based on the reputation of the scientist(s) who 
conducted the study or the journal in which the study is published, or on converging lines of 
evidence that support the conclusions of the study. 
 
Results 
 
Smith et al. applied independent component analysis (ICA) to the BrainMap data and to resting 
state fMRI data to derive 20 independent components from each dataset representing both large-
scale brain networks and artifact-related effects. He then identified task networks that 
corresponded to commonly observed RSNs36,37 using spatial cross-correlation (Smith et al. 
Figure 1). In the present study, these Smith et al. main findings were highly reproducible using 
the HCP task and resting state data. The spatial cross correlations between the HCP task 
networks and Smith’s BrainMap networks ranged from r = 0.26-0.74, with the minimum r=0.26 
being highly significant (p=4x10-4, corrected). The spatial cross correlations between the HCP 
task and HCP RSNs ranged from 0.44-0.81, with the minimum r=0.44 being highly significant 
(p<4x10-4, corrected). The correspondence between the HCP task and HCP RSNs is much higher 
than the correspondence between the BrainMap networks and the RSNs reported in Smith et al. 
(r=0.26, p<1x10-5, corrected), although both are highly significant. This is due to the different 
nature of the task data that was used for each study (BrainMap pseudo-activation maps versus 
actual task activation Z-stat maps in the present study). 
 
Figure 1 shows all four sets of network maps, the HCP RSN and HCP task networks from the 
present study and the RSN and BrainMap networks from Smith et al. study (their Figure 1). The 
Smith et al. maps displayed alongside the HCP maps were constructed from their data files 
available at http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/.  For Figure 1, all ICA Z-statistic 
maps were thresholded with Z=3.0 (the same as in Smith et al. Figure 1) and red-yellow and 
blue-light blue colors indicate the network (positive and negative values, respectively), overlaid 
onto the MNI standard brain image. The Z=3.0 threshold used in Smith et al. is based on an 
alternative hypothesis testing approach which applies a Gaussian-Gamma mixture model to the 
independent component spatial maps to determine the threshold for each map.38 In this case, a 
threshold of p=0.5 will achieve an equal probability of obtaining a false positive or a false 
negative (e.g., of a given voxel being in the background signal or the IC signal). Mixture 
modeling to threshold ICA maps is used to address the fact that spatial maps derived from the 
fixed-point iteration ICA algorithm in FSL MELODIC (and from Infomax or other similar 
algorithms) are optimized for maximal non-Gaussianity of the distribution of spatial intensities. 
In this case, simple transformation of ICA maps to Z scores and subsequent thresholding will not 
provide control of the false-positive rate. Using mixture modeling allows for such control and Z 
= 3 is approximately the average Z value that one obtains from thresholding a typical group ICA 
spatial map at p=0.5 when 20 components have been estimated (e.g., if more components are 
estimated, the threshold will increase due to reduced residuals). Applying a mixture model to the 
ICA maps, with p=0.5, in the present study gave an average value of Z ~ 2.5 so the threshold 
used to create the figure corresponds to a slightly greater probability of a voxel being signal 
rather than noise for the HCP-derived RSN and task network maps.  
 
Correspondence between HCP and Smith et al. networks were similarly reproducible for the 70-
component analysis, which results in a finer parcellation of the brain into sub-networks as 
compared with 20 estimated components (Smith et al. Figure 3; eight occipital and two 
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sensorimotor networks). Spatial cross correlations between the RSNs from Smith et al. and the 
HCP RSNs ranged from 0.36 – 0.69 (results not shown). 
 
