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Abstract

Boolean networks are commonly used to model biological pathways and processes, in part because there are
analyses for finding all of their possible long-term outcomes. Here we describe a Boolean network analysis that
captures both the long-term outcomes of a heterogeneous population, as well as the transient behavior leading
up to those outcomes. In contrast to other approaches, our method gives an explicit simulation through time
using the composition of the mixed population without having to track each subpopulation individually, thus
allowing us to simulate heterogeneous populations. This technique accurately models the dynamics of large
populations of deterministic, probabilistic or continuous-time Boolean networks that use either synchronous or
asynchronous updating. Our method works by treating the network dynamics as a linear system in a variable
space that includes products of the Boolean state variables. We show that these product-basis analyses can
help find very rare subpopulations or behaviors that sampling-based analyses would likely miss. Such rare events
are critical in processes such as the initiation and progression of cancer, and the development of treatment resistance.

Mathematical models are an important part of testing
and extrapolating our knowledge of biological systems [1],
but they can be difficult to fully analyze. A straight-
forward way to study a model is to simulate individual
instances of that model using a random sampling tech-
nique such as Monte Carlo [2]. These simulations can
be run very efficiently, allowing the use of complex mod-
els extending even to whole-cell simulations [3]. A major
drawback to random sampling is that simulations have
difficulty capturing rare events such as those that initi-
ate biological processes leading to novel and potentially
disease-related cellular phenotypes [4]. For example, tu-
mor initiation, progression, and the survival of select cells
following drug treatment all require rare alterations to
arise and clonally expand to eventually dominate the pop-
ulation in the long run [5{7]. While one can bias Monte
Carlo to oversample certain outcomes by artificially rais-
ing or lowering global parameters such as a mutation rate,
and then post-correct for the biased sampling (a strategy
known as importance sampling [8]), this does not help
find outcomes that are rare just because they require a
very particular starting state or set of mutations.

An alternative approach to random sampling tech-
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niques is to study a model analytically in order to learn
about all possible behaviors or outcomes even if they are
rare. Analytic results are difficult to obtain with complex
models, but significant advances have been made in an-
alyzing Boolean networks [9H16|, which are very simple
models built entirely from ON/OFF variables. In partic-
ular, the focus has been on extracting the possible long-
term outcomes, or attractors, of Boolean models. An at-
tractor may be a stable state (steady state) or else a re-
peating sequence of states (limit cycle). Attractors have
been found using network-reduction algorithms that find
simple networks encoding the long-term behavior of more
complex networks [9} 11} |17], methods that solve steady
states as zeros of a polynomial equation [18], SAT meth-
ods [13, |14, |19], and binary decision diagrams [15] 16|
20]. See the introduction of Ref. [10] for a review of
these techniques.

In between Monte Carlo simulations of individuals and
attractor analyses of populations, there remains an un-
addressed challenge: methods dealing directly with pop-
ulations do not explicitly track their dynamics in the way
that a simulation does. Therefore the power of exact anal-
yses has not been applied to the early-time ‘transient’ be-
havior of populations, or used to connect initial states of
different subpopulations to the attractors they fall into.
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Here we present an analytical method for simulating a
heterogeneous population of Boolean networks, without
having to simulate each network individually. The sim-
ulations are exact, so they capture every subpopulation
of the model and every event that occurs, no matter how
rare. The feasibility of building these simulations depends
on the size and topology of the network (for complex or
highly-recurrent networks it can be an exponential prob-
lem), though we can simplify the difficult cases by ignor-
ing the first few time steps of the simulation. In the limit
where we focus only on the longest-term behavior, the
output describes the attractors of the network.

Our method applies to deterministic [1], probabilis-
tic [21] and continuous-time [22] Boolean networks, and
finds all attractors with equal computational effort (some
attractor-finding techniques have more difficulty with
limit cycles than steady states). In this paper we only
analyze synchronous Boolean network models (i.e. net-
works whose variables all update together in discrete
time steps), but this is completely general in the large-
population limit because any infinite population evolves
deterministically even if the individuals are stochastic.
One major benefit to our approach is its simplicity, as it
follows only two rules: 1) work in a linear basis whose
variables are products of the Boolean state variables, and
2) ignore quickly-decaying modes if we are looking at late-
time behavior. Based on (1) we refer to our analysis as a
product-basis method.

