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Abstract 

Background: Single-cell RNA sequencing (scRNA-Seq) is an increasingly 

popular platform to study heterogeneity at the single-cell level. 

Computational methods to process scRNA-Seq have limited accessibility to 

bench scientists as they require significant amounts of bioinformatics skills. 

Results: We have developed Granatum, a web-based scRNA-Seq analysis 

pipeline to make analysis more broadly accessible to researchers. Without a 

single line of programming code, users can click through the pipeline, setting 

parameters and visualizing results via the interactive graphical interface. 

Granatum conveniently walks users through various steps of scRNA-Seq 

analysis. It has a comprehensive list of modules, including plate merging and 

batch-effect removal, outlier-sample removal, gene filtering, gene-

expression normalization, cell clustering, differential gene expression 

analysis, pathway/ontology enrichment analysis, protein-network 

interaction visualization, and pseudo-time cell series construction. 

Conclusions: Granatum enables broad adoption of scRNA-Seq technology by 

empowering the bench scientists with an easy-to-use graphical interface for 

scRNA-Seq data analysis. The package is freely available for research use at 

http://garmiregroup.org/granatum/app 

Keywords: single-cell; gene expression; graphical; normalization; clustering; 

differential expression; pathway; pseudo-time; software 
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Background  16 

Single-cell high-throughput RNA sequencing (scRNA-Seq) is providing new opportunities for 17 

researchers to identify the expression characteristics of individual cells among complex tissues. 18 

From bulk cell RNA-Seq, scRNA-Seq is a significant leap forward. In cancer, for example, scRNA-Seq 19 

allows tumorous cells to be separated from healthy cells [1], and primary cells to be differentiated 20 

from metastatic cells [2]. Single-cell expression data can also be used to describe trajectories of 21 

cell differentiation and development [3]. However, analyzing data from scRNA-Seq brings new 22 

computational challenges, e.g., accounting for inherently high drop-out or artificial loss of RNA-23 

expression information [4,5]. 24 

Software addressing these computational challenges typically requires the ability to use a 25 

programming language like R [5,6], limiting accessibility for biologists who only have general 26 

computer skills. Existing workflows that can be used to analyze scRNA-Seq data, such as Singular 27 

(Fluidigm, Inc., South San Francisco, CA, USA), Cell Ranger (10x Genomics Inc.,  Pleasanton, CA, 28 

USA), and Scater [7], all require some non-graphical interactions. They also may not provide a 29 

comprehensive set of scRNA-Seq analysis methods. To fill this gap, we have developed Granatum, 30 

a fully interactive graphical scRNA-Seq analysis tool. Granatum takes its name from the Latin word 31 

for pomegranate, whose copious seeds resemble individual cells. This tool employs an easy-to-use 32 

web-browser interface for a wide range of methods suitable for scRNA-Seq analysis: removal of 33 

batch effects, removal of outlier cells, normalization of expression levels, filtering of under-34 

informative genes, clustering of cells, identification of differentially expressed genes, identification 35 
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of enriched pathways/ontologies, visualization of protein networks, and reconstruction of pseudo-36 

time paths for cells. Our software empowers a much broader audience in research communities to 37 

study single-cell complexity by allowing the graphical exploration of single-cell expression data, 38 

both as an online web tool (from either computers or mobile devices) and as locally deployed 39 

software. 40 

Implementation 41 

Overview 42 

The front-end and the back-end of Granatum are written in R [8] and built with the Shiny 43 

framework [9]. A load-balancer written in NodeJS handles multiple concurrent users. Users work 44 

within their own data space. To protect the privacy of users, the data submitted by one user is not 45 

visible to any other user. The front-end operates within dynamically loaded web pages arranged in 46 

a step-wise fashion. ShinyJS [10] is used to power some of the interactive components. It permits 47 

viewing on mobile devices through the reactivity of the Bootstrap framework. To allow users to 48 

redo a task, each processing step is equipped with a reset button. Bookmarking allows the saving 49 

and sharing of states.  50 

Interactive widgets 51 

Layout and interactivity for the protein-protein interaction (PPI) network modules is implemented 52 

using the visNetwork package [11]. Preview of user-submitted data and display of tabular data in 53 

various modules is implemented using DataTables [12]. The interactive outlier-identification step 54 
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uses Plotly [13]. Scatter-plots, box-plots, and pseudo-time construction in Monocle are done by 55 

the ggplot2 package [3,14]. 56 

Back-end variable management 57 

The expression matrix and the metadata sheet are stored separately for each user. The metadata 58 

sheet refers to groups, batches, or other properties of the samples in the corresponding 59 

expression matrix. All modules share these two types of tables. Other variables shared across all 60 

modules include the log-transformed expression matrix, the filtered and normalized expression 61 

matrix, the dimensionally reduced matrix, species (human or mouse) and the primary metadata 62 

column. 63 

Batch-effect removal 64 

Batch effect is defined as the unwanted variation introduced in processing or sequencing in 65 

potentially different conditions [15]. To remove batch effects, we implement two methods in 66 