It is not possible to reproduce how strongly each component in Figure 1 relates to the 66 possible 
behavioral domains as shown in Smith et al. (their Figure 2) due to the limited number of tasks in 
the present study. However, it is possible to determine the magnitude of network activation 
during each task component for the tasks in the HCP. In the BrainMap data, only the location in 
standard space of an activation blob is encoded in the BrainMap database with no spatial extent 
or magnitude information, however, many different tasks in any given behavioral domain are 
represented in the database. Smith et al. estimated a measure related to the frequency with which 
a spatial pattern was observed during related tasks in a given behavioral domain. While this 
metric is informative of which networks are engaged by tasks falling within a given domain, 
there is no information about how strong a network may be activated or suppressed during a 
particular task. In the present study, the strength of activation of each network for each task 
component, covering 29 different behavioral domains, was computed as follows. The set of 
spatial maps from the ICA of the HCP task Z-stat maps (contrast maps of brain activation during 
different task conditions) were used in a multiple spatial regression against each set of task Z-stat 
maps to extract a set of “subject courses” for that particular task component. These subject 
courses reflect the strength of the particular network activation in each subject, and can be 
averaged over all subjects for a particular task to compute the average magnitude of activation of 
each network during a task. This approach is different than the approach used to compute the 
matrix values shown in Smith et al. Figure 2. By using subject-specific task Z-stat maps and the 
multiple spatial regression approach in the present study, the magnitude of the activation of a 
network during a task component is preserved. 
 
Network activation magnitudes are displayed in Figure 2. No inference was done on this matrix 
as it is meant to parallel directly the qualitative results shown in Smith et al. Figure 2. However, 
some similarities with the Smith et al. Figure 2 are apparent. In Smith Figure 2, three 
neurocognitive networks, the executive control network and two lateralized left and right fronto-
parietal networks, LFPN and RFPN, have high values for the domain 
Cognitive_Memory_Working. In my Figure 2, these three networks and cerebellum all showed a 
statistically significant activation during the working memory task (2 Back – 0 Back (2B-0B) 
condition), with p = 0.0001, taking into account family structure, corrected for number of 
networks and contrasts (e.g., 2-sided tests, with differences in reaction times and accuracy 
between 2B and 0B included as covariates of interest in the general linear model). All other 
networks showed statistically significant suppression during 2B-0B (p<0.02, corrected), which 
isn’t captured in the Smith matrix. As further validation, I also found that increasing network 
activation magnitude was associated with increases in reaction times during 2B relative to 0B for 
the executive control network, RFPN, and LFPN (p=0.0001, corrected) suggesting that as the 
working memory load increases, these networks increase their activity. The executive control 
network is comprised of dorsal anterior cingulate cortex (dACC), medial superior frontal cortex 
(msFC), and bilateral anterior insula/frontal operculum and has been shown to be a core system 
for the implementation of task sets that provides stable “set-maintenance” over entire task epochs 
over a variety of tasks.39,40 In the present study, this network shows increased activity during 
nearly all of the tasks (relative to their lower level control conditions), which is consistent with 
being a core system as described by Dosenbach et al. (2006) and with Smith’s findings that this 
network corresponded to several cognition paradigms. The LFPN and RFPN are posited by 
Dosenbach et al. (2008) to be control networks (e.g., a single network in their study, but split into 
two lateralized networks in our study and in other ICA-based fMRI studies) that potentially 
initiate and adjust control on a trial-to-trial basis and respond to events that carry performance 
feedback information. The prefrontal and parietal regions in all three of these networks have 
been implicated in previous studies of working memory41 and both networks were reported to 
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show preference for n-back working memory tasks in further work (co-authored by Dr. Smith) 
that built upon the Smith et al study.42  
 
Figure 2 results also shows that the default mode network (DMN) is suppressed during most 
tasks, which was also observed by Smith et al (stated in the text, not captured in his Figure 2). 
There appears to be stronger suppression of the DMN for those tasks with presumably greater 
cognitive load, which is consistent with several studies showing that the magnitude of activity 
within the DMN during task performance is related to task-load during brain activation.43,44 
Occipital networks are activated during tasks in which there are visual stimuli, but not when the 
tasks involved auditory stimuli, e.g., in the math and story blocks of the language task, or the 
motor tasks, which is also consistent with the Smith et al. findings in his Figure 2.  
 