Results

To demonstrate our method, we applied it to the T-cell
activation network described in Ref. [23] (see Figure 10
and Table 2 of that paper). This is a deterministic, 40-
node network with fifty-four edges containing multiple
feedback loops, and whose attractors include both steady
states and limit cycles. To use our method, we first pro-
vided a target set of variables to follow in time, which
the product-basis algorithm used to generate a set of
time-evolution equations involving those variables (along
with other variables that were added automatically to
close the system of equations). We chose to track three
variables: the ligand-binding state of the T-cell recep-
tor TCRBOUND ' the phosphorylation state TCRF, and
the co-occurrence of binding and phosphorylation. The
starting population we considered was a uniform mixture
of all possible 24°(a~ 10'?) initial states of the Boolean
network. We generated the product-basis time-evolution
equations, and used them to track the population-level
average of each of the three variables of interest for 50
time steps (Figure [JA). It should be noted that the co-
occurrence variable TCREBOYNP Axp TCRF is not sim-
ply the product TCREOVND » TCRF. For example if

TCRPOUNP = 0.5 and TCR" = 0.5, then TCRPOVNP
AND TCRY could equal 0.25 if the binding and phospho-
rylation states are uncorrelated in the population, 0 if
they are perfectly anticorrelated, 0.5 if they are perfect
correlated, or any other value on the interval [0, 0.5].
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Figure 1. A) Time-evolution of the mean TCR state
in a heterogeneous population, based on the model of
Ref. [23]. The population begins at t = 0 as a uniform
mixture of all possible 240 ~ 10'2 activation states of the
40 Boolean variables in the model. B) The effect of a
1% knock-out mutation rate per gene on the time
evolution of the co-occurrence TCREOUNP aAnxp TCRY
in the population. The slight difference between a 0%
and 1% mutation rate per gene is too small to reliably
resolve by Monte Carlo, despite the fact that a third of
the population has at least one mutation.

Next we demonstrated the ability of the product-basis
method to analyze mutations in the network by includ-
ing the full set of possible gene knock-outs in the T-cell
activation network. We did this by adding a set of ‘wild-
type’ variables to the network, one for each original vari-
able in the system, and included the wild-type variables
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in the update rules using an AND operation. For ex-
ample, an update rule reading A < B OR C became
A+ (B or C) aAND AWT. We also adjusted the initial
populations so that the non-wild-type genes always be-
gan OFF. The initial population contained each possible
combination of knock-out mutations at a 1% mutation
rate per variable and each possible combination of start-
ing states compatible with each knockout set, spanning on
the order of ~ 10?* different subpopulations. We followed
the time course of the TCRBOYNP Axp TCRY variable
and compared it to our original wild-type result (Figure
[IB). We also validated the result (to within statistical
error) using Monte Carlo.

Our results from the T cell network demonstrate several
important aspects of our method. First, we are able to
simulate extremely heterogeneous populations, involving
far more subpopulations than could be analyzed one-by-
one. Second, although our method only deals with hetero-
geneity in the states of the Boolean variables, we can still
simulate a genetically-heterogeneous population by aug-
menting the Boolean network with mutation variables.
Third, we can exactly model subpopulations that were
present at very low levels, and our exact result tracked
these rare subpopulations over time far more precisely
than Monte Carlo simulations can (see the error bars in
Figure ) For example, the contribution of each triple-
mutant was factored in even though a given triple-mutant
was present in only 0.0001% of the population. While one
might artificially raise the Monte Carlo mutation rate to
oversample the mutations [8], this has the disadvantage of
overweighting the effect of multiple mutants even though
realistic evolutionary paths take one or very few muta-
tional steps at a time [24]. In contrast, our exact result
is dominated by the evolutionarily-accessible subpopula-
tions that are closest to wild-type.