Granatum: ComBat and Median alignment.  67 

ComBat: This method adjusts the batch-effect using empirical Bayes frameworks, and is robust in 68 

the presence of outliers or for small sample sizes [16]. It is originally designed for batch-effect 69 

removal of microarray gene expression datasets but is commonly used in single-cell RNA-Seq 70 

studies [17–19]. It is implemented by the “ComBat” function in the R package “sva” [20]. 71 

Median alignment: First, this method calculates the median expression of each sample, denoted as 72 

����  for sample �. Second, it calculates the mean of ����  for each batch, denoted as 73 
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����	
���� for batch �, 74 

����	
���� � ��������
�����������������. 

Finally, it multiplies each batch by a factor that pulls the expression levels towards the global 75 

geometric mean of the sample medians. When � � ����	� and � is the number of samples, 76 

������_������ � ������_������� �
��������
������,..,�������

����	
����
, 

where sample_beforei and sample_afteri  denote the expression levels for all genes within sample � 77 

before and after batch-effect removal. 78 

Outlier detection and gene filtering 79 

Z-score threshold is used to automatically detect outliers. The z-score of a cell is calculated by 80 

calculating the Euclidean norm of the cell’s vector of expression levels, after scaling all genes to 81 

have unit standard deviation and zero mean [21].Over-dispersion gene filtering is done as 82 

recommended by Brennecke et al. 2013 [4]. The output of the Monocle package [3] is modified to 83 

calculate dispersion and fit a negative binomial model to the result. 84 

Clustering methods 85 

The following description of clustering algorithms assumes that � is the number of genes, � is the 86 

number of samples, and � is the number of clusters. 87 

Non-negative matrix factorization (NMF): The log-transformed expression matrix (�-by-�) is 88 

factorized into two non-negative matrices � (�-by-�) and � (�-by-�). The highest-valued k entry 89 
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in each column of � determines the membership of each cluster [22,23]. The NMF computation is 90 

implemented in the NMF R-package, as reported earlier [22,24]. 91 

K-means: K-means is done on either the log-transformed expression matrix or the 2-by-� 92 

correlation t-SNE matrix. The algorithm is implemented by the kmeans function in R [25]. 93 

Hierarchical clustering (Hclust): Hclust is done on either the log-transformed expression matrix or 94 

the 2-by-� correlation t-SNE matrix. The algorithm is implemented by the hclust function in R [26]. 95 

The heatmap with dendrograms is plotted using the heatmap function in R. 96 

Dimension reduction methods 97 

Correlation t-SNE: The method assesses heterogeneity of the data using a two-step process. First, 98 

it calculates a distance matrix using the correlation distance. The correlation distance Di,j between 99 

sample � and sample � is defined as 100 

��,� � 1! Correlation�+� , +��, 

where +�  and +�  are the �-th and �-th column (sample) of the expression matrix. Next, Rtsne R 101 

package [27] uses this distance matrix to reduce the expression matrix to two dimensions. 102 

PCA: The Principal Component Analysis algorithm, implemented as “prcomp” function in R, 103 

decomposes the original data into linearly uncorrelated variables (components) using orthogonal 104 

transformation. The components are then sorted by their variance. The two components with the 105 

largest variances (PC1 and PC2) are extracted for visualization [28]. 106 
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Elbow-point finding algorithm in clustering 107 

This method is inspired by a similar approach implemented in SCRAT [29]. In the clustering module 108 

with automatic determination of the number of clusters, the identification of the optimum 109 

number of clusters is done prior to presenting the clustering results. For each number of clusters 110 