There is a subtle point about the results shown in the present Figure 2. Namely, all of the 
networks that are activated (or suppressed) during a particular task are identified using the 
regression-based analysis approach used in the present study, and the activity of a specific task 
network during each task component is determined with all other network activity “partialled 
out” by virtue of the multiple spatial regression of all network maps against the subject activation 
maps. This means that the activity in each network is separately assessed – and that the specific 
set of networks that are engaged during a given task can be determined. This is in contrast to 
activation maps from a standard voxel-wise general linear model analysis, which instead show 
all of the brain regions that are activated during the task, aggregated together into a single map. 
Thus, the resulting map from a whole-brain voxelwise GLM analysis reflects a composite of 
regions that constitute different networks, without differentiating each network itself. For 
example, consider again the working memory (2B-0B) contrast. In Barch et al. (2013), the group 
activation map obtained using a multi-level general linear model shows deactivations in medial 
prefrontal cortex and auditory regions (Figure 3 in Barch et al.). It is unknown whether the 
activated regions represent one or more networks in the aggregate activation map that results 
from the voxel-wise GLM analysis. Using the analysis approach in the present study, network 
activity can be disentangled, and we conclude that executive control, LFPN, and RFPN are all 
activated during 2B-0B. The auditory network is also strongly suppressed during this condition 
(and during many other conditions, possibly due to a need to block out distracting scanner noise). 
Thus, using the analysis approach utilized in the present study allows for each network that may 
be activated (or suppressed) by the task to be studied separately from other networks. 
 
Discussion 
 
Replication studies play a key role in efficient science by testing directly the stability of novel 
findings in a rigorous scientific way, that is less influenced by factors (such as publication bias) 
that can propagate spurious results or practices into a field. One of the aims of the present study 
was to bring attention to the HCP as a goldmine of behavioral data, neuroimaging data, and 
(soon) genetic data that can be used for replication studies. Importantly, data are being collected 
in numerous ongoing NIH-funded HCP-harmonized studies of the lifespan, development, and 
diseases that also will be made available to researchers through the HCP informatics 
infrastructure as the studies complete, thus collectively providing extensive opportunities for 
replication studies across diverse human research domains. Hopefully, knowledge of the depth 
and breadth of the HCP data will inspire investigators to think about ways these open data can be 
used to support their research endeavors. In this report, I demonstrated how the diversity of the 
fMRI data in the HCP, covering seven different tasks and resting state, could be used to replicate 
the complex multi-modal Smith et al. (2009) neuroimaging study. Reassuringly, the Smith et al. 
findings were replicable under the most challenging form of generalizability, using different 
subjects, stimuli, and analysis methods,15 which moves the field forward by providing additional 
critical support to the findings by Smith et al. My findings are in agreement with the Smith et al. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2017. ; https://doi.org/10.1101/111021doi: bioRxiv preprint 

https://doi.org/10.1101/111021
http://creativecommons.org/licenses/by-nc-nd/4.0/


interpretation of RSNs measured using fMRI as reflecting neural activity, not just hemodynamics 
and other physiological processes, and as corresponding to task activation networks. While the 
correspondence between resting state and task brain networks is now generally accepted within 
the neuroimaging community, it is always good to revisit studies that may involve truly novel 
analysis methods and/or significant findings that shape the field. 
 
Methods 
 
I. Human Connectome Project  
 
The second major release of the HCP data collected in 500 healthy adults (aged 22-35) was used 
for the current study. Individuals with severe neurodevelopmental disorders, neuropsychiatric 
disorders, or neurologic disorders, or with illnesses such as diabetes and high blood pressure, 
were excluded from the HCP study. MRI scanning was done using a customized 3T Siemens 
Connectome Skyra using a standard 32-channel Siemens receive head coil and a body 
transmission coil. T1-weighted high resolution structural images acquired using a 3D MPRAGE 
sequence with 0.7 mm isotropic resolution (FOV = 224 mm, matrix = 320, 256 sagittal slices, 
TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, FA = 8°) were used in the HCP minimal pre-
processing pipelines to register functional MRI data to a standard brain space. Resting state 
fMRI data were collected using gradient-echo echo-planar imaging (EPI) with 2.0 mm isotropic 
resolution (FOV=208x180 mm, matrix =104x90, 72 slices, TR = 720 ms, TE = 33.1 ms, FA = 
52°, multi-band factor = 8, 1200 frames, ~15 min/run). Task fMRI data were collected using the 
same scanning sequence as the resting state fMRI data, although the number of frames per run 
(with 2 runs/task) varied from task to task. Runs with left-right and right-left phase encoding 
were done for both resting state and task fMRI to correct for EPI distortions. All subject 
recruitment procedures and informed consent forms, including consent to share de-identified 
data, were approved by the Washington University Institutional Review Board (IRB). See 
Glasser et al., 2016. For the present study, after permission was obtained from the HCP to use 
the Open Access and Restricted Access data for the present study (see Data Availability 
Statement below), a protocol filed with the McLean Hospital Institutional Review Board (IRB) 
met criteria for exemption. 
 