The code used to generate these results is named
tCellActivationEx.m, and is available for download
at https://github.com/CostelloLab/ProductBasis|
The equation-generating process for Figure[IJA took ~ 0.4
seconds using our code (written in MATLAB R2015b
8.6.0.267246, running on a 2.6GHZ Intel core i7 Mac
with OS 10.9.5). We checked this exact result against
Npuns = 10* Monte Carlo runs, which took longer (~ 290
seconds). Note that Monte Carlo error is proportional to

1/\/ Nruns-

Methods

Simulations of mixed populations

The principle behind our method is to write the time evo-
lution of each variable in our network using a linear equa-
tion. Doing so guarantees that the dynamical equations

we derive for a single cell also fully describe the dynamics
of a mixed population of cells, owing to the superposition
property of linear equations.

The key to writing linear equations is to introduce a
new variable to represent each nonlinear term in a naive
update rule, acknowledging that we will have to solve for
the dynamics of this new variable as well. In our case,
each nonlinear term is a product of Boolean variables, so
the update rule for its respective introduced variable will
be a product of the constituent Boolean update rules.
We demonstrate this procedure using Example 1.
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Figure 2. The 3-Boolean network used in Example 1.
Arrows indicate how each variable updates based on the
values of its inputs at the previous time step. For
example if either A or B is ON at time ¢ then C will be
ON at time t + 1; otherwise C will be OFF.

Example 1: a 3-variable network

Suppose we want to track the time evolution of vari-
able A in the network shown in Figure Since
this network evolves by discrete time steps, we write
2A(t+1) = fa(xp) where f4 performs the NOT op-
eration. A linear equation implementing the NOT
gate is:

(1.1)

Evidently, in order to follow z4 over all time we
must also track the state of its input variable B over
time. B implements an AND gate which is a nonlin-
ear operation: fgp = x4 -zco. To make the equation
linear, we introduce £ ac = x4 - x¢, which is 1 if and
only if both A and C' are ON, and write fp in terms
of this new variable.

fA(xB) =1- rB.

fB=zac (1.2)

We still need to calculate fao for our new variable
ZAc, which is simply the product f4 - fo. (Proof:
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fac =zac(t+1)=za(t+1)-zc(t+1) = fa- fc.)
fc implements an OR gate whose linear equation
involves yet another product variable x 4p5.

fac = fa- fc
=(1—-zp)-(xa+ B —TaB)
=TA — TAB (13)

The formula for fic made use of the fact that
any Boolean value squared equals itself: for exam-
plezp-xp =xp,and - TAp = TR TA-TB = TAB-

The process of replacing product terms with new
variables, and then solving for the time evolution of
those new variables, continues until the equations
form a closed system: each variable’s time evolution
is in terms of other variables in our system.

fap=1—25)-(rac)
= TAC — TABC (1.4)
fapc=(1—2B) - (xac) (xa+2B —2aB)
=T AC — TABC (1.5)
This gives us a closed linear system. To avoid the
constant term we can rewrite Eq. (1.1) as fa =
Ty — xp, where zy = 1 updates according to:

fo = zp. (1.6)

Equations together with an initial state in
(x4, B, Tac, AR, Tapc) describe the time evolu-
tion of these quantities in a single Boolean network
as a sequence of Os and 1s in each variable. The final
step is to reinterpret these equations as describing
the dynamics of a mixed population of networks, by
assigning to each variable the fraction of that popu-
lation having that variable set to 1. So whereas for
a single network the value of x4 should always be
either 0 or 1, for a mixture of networks in which 40%
of the population has gene A set ON we would set
x4 = 0.4. Owing to the superposition property of
linear systems, Equations that were derived
in the context of a single network also exactly model
any mixed ensemble of these networks.

Any state or mixture of states can be written as a linear
combination of product-basis variables {z}, because these
variables form a complete basis spanning the state space
(see Appendix 1 for a proof; also Ref. [18] proves a similar

result for a slightly different Boolean algebra). Since each
time-evolution function f is a sum over all states causing
a ‘1’ in the output variable when written in the state
basis, it follows that each f is also a linear combination
of our x variables. Therefore our procedure for modeling a
mixed population always works in principle, even if some
networks require too many equations for this method to
be practical.