� � 2 to � � 10, the percentage of the explained variance (EV) is calculated. To find the elbow-111 

point � � � where the EV plateaus, a linear elbow function is fit to the �-EV data points. This 112 

piecewise function consists of a linearly increasing piece from 0 to �, and a constant piece from � 113 

to 10. The algorithm iterates from � � 1 to 10 and identifies � which gives the best coefficient of 114 

determination (.) of linear regression as the "elbow point". 115 

Differential expression analysis 116 

We include four differential expression (DE) algorithms in Granatum: NODES[30], SCDE[31], EdgeR 117 

[32], and Limma [33]. Among them, NODES and SCDE are designed for single-cell RNA-Seq 118 

specifically. EdgeR and Limma are conventional bulk cell RNA-Seq DE tools that have also been 119 

used in single-cell RNA-Seq studies [34,35]. When more than two clusters are present, we perform 120 

pairwise DE analysis on all clusters. We use default parameters for all packages. Their versions are: 121 

NODES (0.0.0.9010), SCDE  (1.99.2), EdgeR (3.18.1) and Limma (3.32.2) 122 

Gene-set enrichment analysis 123 

The fgsea R-package implements the Gene Set Enrichment Analysis (GSEA) algorithm with 124 

optimizations for speedup [36,37]. GSEA calculates an enrichment score, which quantifies the 125 

relevance of a gene set (for example, a KEGG pathway or a GO term) to a particular group of 126 
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selected genes (e.g., DE genes called by a method). The p-value is calculated for each gene set 127 

according to the empirical distribution, followed by Benjamini–Hochberg multiple hypothesis tests 128 

[38]. 129 

Pseudo-time construction 130 

We use Monocle (version 2.2.0) in our pseudo-time construction step. When building the 131 

CellDataSet required for monocle’s input, we set the expressionFamily to negbinomial.size(). We 132 

use reduceDimension function to reduce the dimensionality by setting max_components to 2.  133 

Results 134 

Overview of Granatum  135 

Granatum is by far the most comprehensive graphic-user-interface (GUI) based scRNA-Seq analysis 136 

pipeline with no requirement of programming knowledge (Table 1). It allows both direct web-137 

based analysis (accessible through either desktop computers or mobile devices), as well as local 138 

deployment (as detailed in the front-page of http://garmiregroup.org/granatum/app). The project 139 

is fully open source, and its source code can be found at http://garmiregroup.org/granatum/code. 140 

We have systematically compared Granatum with 12 other existing tools to demonstrate its 141 

versatile functions (Table 1). Popular packages such as SCDE / PAGODA and Flotilla are developed 142 

for programmers and require expertise in a particular programming language. In contrast, 143 

Granatum with its easy-to-navigate graphical interface requires no programming specialty. The 144 
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current version of Granatum neatly presents nine modules, arranged as steps and ordered by their 145 

dependencyIt starts with one or more expression matrices and corresponding sample metadata 146 

sheet(s), followed by data merging, batch-effect removal, outlier removal, normalization, gene 147 

filtering, clustering, differential expression, protein-protein network, and pseudo-time 148 

construction.  149 

Besides the features above, a number of enhanced functionalities make Granatum more flexible 150 

than other freely available tools (Table 1). (1) Unlike tools such as SCRAT 151 

(https://zhiji.shinyapps.io/scrat/), ASAP [39] and Sake (http://sake.mhammell.tools/), it is the only 152 

GUI pipeline that supports multiple dataset submission as well as batch effect removal. (2) Each 153 

step can be reset for re-analysis. (3) Certain steps (eg. batch-effect removal, outlier removal, and 154 

gene filtering) can be bypassed without affecting the completion of the workflow. (4) Subsets of 155 

the data can be selected for customized analysis. (5) Outlier samples can be identified either 156 

automatically by a pre-set threshold or by manually clicking/lassoing the samples the PCA plot or 157 

the correlation t-SNE plot. (6) Multiple cores can be utilized in the differential expression module 158 

for speed-up. (7) Both GSEA and network analysis can be performed for the differentially 159 

expressed genes in all pairs of subgroups, following clustering analysis. (8)  Pseudo-time 160 

construction is included, giving insights into relationships between the cells. 161 

Testing of the software 162 
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In this report, we mainly use a previously published data set as an example [18]. This renal 163 

carcinoma dataset contains three groups of cells: patient-derived xenografts (PDX) primary, PDX 164 

metastatic cells, and patient metastatic cells [18]. We abbreviate this dataset as the K-dataset.  165 