II. Identification of Task Networks from HCP Task fMRI Data 
 
Task fMRI data were utilized from seven different tasks: emotion processing, incentive 
processing/gambling, language, motor, relational processing, social cognition, and working 
memory. I used volumetric outcomes from the minimal pre-processing pipelines developed by 
the HCP45. For the HCP minimal pre-processing pipeline, the task fMRI data for each subject 
underwent corrections for gradient distortions, subject motion, and echo-planar imaging (EPI) 
distortions, and were also registered to the subject’s high-resolution T1-weighted MRI. All 
corrections and the transformation of the fMRI data to MNI standard space (via non-linear 
transformation of the subject’s T1-weighted structural MRI into MNI standard space) were 
implemented in a single resampling step using the transforms for each registration step (fMRI to 
T1 and T1 to MNI) and the distortion corrections.  
 
First-level statistical modeling was also implemented by the HCP. The pre-processed fMRI 
timeseries at each voxel (or spatial location) in the task fMRI data was fit with a general linear 
model (GLM). Regressors that modeled the brain’s fMRI signal in response to the task 
conditions were included in the model. 3D spatial maps (e.g., one value per voxel in the brain) of 
contrasts of the parameter estimates (COPEs) were computed corresponding to the average 
activation during each task component and to differences in activation between different task 
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components (e.g., subtraction images). Notably, these COPE maps reflect the magnitude of the 
brain activation between two task conditions. 
 
Twenty-five COPEs were selected from across tasks to be fed into a group independent 
component analysis (ICA) to identify task networks. Table 1 describes each task COPE, with 3-5 
COPEs per task. 
 
The sample size for each task is as follows: 
 

o Emotion Processing. 452 subjects, 3 COPES, 1,356 total images 
o Incentive Processing. 449 subjects, 3 COPES, 1,347 total images 
o Language.  433 subjects, 3 COPES, 1,299 total images  
o Motor. 415 subjects, 5 COPES, 2,075 total images  
o Relational Processing. 435 subjects, 3 COPES, 1,305 total images  
o Social Cognition. 452 subjects, 3 COPES, 1,356 total images 
o Working Memory.  411 subjects, 5 COPES, 2,055 total images  

 
The number of subjects varies for each task because participants with greater than 2 mm of 
motion (maximum absolute root mean square) in any task run led to exclusion of their COPE 
map from the analysis. E.g., two runs were done for each task (with different phase encoding 
directions to correct for EPI distortions), with average COPE maps being calculated using a 
second-level GLM. These average COPE maps are used in the present analysis.   
 
All 10,793 COPE maps were fed into a group ICA conducted using FSL MELODIC38. Two 
group ICAs were conducted, one with twenty and one with seventy components estimated from 
the group ICA, the same as in the Smith et al. study, to identify large-scale brain networks and to 
do a finer parcellation, respectively. The spatial independent component maps were thresholded 
using a Gaussian-Gamma mixture model with p=0.5 such that equal weight was given to 
obtaining either a false positive or a false negative in the spatial map. Note that Smith et al., 
constructed 7,342 activation-peak images (pseudo-brain activation maps constructed by filling an 
empty image with points corresponding to reported standard space coordinates of statistically 
significant local maxima in the activation maps from the original study that are archived in the 
BrainMap database, then convolving these points with a Gaussian kernel to mimic spatial 
extent), which were submitted to a group ICA. Thus, the number of maps used in the present 
study is the same order of magnitude as the number of maps used in the Smith et al. study. 
 