We can extend mixed-population modeling to proba-
bilistic |21] and continuous-time [22] Boolean networks.
Probabilistic Boolean networks require no changes in the
algorithm; the only difference is that the polynomial co-
efficients in our equations may not be integers. For ex-
ample, if the NOT gate in Fig. [2|is leaky with A turning
ON with a probability of 0.9/0.2 if B was OFF/ON at the
last time step, then the transition rule for gene A becomes
fa=0.9-0.7zg. As before, a linear equation can always
be written because a) a linear equation can still be written
in the state space basis, and b) our x variables are just a
different basis covering the state space. Probabilistic net-
works give one way to incorporate rate information into
our model; another way is to work in continuous time
using differential equations: fa = dxa/dt. The differ-
ential form does require one change in our method: the
rate of change of a higher-order variable is found by using
the product rule of derivatives. Whereas under a discrete
update fapc... is the product fa - fp - fo - ..., for the
differential case we compute:

d
fABC... = % (.TJA.’EB.%‘C .. )

:l‘A?L’B...fc-‘rwAaﬁc...fB+.... (17)

Also, under discrete updates the trivial function is f =1
but with differential updates it is fp = 0.

Long-term behaviors

A mixed-population simulation may or may not be practi-
cal, depending on whether the system of linear equations
closes with a manageable number of variables n. In the
worst case, a significant fraction of the entire xz-variable
space is involved. By counting subscripts we know that
there are n = 2V product variables associated with an
N-Boolean network, which is expected because our z-
variables are simply a change of basis from the state space
(see Appendix 1). Therefore the problem has potentially
exponential complexity.

One way to make progress even when a closed sys-
tem of equations is unmanageable is to focus on the
attractors (steady states or limit cycles). The attractors
are governed by a linear space whose size is determined
by the number of attractor states, which for biological
networks is usually much smaller than the full equation
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space.  Mathematically, this means that our linear
equations form a very degenerate system: if there are
only n* steady states then there are only n* non-zero
eigenvalues and n* linearly independent equations. So
for a 50-node network with a single steady state attractor
we might have n = 2°0 ~ 10'® in the worst case, but
n* = 1, which is a vastly smaller linear system. To
find only the structure of the final-state space we select
n* linearly independent variables, substitute them for
the other variables in the time-evolution functions, and
do an eigenvalue analysis on the much-smaller n* x n*
system. A continuation of Example 1 gives a simple
demonstration of this procedure.

Example 1, continued

Egs. 1.6| in Example 1 contain a single linear
dependency: fap = fapc. Therefore after the first
time step z4p will equal x4pc: we write xap =

rapc. We use this fact to eliminate x 4p, giving a
new set of steady state equations:

fa=

fB=zac

].—{EB

€D

fac = x4 —2aBC
t>2

faBc = xac —raBc
f@ =1.

Our new set of equations has the same non-zero
eigenspace as the original set , except Eq.
is only valid from the second time step onwards.
However, the equations lack the null eigenspace
because we removed the only linear dependency.
States lying in the null eigenspace by definition de-
cay and therefore correspond to transients in the
time evolution, whereas eigenvectors whose eigen-
values have magnitude 1 do not decay and are part
of the final attractor states. The 5 eigenvalues all
have phases that are multiples of 27/5, indicating
that the sole attractor is a limit cycle with a period
of 5 time steps. The states are: (100) — (101) —
(111) — (011) — (001) — ... at which point the
sequence repeats.

There would be no time savings if we only eliminated a
variable after we had already computed its time-evolution
function. Fortunately, each linear dependency constrains
not only the dependent variables, but also any variable
that is factorized by a dependent variable (i.e. has all of
the dependent variable’s subscripts). Thus a dependency
involving a low-order variable with few indices can ex-

clude a significant fraction of the variable space. We find
these constraints concurrently with the process of adding
equations, and thereby avoid having to evaluate a signif-
icant fraction of our variable space.