To estimate the total running time of Granatum (with default parameters) at different sizes of 166 

datasets, we first simulate expression matrices with 200, 400, 800, or 1600 cells using the Splatter 167 

package, based on the parameters estimated from the K-dataset [40]. Additionally, we also use 168 

down-sample approach (200, 400, 800, 1600, 3200 and 6000 cells) on a dataset (P-dataset) 169 

provided by 10x Genomics, which has 6,000 peripheral blood mononuclear cells (PBMCs) 170 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc6k). The 171 

running time scales linearly with the number of cells, regardless of platform (Suppl. Figure 1). The 172 

most time-consuming step is Monocle based pseudo-time construction, which takes about 80% of 173 

all computing time.  174 

In the following sections, we use K-dataset to elaborate the details of each step in Granatum in 175 

chronological order. 176 

Upload data 177 

Granatum accepts one or more expression matrices as input. Each expression matrix may be 178 

accompanied by a metadata sheet. A metadata sheet is a table describing the groups, batches, or 179 

other properties of the samples in the corresponding expression matrix. Users may upload 180 

multiple matrices sequentially. Currently, Granatum accepts either human or mouse species, for 181 
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downstream functional analysis. After uploading the input files, users can preview the matrix and 182 

metadata tables to validate that the dataset is uploaded correctly. 183 

Batch-effect removal 184 

Samples obtained in batches can create unwanted technical variation, which confounds the 185 

biological variation [15]. It is therefore important to remove the expression level difference due to 186 

batches. Granatum provides a batch-effect removal step where two methods are included, namely 187 

ComBat [16] and median alignment. If multiple datasets are uploaded, by default, each dataset is 188 

assumed to be one batch. Alternatively, if the batch numbers are indicated in the sample metadata 189 

sheet, the user may select the column in which the batch numbers are stored. For datasets with a 190 

large number of cells, the box-plot shows a random selection of 96 sub-samples for the 191 

visualization purpose and can be re-sampled freely. 192 

To show that median alignment can effectively remove the batches, we randomly select half of the 193 

cells in K-dataset and multiply the expression levels by 3, thus creating two artificial batches 1 and 194 

2. The PCA plot shows that due to the batch-effect, cells of the same type are separated by batch 195 

(the two colors) (Figure 2A). After performing median alignment, the batch effect is minimized, 196 

and cells from the same type but in two colors (batches) are now intermingled (Figure 2B). 197 

Outlier identification 198 

Computationally abnormal samples pose serious problems for many downstream analysis 199 

procedures. Thus, it is crucial to identify and remove them in the early stage. Granatum's outlier 200 

identification step features PCA and t-SNE [41] plots, two connected interactive scatter-plots that 201 
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have different computational characteristics. A PCA plot illustrates the Euclidean distance between 202 

the samples, and a correlation t-SNE plot shows the associative distances between the samples. 203 

Granatum generates these two plots using top genes (default 500). Using the Plotly library [13], 204 

these plots are highly interactive. It is an example of thoughtful tool design that empowers users 205 

to explore the data. Outliers can be identified automatically by using a z-score threshold or setting 206 

a fixed number of outliers. In addition, each sample can be selected or de-selected, by clicking, 207 

boxing or drawing a lasso on its corresponding points.   208 

The original K-dataset has one sample with abnormally low expression level. This potential outlier 209 

sample can affect downstream analyses. Using Granatum, users can easily spot such outliers in the 210 

PCA plot or in the correlation t-SNE plot (Figure 3A and B). After removal of the outliers, the top-211 

gene based PCA and correlation t-SNE plots are more balanced (Figure 3C and D). 212 

Normalization 213 

Normalization is essential to most scRNA-Seq data before the downstream functional analyses 214 

(except those with the UMI counts). Granatum includes four commonly used normalization 215 

algorithms: quantile normalization, geometric mean normalization, size-factor normalization 216 

[42,43], and Voom [44]. A post-normalization box-plot helps illustrate the normalization effect to 217 

the median, mean, and extreme values across samples. 218 

The box-plots allow observation of various degrees of stabilization (Figure 4). The original dataset 219 

has high levels variations among samples (Figure 4A). Quantile normalization unifies the 220 

expression distribution of all samples, thus renders the box-plots identical (Figure 4B). Mean 221 
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alignment tries to unify all means of the samples by multiplying the expression levels in each 222 

sample by a factor, thus visually all means (the red dots) are the same (Figure 4C). Size-factor and 223 