Task activation networks were identified corresponding to those from Smith et al. (e.g., from the 
ICA of the BrainMap data) by visual inspection and spatial cross-correlation. Significance of 
cross-correlations was determined as follows. The corrected p-value was computed based on a 
Bonferroni correction for the number of possible paired comparisons (400 for HCP task vs Smith 
task; 400 for HCP task vs HCP rest) and a correction for the spatial degrees of freedom using 
Gaussian random field theory and an empirical smoothness estimation (average number of resels 
= 322 for HCP task spatial maps, which was lower than both the average for the BrainMap task 
maps (2143 resels) and the average for the HCP RSNs (375)). For example, the correlation 
probability for r = 0.26 with 322 degrees of freedom is p=1x10-6 (one-sided), multiplying by this 
value by 400 gives p=4x10-4 corrected. See Smith et al. for more details. 
 
The activation magnitudes for each network during each task component were computed as 
follows. Multiple spatial regression of the HCP dimensionality 20 ICA maps (e.g., all 20 maps 
together) against the 4D file of COPE maps, e.g., with one COPE map for each subject 
concatenated across all N subjects, was done for each task component. For each COPE file, the 
resulting regression parameters are a “subject-series” of loadings (one per subject) that were 
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averaged together to give the average network activity during that component of the task. The 
regression parameters are Z-statistics since the COPE Z-stat maps from the HCP first-level 
analysis were used for the analysis. The values in Figure 2 were computed as the average of the 
subject-series of loadings for each COPE. To assess the activated networks during the 2 Back 
(2B) vs 0 Back (0B) contrast and the relationships with change in accuracy (0B-2B) and change 
in reaction time (2B-0B), a general linear model was implemented with the subject-series for 
each network for the 2B-0B as dependent variables and change in %accuracy and change in 
reaction times as covariates using PALM (Permutation Analysis of Linear Models),46 which also 
takes into account the family structure of the HCP data, and to correct for the number of 
networks and contrasts. Exchangeability blocks were determined that captured family structure 
to determine acceptable permutations, and 10,000 permutations were done. 
 
III. Identification of Resting State Networks from HCP Resting State fMRI Data 
 
RSNs were identified from the HCP data using outcomes from the minimal pre-processing 
pipeline of the resting state fMRI data that were provided by the HCP.27 Minimal pre-processing 
of resting state fMRI data included corrections for spatial distortions caused by gradient 
nonlinearities, head motion, B0 distortion, denoising using FSL FIX47 and registration to the T1-
weighted structural image. All transforms were concatenated together with the T1 to MNI 
standard space transformation and applied to the resting state fMRI data in a single resampling 
step to register the corrected fMRI data to MNI standard space. fMRI data were also temporally 
filtered with a high pass filter and then each subject’s fMRI data was analyzed using spatial ICA, 
with the MELODIC algorithm estimating the number of components. In the HCP framework, 
these ICA maps are used to denoise the fMRI data prior to any subsequent resting state analyses. 
In the present analysis, these single-subject ICA maps, from 20 participants, were fed together 
into a group ICA using FSL MELODIC to identify the collection of RSNs that were common to 
the group of subjects. The single-subject ICA maps were used for the group ICA instead of the 
original minimally-preprocessed resting state fMRI data simply to reduce computational load, 
which is much greater with HCP data due to the extremely high spatial and temporal resolution 
of the fMRI data (2x2x2 mm3 with 0.75 second sampling intervals, 15 minutes/run, 1200 
volumes/run). As an aside, this is the same order of magnitude of participants in the original 
study by Smith et al., which utilized resting state fMRI data from 36 participants.  
 
Two ICAs were done, with the number of components fixed to twenty and seventy (as in Smith 
et al.) and RSNs that corresponded to the RSNs in Smith et al. were identified by visual 
inspection and spatial cross-correlation. For the 20-component ICA, the spatial cross-correlations 
between the HCP RSNs and the Smith RSNs (for 10 networks shown in Smith Figure 1) ranged 
from 0.43-0.74 (except for the cerebellum network which was cut off in Smith’s data, but fully 
covered in the HCP data, resulting in a spatial cross correlation of 0.33). The spatial cross-
correlations between HCP RSNs and HCP task networks (Figure 1) ranged from 0.44-0.81. The 
minimum spatial correlation of 0.44 is even greater than the minimum reported in Smith et al., 
r=0.25, and so is even more highly significant than p<5x10-6 (although I did not estimate the 
actual p value since it’s not necessary given the high level of significance). 
 