Constraints are traditionally enforced by substitution;
however, there are two problems with substituting
constraint expressions in our case. First, there is no
guarantee that when applying two constraints the
second will not undo the work of the first, for example
by reintroducing an index that the first eliminated.
That is, there may be no self-consistent solution that
uses all constraints. The second problem is that two
dependencies might constrain overlapping indices on the
same variable. For example, in the network of Figure
variable zapc is subject to constraints from both
rap and xpc, and substituting either constraint would
eliminate the subscript ‘2’ that the other constraint
requires. We avoid both these problems by multiplying
constraints rather than substituting them, using the fact
that we can freely duplicate (or remove duplicates of)
constrained indices, because a Boolean raised to any
positive power equals itself. This process forces the
removal of all variables containing certain indices and
lacking others, of which there is always at least one.

AND

ANDl

D

Figure 3. The network used in Example 2

Example 2

Suppose we want to find the long-time behavior of
Boolean variables A, C and E in the network of
Figure [3] After two iterations of solving for time-
evolution functions we have:
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fa=zBc (2.1)

Jc=za+zp—TaB

fE=2p

fB=12a (2.4)

/b =zaBC (2.5)
faB =zaBc (2.6)
fBo =124 (2.7)

At this point there are two linear dependencies:
fap = fp and fpc = fp, implying that

TAB t§2 Tp (C1)
D t§2 TAB (CZ)
B t§2 TBC- (CS)

Since we are only interested in the long-time be-
havior, we will use these constraints to simplify our
equations. For example if we were to retain x4pc
it would be affected by the relationships involving
zap, g and xpc, and it would not be possible to
enforce all of these by substitution because there is
only one B-index on z4pc. But our method en-
forces constraints by multiplying them:

TABC = TAB "TB " TBC " TABC

— ZD "TBC "B " TAB
t>2 C c

= TABCD-

More generally, the first constraint attaches an AB
index to every variable containing a D, and a D
index to each variable with AB indices, and the
second constraint adds a C' index to every variable
with a B index.

Constraining our system and eliminating disused
variables gives us

fa=zBc
fc 5, %A+ TBO —TaBcD 2.2
= 2.3
fe 5, FABCD (2.3
fBc =z4.

Our new equations require us to solve for another
variable (while applying the constraints):

fasep s TABCD- (2.8)
The system is now closed (5 equations involving 5
variables), so if our goal is to produce a simulation
(valid from time step 2 onwards) then we are done.
However, if our objective is to find the attractors
then we must remove another dependency that was
unmasked by the last equation: fo = fBc + fa—

fE, which implies three useful constraints.

= — 4
TA " Tc +TE — TBC (C4)
o t;ng—l‘E—Fch (05)
TE t;g)foﬂijrIBc (CG)

Each constraint reduces the size of the variable
space: for example, the first eliminates all variables
containing index A with no C, E or BC. We did not
solve for zpc because doing so would not eliminate
any variables, because the z¢ term does not attach
any new indices.

After applying the new constraints we obtain:

IBc =, TAC T TAE — TaBoD 2.7)
faBcp S, TABCD
fac =zpc (2.9)
faE 5, TABCD (2.10)
fce S, TABCD (2.11)
[BcE S, TABCD (2.12)

This produces new dependencies: fap = faBep
t>2

and fop = faBcp, implying that

TAB 3, TABCD (C7)
TABOD 5, TAE (C8)

fr— . Cg
TOE 3, TABCD (C9)

With these constraints our example ends with the
following equations:
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2.7
(2.13)

fBC t: TAC

>3

fABCcDE = TABCDE
>3

fAC’ = TBC-

The attractor is always reached at or before time
step 3. The constraints map our original variables to
linear combinations of variables in the final system:
for example z 4 is mapped by constraint[C4]to z 4c+
TAg —Tapc, then mapped using constraints [C1]
and to xac, whose dynamics are given by the
final time-evolution equations. The eigenvalues of
this final system are (—1,1,1), implying a steady
state along with a period-2 cycle.