Voom normalization use more sophisticated procedures to normalize the data, but the variation of 224 

distribution across samples is evidently reduced (Figure 4D and E). According to our experience 225 

and others [45,46], quantile normalization is recommended. 226 

Gene filtering 227 

Due to high noise levels in scRNA-Seq, Brennecke et al. [4] recommended removing lowly-228 

expressed genes as well as lowly-dispersed genes. To this end, Granatum includes a step to 229 

remove these genes. Both the average expression-level threshold and the dispersion threshold can 230 

be adjusted interactively. Granatum displays the threshold selection sliders and the number-of-231 

genes statistics message to enhance integration with the other components. On the mean-232 

dispersion plot, a point represents a gene, whose x-coordinate is the log transformed mean of the 233 

expression levels of that gene, and the y-coordinate is the dispersion factor calculated from a 234 

negative binomial model. The plot highlights the preserved genes as black and the filtered genes as 235 

gray (Suppl. Figure 2). 236 

Clustering 237 

Clustering is a routine heuristic analysis for scRNA-Seq data. Granatum selects five commonly used 238 

algorithms: non-negative matrix factorization [22], k-means, k-means combined with correlation t-239 

SNE, hierarchical clustering (hclust), and hclust combined with correlation t-SNE. The number of 240 

clusters can either be set manually, or automatically using an elbow-point finding algorithm.  For 241 
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the latter automatic approach, the algorithm will cluster samples with the number of clusters (�) 242 

ranging from 2 to 10, and determine the best number as the elbow-point �. the starting point of 243 

the plateau for explained variance (EV). If hclust is selected, a pop-up window shows a heatmap 244 

with hierarchical grouping and dendrograms. 245 

Next, the two unsupervised PCA and correlation t-SNE plots superimpose the resulting � cluster 246 

labels on the samples (Suppl. Figure 3). Users can also chose to use their pre-defined labels 247 

provided in the sample metadata.  By comparing the two sets of labels, one can check the 248 

agreement between the prior metadata labels and the computed clusters. We perform the K-249 

means clustering ( � � 2) on the correlation t-SNE plot, using K-dataset. The generated clusters 250 

perfectly correspond to the original cell type labels in this case. 251 

Differential expression 252 

After the clustering step, Granatum allows DE analysis on genes between any two clusters. It 253 

currently includes four commonly used differential expression methods, namely NODES [30], SCDE 254 

[31], Limma [33] and edgeR [32]. The DE analysis is performed in a pair-wise fashion when more 255 

than two clusters are present. To shorten the computation time, the number of cores for 256 

parallelization on multi-core machines can be selected. When the DE computation is complete, the 257 

results are shown in a table with DE genes sorted by their Z-scores, along with the coefficients. As 258 

another feature to empower the users, the gene symbols are linked to their corresponding 259 

GeneCards pages (www.genecards.org) [47]. The "Download CSV table" button allows saving the 260 

DE results as a CSV file. 261 
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Next, Gene Set Enrichment Analysis (GSEA) with either KEGG pathways or Gene Ontology (GO) 262 

terms [37,48–50] can be performed, to investigate the biological functions of these DE genes. The 263 

results are plot in an intuitive bubble-plot (Figure 5D). In this plot, the y-axis represents the 264 

enrichment score of the gene sets, x-axis shows gene set names, and the size of the bubble 265 

indicates the number of genes in that gene set. 266 

Comparison with other Graphical web tools of scRNA-Seq 267 

To evaluate the differences between Granatum and a similar graphical scRNA-Seq pipeline ASAP 268 

[39], we compare the DE genes (primary vs. metastasized patient) in K-dataset obtained by both 269 

pipelines (Figure 5). While Granatum uses quantile normalization, ASAP uses Voom normalization 270 

as default method. We use SCDE as it is the common DE method for both pipelines.   271 

Both pipelines agree on most DE genes called (Figure 5A), but each identifies a small number of 272 

unique DE genes (Figure 5B). In Granatum, the number of up or down regulated DE genes detected 273 

by Granatum are closer. Whereas in ASAP, a lot more genes are higher regulated in the primary 274 

cells, compared to those in metastasized cells (Figure 5C). Further, KEGG pathway based GSEA 275 

analysis on the DE genes shows that Granatum identified more significantly (Enrichment Score > 276 