IV. Data Availability 
 
All data used in the present study are available for download from the Human Connectome 
Project (www.humanconnectome.org). Users must agree to data use terms for the HCP before 
being allowed access to the data and ConnectomeDB, details are provided at 
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms.  
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The HCP has implemented a two-tiered plan for data sharing, with different provisions for 
handling Open Access data and Restricted data (e.g., data related to family structure, age by year, 
handedness, etc). Both Open Access and Restricted data were utilized in the present study. The 
resting state and task fMRI outcomes provided from the HCP processing pipelines and the in-
scanner task performance measures for the working memory task are Open Access, thus users 
must be granted first-tier permission by the HCP to access that data. However, the family 
structure information that was utilized in the present study to do inference with non-parametric 
permutation methods described in Sections II and III is Restricted data, which would require 
second-tier permission by the HCP to access that information. In addition, the HCP requires that 
users “must abide by a prohibition against publishing certain types of individual data in 
combination that could make an individual recognizable or that could harm and embarrass 
someone who was inadvertently identified” as per the Restricted Data Use Terms and 
application. See https://www.humanconnectome.org/study/hcp-young-adult/document/restricted-
data-usage for more details. 
 
Users must also consult with their local IRB or Ethics Committee (EC) before utilizing the HCP 
data to ensure that IRB or EC approval is not needed before beginning research with the HCP 
data. If needed, and upon request, the HCP will provide a certificate to users confirming 
acceptance of the HCP Open and Restricted Access Data Use Terms. See 
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms. 
 
V. Code Availability 
 
Matlab code to produce results (for Figure 2 and working memory) is available upon request. 
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Table 1 
 
Task HCP 

Cope # 
Behavioral Domain 

Emotion Processing 1 Angry/Fearful Faces (which of two faces at the bottom of the 
screen match face at top of screen; faces are angry or fearful) 

 2 Shapes (which of two shapes at the bottom of the screen match 
shape at top of screen) 

 3 Angry/Fearful Faces – Shapes 
Incentive 
Processing/Gambling 

1 Punishment (lose money when guessing the number on a 
mystery card) 

 2 Reward (win money when guessing the number on a mystery 
card) 

 3 Punishment – Reward 
Language 1 Math Problems (auditory presentation of math problems, 

requires subjects to complete addition/subtraction problems) 
 2 Stories (auditory presentation of stories, participants answer 

questions about the story) 
 3 Math Problems – Stories 
Motor 2 Squeeze Left Toes 
 3 Tap Left Fingers 
 4 Squeeze Right Toes 
 5 Tap Right Fingers 
 6 Move Tongue 
Relational Processing 1 Match Condition (does single object at bottom of screen 

match either of two objects at top of screen on either shape or 
texture?) 

 2 Relational Condition (does bottom pair of objects vary on the 
same dimension (shape or texture) as top pair of objects?) 

 4 Relational – Match 
Social Cognition 
(Theory of Mind) 

1 Random (participants judge video clips of objects to be either 
interacting in some way or moving randomly; in this condition, 
objects are moving randomly) 

 2 Theory of Mind:ToM (participants judge video clips of 
objects to be either interacting in some way or moving 
randomly; in this condition, objects are interacting) 

 6 ToM – Random 
Working Memory* 11 2 Back – 0 Back (blocks of trials consisting of pictures, faces, 

places, tools, and body parts, with ½ of blocks using 2-back 
working memory task and ½ blocks using 0-back working 
memory task being contrasted) 

 5 Body Parts (0 Back blocks) vs. Baseline  
 6 Faces (0 Back blocks) vs. Baseline 
 7 Places (0 Back blocks) vs. Baseline 
 8 Tools (0 Back blocks) vs. Baseline 
 1 Body Parts (2 Back blocks) vs. Baseline  
 2 Faces (2 Back blocks) vs. Baseline 
 3 Places (2 Back blocks) vs. Baseline 
 4 Tools (2 Back blocks) vs. Baseline 
*For the ICA, working memory contrasts that averaged 0 Back and 2 Back blocks together for each stimulus type 
were used (COPEs 15-18), but the COPEs for 0 Back and 2 Back blocks relative to baseline were used to analyze 
network activation to facilitate interpretability. 
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