FEach dependency produces at least one constraint that
permanently eliminates at least one of the dependent vari-
ables, and usually many other variables as well. Proof:
if the dependency contains only one term then that vari-
able is zero, eliminating it and all variables it factorizes.
If there is more than one term in the dependency then
each lowest-index variable (which may be zy = 1) ac-
cumulates at least one index from any other variable in
the dependency. Therefore each lowest-index variable is
always eliminated. Corollary: the calculation eventually
terminates because there are a finite number of variables,
and each new linear dependency removes at least one fur-
ther variable.

Applying the equation-reduction method to each de-
pendency in our linear system F = {f;} is guaranteed
to eliminate the entire null space of F', simply because
variables will be removed from the system until there are
no more dependencies. On the other hand, our equation-
reduction method does not affect the non-null eigenspace
involving the variables of interest, because the constraints
map those variables to variables in the final equations:
Xtinal = C - Xinterest- Therefore the long-time behavior
is accurately modeled by Fjpierest = CTF 'tinalC, Which
therefore contains all the persistent eigenmodes.

All eigenvalues of F' have modulus either 0 or 1 in a de-
terministic Boolean network, owing to the fact that the
state space (and therefore by Appendix 1 our product-
basis space) is finite. Proof: every state has a unique
decomposition in terms of a set of generalized eigenvec-
tors, so a state at time step a that repeats at time step b
will have the same component of each eigenvector. Since
there are a finite number of states one can always find
such time steps a and b. Thus for each eigenvalue A we
have A = A°, which implies that either A = 0, or else
|A| =1 and arg(\) = 27k/(b — a) for integer k.

Probabilistic and asynchronous Boolean networks
Our method supports modeling large populations of prob-
abilistic Boolean networks (PBNs) 21} |25], in which sev-
eral state transitions are possible at each time step, and
the various transitions may have different probabilities.
In the limit where the population of PBNs becomes infi-
nite, each possible state transition occurs in a fraction of
the population proportional to its likelihood in an indi-
vidual. From the standpoint of our method, this implies
that the coefficients in the f; equations of a PBN become
real-valued, but the process of building the f; equations
is unchanged.

The time-evolution equations F' of a PBN in general
contain eigenmodes having real-valued eigenvalues whose
modulus is on the interval [0, 1]. (A modulus larger than 1
would represent a mode growing without bound, which is
impossible because in the state-space basis the fraction of
the population in each state b; is restricted to the interval
[0,1]). Therefore, unlike a deterministic network, a PBN
can have slowly-decaying modes with eigenvalues between
0 and 1. For PBNs we generalize our equation-reduction
method to identify decaying modes before all f; have been
solved (i.e. before F' is a square matrix), by identifying
modes m having the property m-F = A [m 0]. We discard
these modes after they have become sufficiently small, de-
fined by e~ At=maxm(t1)) < ¢ where ¢, are the ‘starting
times’ of the involved equations and e is a user-defined
threshold.

Large populations of asynchronous networks behave
identically to large populations of PBNs [26] if we define
a uniform time step: the likelihoods of the various possi-
ble updates give the state-transition weights in the corre-
sponding synchronous PBN. Therefore our analysis also
applies to large populations of asynchronous networks.
The conversion of an asynchronous updating scheme to
a PBN lowers some of the eigenvalues that would other-
wise be of magnitude 1 in a synchronous version of the
network, and therefore our equation-reduction method
can prune asynchronous networks more aggressively than
their synchronous counterparts.

Calculational notes When we attempt to simplify a
network by removing dependencies, the order in which
we calculate the time evolution of new variables and look
for new dependencies greatly influences the total number
of variables that will be involved before the linear system
closes. That is because the constraints coming from differ-
ent dependencies simplify the system to different degrees.
In general, constraints on variables having the fewest in-
dices are most helpful, because they factorize the largest
part of the variable space. Following this rule of thumb,
our implementation solves only the fewest-index variables
between each search for new dependencies. Additionally,
we add low-index factors of new variables even if they
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were not directly involved in earlier equations. In our
tests, this prioritization method greatly speeds up the
calculation.