1.5) enriched pathways than ASAP (Figure 5C). The top pathway enriched in Granatum’s DE genes 277 

is the NOD-like receptor-signaling pathway, corresponding to its known association with immunity 278 

and inflammation [51]. In ASAP “African trypanosomiasis” is the top pathway, which describes the 279 

molecular events when parasite Trypanosoma brucei pass through the blood-brain barrier and 280 

cause neurological damage by inducing cytokines. Despite the differences, some signaling 281 
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pathways are identified by both pipelines with known associations with tumorigenesis, such as 282 

PPAR signaling pathway [52] and Epithelial cell signaling pathway [53]. 283 

Granatum-specific Steps: Protein network visualization and 284 

Pseudo-time construction 285 

Unlike ASAP, SAKE and SCRAT, Granatum implements a Protein-protein interaction (PPI) network 286 

to visualize the connections between the DE genes (Figure 6A). By default, up to 200 genes are 287 

displayed in PPI network. We use visNetwork to enable the interactive display of the graph [11], so 288 

that users can freely rearrange the graph by dragging the nodes to the desired location. Uses can 289 

also reconfigure the layout to achieve good visualization via an elastic-spring physics simulation. 290 

Nodes are colored according to their regulation direction and the amount of change (quantified 291 

using Z-score), where red indicates up-regulation and blue indicates down-regulation. As an 292 

example, Figure 6A shows the PPI network result from PDX primary to metastatic cells in the K-293 

dataset. A large, closely connected module exists in PPI network, which contains many heat shock 294 

protein genes including down-regulated HSP90AB1, HSPA6, HSPA7, HSPA8, HSPA1A, HSPA1B and 295 

HSPA4L as well as up-regulated HSP90AA1 and HSPH1 in metastasized cells. Heat shock genes have 296 

been long recognized as a stress response genes [54], and inhibiting heat shock protein genes can 297 

control metastasis in various types of cancers [55,56].  298 

Lastly, Granatum has included the Monocle algorithm[3], a widely-used method to reconstruct a 299 

pseudo-timeline for the samples (Figure 6B). Monocle uses the Reversed Graph Embedding 300 

algorithm to learn the structure of the data, as well as the Principal Graph algorithm to find the 301 
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timelines and branching points of the samples. The user may map any pre-defined labels provided 302 

in the metadata sheet onto the scatter-plot. In the K-dataset, the three (PDX primary, PDX 303 

metastasized, and patient metastasized) types of cancer cells are mostly distinct (Figure 6B). 304 

However, small portions of cells from each type appear to be on intermediate trajectory.  305 

Discussion 306 

The field of scRNA-Seq is fast-evolving both in terms of the development of instrumentation and 307 

the innovation of computational methods. However, it becomes exceedingly hard for a wet-lab 308 

researcher without formal bioinformatics training to catch up with the latest iterations of 309 

algorithms [5]. This barrier forces many researchers to resort to sending their generated data to 310 

third-party bioinformaticians before they are able to visualize the data themselves. This 311 

segregation often prolongs the research cycle time, as it often takes significant effort to maintain 312 

effective communications between wet-lab researchers and bioinformaticians. In addition, issues 313 

with the experimentations do not get the chance to be spotted early enough to avoid significance 314 

loss of time and cost in the projects. It is thus attractive to have a non-programming graphical 315 

application that includes state-of-the-art algorithms as routine procedures, in the hands of the 316 

bench-scientist who generate the scRNA-Seq data. 317 

Granatum is our attempt to fill this void. It is to our knowledge the most comprehensive solution 318 

that aims to cover the entire scRNA-Seq workflow with an intuitive graphical user interface. 319 

Throughout the development process, our priority has been to make sure that it is fully accessible 320 
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to researchers with no programming experiments. We have strived to achieve this, by making the 321 

plots and tables self-explanatory, interactive and visually pleasant. We have sought inputs from 322 

our single-cell bench-side collaborators to ensure that the terminologies are easy to understand by 323 

them. We also supplement Granatum with a manual and online video that guide the users through 324 

the entire workflow, using example datasets. We also seek feedback from community via Github 325 

pull-requests, emails discussions and user survey. 326 

Currently, Granatum targets bench scientists who have their expression matrices and metadata 327 

sheets ready. However, we are developing the next version of Granatum, which will handle the 328 

entire scRNA-Seq data processing and analysis pipeline including FASTQ quality control, alignment, 329 

and expression quantification. Another caveat is the lacking of benchmark dataset in single-cell 330 

analysis field currently, where the different computational packages can be evaluated unbiasedly. 331 