Certain constraints can multiply the prefactors of some
variables in such a way that the prefactors can exceed
the integer limit if enough of these constraints are ap-
plied. For example, the constraint x1 = x2 + x3 takes
T123 — 2x123. Typically the variable being multiplied
would be found to be zero later in the calculation, so
having a coefficient of 2 is not an error in the math, but
it can make calculations impractical if the doubling hap-
pens repeatedly and the coefficient becomes very large.
Fortunately, one can usually identify these outlier coeffi-
cients and remove them. For example, if f; = 2x123 then
we can reason that if f; and x123 are both bounded by 0
and 1, then we have a new constraint x123 = 0 which sim-
plifies fy — 0. We identify these problematic coefficients
using the heuristic that if a large coeflicient multiplying a
combination of integer-weighted variables is greater than
the sum of all other coefficients, then that combination of
variables (which is an integer for a homogeneous popula-
tion) must be zero.

Our product basis has the property that any product
of variables is itself a variable in the basis, so that poly-
nomials need never contain products of these variables.
In the product basis, multiplication is interpreted as a
union operation on the indices of the variables being mul-
tiplied. To place these rules in a mathematical context,
this algebra is a commutative ring with an idempotent
multiplication (z7 = ;).

Discussion

Our product-basis method allows the direct simulation of
highly heterogeneous populations, including the transient
processes that are generally ignored by analytic methods,
as well as the steady states and limit cycles. This ap-
proach can be used to follow single variables of the sys-
tem over time, as well as the correlations between these
variables that are both necessary and sufficient to fully
describe the dynamics of the population. It can account
for the effect of mutations as well as variability in network
state throughout the population, and exactly accounts for
very rare subpopulations. An extension of the method al-
lows the set of equations to be simplified while still cap-
turing the long-term behavior. The only requirement for
use of our approach is that the underlying model be built
using Boolean variables.

The advance in our method is to write the time-
evolution equations as a linear system, but in a different
basis than the usual state space basis. Our variables have
several advantages over state space variables. First, de-
scriptors of a mixed population naturally use words that

correspond more closely to our variables than to individ-
ual states. For example, we might specify that half the
population starts with both genes A and B on, which im-
plies that x4p = 0.5 but is agnostic about the state of
other variables. Another advantage is that our equations
often close using relatively few of our product variables for
any mixed population, whereas the number of equations
required in the state space basis scales with the hetero-
geneity of the population: the simulations we showed in
Figurewould require all 240 state space variables. Thus
our choice of variables is superior for modeling very het-
erogeneous populations. Finally, our basis allows some
variables to factorize others, allowing us to vastly sim-
plify the calculation in many cases where we only care
about the long-term behavior.

We acknowledge that our method can become in-
tractable for complicated networks due to the fact that
the construction of these simulations is potentially an ex-
ponential problem. A full simulation can require up to
2N equations to model, and even the attractor analysis
is known to be NP-hard [27]. Large size, complicated
logic rules and certain feedback loops in particular seem
to cause the equation set to be large. These are funda-
mental limitations. However, the attractor analysis de-
pends on an equation-reduction scheme that is somewhat
of an art, and we anticipate that future work will greatly
improve this part of the calculation for typical network
models.

Our method can be applied to any system involving
heterogeneous populations, as long as the individuals in
a population can be modeled using Boolean logic. Het-
erogeneity plays a major role in such varied systems as
healthy and cancerous tissues, evolution at the organism
scale, and the social dynamics of unique individuals [28].
In all of these cases, rare and unexpected dynamics are
difficult to capture by simulations of individuals, while
pure attractor analyses may miss important aspects of the
dynamics. We believe that the methodology outlined here
can help to capture these important but elusive events.