We thus resort to empirical comparisons on packages between Granatum and ASAP.  In the future, 332 

we will enrich Granatum with capacities to analyze and integrate other types of genomics data in 333 

single cells, such as exome-seq and methylation data. We will closely update Granatum to keep up 334 

with the newest development in the scRNA-Seq bioinformatics field. We welcome third-party 335 

developers to download the source-code and modify Granatum, and will continuous integrate and 336 

innovate this tool as the go-to place for single-cell bench scientists. 337 
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Conclusions 338 

We have developed a graphical web application called Granatum, which enables bench 339 

researchers with no programming expertise to analyze state-of-the-art scRNA-Seq data. This tool 340 

offers many interactive features to allow routine computational procedures with a great amount 341 

of flexibility. We expect that this platform will empower the bench-side researchers with more 342 

independence in the fast-evolving single cell genomics field. 343 

Figure legends 344 

Figure 1: Granatum workflow. Granatum is built with the Shiny framework, which integrates the 345 

front-end with the back-end. A public server has been provided for easy access, and local 346 

deployment is also possible. The user uploads one or more expression matrices with 347 

corresponding metadata for samples. The back-end stores data separately for each individual user, 348 

and invokes third-party libraries on demand. 349 

Figure 2: The batch-effect removal. The PCA plots show the before/after median alignment 350 

comparison. The colors indicate the two batches 1 and 2, and the shapes indicate the three cell 351 

types reported from the original data. (A) Before and (B) After batch-effect removal. 352 

Figure 3: The outlier removal using PCA plot. (A) Before outlier removal. (B) After outlier removal. 353 

Figure 4: Box-plot comparison of normalization methods. The cells size is down-sampled to 354 

representatively show the general effect of each method. The colors indicate the three cell types 355 
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reported from the original data. (A) The original (no normalization) (B) Quantile normalization (C) 356 

Geometrical mean normalization (D) Size-factor normalization (E) Voom normalization. 357 

Figure 5: Comparison of DE genes identified by Granatum or ASAP pipeline. (A) MA-plot. Blue 358 

color labels DE genes, and gray dots are non-DE genes. (B) Venn diagram showing the number of 359 

DE genes identified by both methods, as well as those uniquely identified by either pipeline. (C) 360 

Bar chart comparing the number of genes up regulated in primary cells (red) or metastasized cells 361 

(green). (D) Bubble-plots of KEGG pathway GSEA results for the DE genes identified by either 362 

pipeline. The y-axis represents the enrichment score of the gene sets, x-axis shows gene set 363 

names, and the size of the bubble indicates the number of genes in that gene set. 364 

Figure 6: The Protein-protein interaction network and Pseudo-time construction steps. (A) The 365 

PPI network derived from the DE results between PDX primary and metastasized cells in the K-366 

dataset. The color on each node (gene) indicates its Z-score in the differential expression test. Red 367 

and blue colors indicate up- and down- regulation in metastasized cells, respectively. (B) The 368 

Pseudo-time construction step. Monocle algorithm is customized to visualize the paths among 369 

individual cells. Sample labels from the metadata are shown as different colors in the plot. 370 

Supplementary Figures  371 

Suppl. Figure 1: Granatum total running time with various numbers of cells. Datasets with various 372 

sizes from two single-cell platforms (Fluidigm C1 and 10x Genomics) are used. To generate 373 

expression data up to 6000 cells, the Fluidigm C1 datasets are simulated using Splatter, with 374 
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parameters estimated from the K-dataset (118 cells). The 10x Genomics datasets are down-375 

sampled from the original 6000-cell PBMC dataset. The x-axis represents the size of the dataset, 376 

and the y-axis represents the total running time (in minutes) of Granatum. Monocle based pseudo-377 

time construction step takes about 80% of total running time. 378 

Suppl. Figure 2: The Gene filtering step. The y-axis of the scatter-plot is the empirical dispersion, 379 

estimated by a negative binomial model. The x-axis is the log mean expression of each gene. The 380 

red line is the fit of a negative binomial model onto the data. Black points represent gene to be 381 

kept and gray points are filtered genes. 382 

Suppl. Figure 3: The Clustering step.  (A) PCA and (B) Correlation t-SNE plots of single cells (dots) 383 

are shown, with colors indicating the cell types reported in the original dataset and cluster number 384 

(1, 2) super-imposed on the cells. 385 

Tables 386 

Table 1: Comparison of existing single-cell analysis pipelines. 387 
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