Appendices

Appendix 1: correlation variables form a
complete and independent basis

For N Boolean variables there are 2V variables in the
state space basis (b variables): this is just the number of
states of the system. Likewise there are 2V variables in
the product space basis (z variables) because there are
2N combinations of subscripts on these variables: each of
N subscripts may be present or absent. Therefore the two
spaces have the same number of variables, but this does
not prove that the product-basis spans the entire Boolean
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space. In order to show that the z-variables form a com-
plete basis in b-space, we imagine explicitly writing the
transformation matrix from b-space to z-space. For ex-
ample, for the case of three Boolean variables this matrix
is:

¢
SR AN AN Qb«oo 0 VOW% N

1 11111111
A 01010101
r,— B 00110011
v TAp 00010001
e 00001111
e 00000101
Tpe 00000011
Zapc L0 0 00 00 0 1]

The transformation matrix is upper-triangular, with ones
on the diagonal. The reason is that each x-variable
is turned on by the b-variable having the same indices
(hence the ones along the diagonal), and by any b-
variables containing additional indices implying a higher
position in the matrix (since the indices are arranged in
binary order of their subscripts); however an z-variable is
never turned on by a b-variable that is missing one of its
indices, which is why the lower triangular block is empty.
Since the matrix is triangular the eigenvalues are the ones
on the diagonal, so the determinant is one, the trans-
formation is non-degenerate (and volume-preserving) and
therefore the z-space spans the b-space.

Appendix 2: algorithm and code

Pseudocode is given in Algorithm 1. The full code is avail-
able at: https://github.com/heltilda/ProBaBool.
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Algorithm 1 build closed system of equations F’

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:
38:

39:

Initialize set of unsolved variables with variables of interest: X < {x1, 23, ..., 2, }
Initialize set of variable update rules: F + ()

Initialize set of constraints: C < ()

Initialize simulation start time: tg;, < 1

Initialize set of equation start times of F': T < ()

Initialize set of constraint start times: T < 0

while X is not empty do

% Reduce equations if necessary
if size(F') > equation_reduction_threshold then
F + square-matrix component of F' (i.e. only terms in solved variables for each f;)
A+ set of eigenvalues of F
for each \; € A do
G+ F— N[0
R « upper-triangular matrix from QR(G)
V; « set of dependent variables j found from |R;;| < €
D + set of linear-dependencies found by V; = G(V;)/G(V;)
if V; # () then
tsim < MIN(tgim, min(Tr(zr € D)) + max(1, ceiling(log €gecay/ 10g | Ai])))
break
end if
end for
for each d; € D do
NewConstraints(d;, tsim)
end for
Sort C' by number of indices
F < Constrain(F, 1)
X + X Ulowest-index factors of X
F <+ Constrain(F, 1)
Sort X by number of indices
end if

% Add new equations
for each z; € X do
for each Boolean factor x; of z; do
fififo
end for
F + F U Constrain(f;, 1)
end for

end while
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40: function NEWCONSTRAINTS(d, t.)

41: for each z; € d do

42: RHS; < solve (d =0) for z;

43: if {z;} # Constrain({RHS,},t.)[1] then

44: for each prior constraint (z, = RHS,) do
45: if x, is factorized by z; and z, - RHS; = RHS), then
46: C <+ C\{cp}

47: end if

48: end for

49: C<—CU{$]:RHS]}

50: for each x;, = multiples of z; do

51: Xew ¢ new terms in x - RHS),

52: X+ XUX,ew

53: A < {a; = coefficients of zj in F'}

54: F%F+A~(RHS]€7(E]€)

55: (ty, for all I such that a; # 0) + ¢,

56: end for

57: end if

58: end for

59: end function

60: function CONSTRAIN(Polys,t.)
61: for each poly; € Polys do

62: while 3 unconstrained terms in poly; do

63: for each constraint z; = RHS; do

64: % Multiply all factored variables by the constraint
65: for each unconstrained variable ; with coefficient a; in poly; do
66: if x; is factorized by x; then

67: POlYnew < x; - RHS;

68: if z; ¢ polype,, then

69: poly; < (poly; — a; - ;) U polynew
70: ty, < tc

71: end if

72: end if

73: end for

74: % Check for overlarge coefficients

75: while 3 unchecked coefficients in poly; do
76: for each coeflicient a; in poly; do

(e n; = round(a;/a;)

78: if |a;| > 2, |a; — nja;| then

79: NewConstraints(n;, tsim)

80: break

81: end if

82: end for

83: end while

84: end for

85: end while

86: end for

87: return Polys

88: end function
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