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Background  1 

Abstract 

Background: Single-cell RNA sequencing (scRNA-seq) is an increasingly 
popular platform to study heterogeneity at the single cell level. 
Computational methods to process scRNA-seq have limited 
accessibility to bench scientists, as they require significant amount of 
bioinformatics skills. 

Results: We have developed Granatum, a web browser based scRNA-
seq analysis pipeline to make analysis more broadly accessible to 
researchers. Without a single line of programming code, a user can 
click through the pipeline, setting parameters and visualizing results 
via the interactive graphical interface. The pipeline conveniently walks 
the users through various steps of scRNA-seq analysis. It has a 
comprehensive list of modules, including plate merging and batch 
effect removal, outlier sample removal, gene filtering, gene 
expression normalization, cell clustering, differential gene expression 
analysis, pathway/ontology enrichment analysis, protein network 
interaction visualization, and pseudo-time cell series construction. 

Conclusions: Granatum enables much widely adoption of scRNA-seq 
technology by empowering the bench scientists with an easy to use 
graphical interface for scRNA-seq data analysis. The code is freely 
available for research use at: http://garmiregroup.org/granatum/code 

Keywords: single-cell; gene expression; graphical; normalization; 

clustering; differential expression; pathway; pseudo-time; software 
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The arrival of single-cell high-throughput RNA sequencing (scRNA-seq) has provided new 2 

opportunities for researchers to identify the expression characteristics of individual cells among 3 

complex tissues. This is a significant leap forward from bulk cell RNA expression analysis. In cancer, 4 

for example, scRNA-seq allows tumorous cells to be separated apart from healthy cells [1] and 5 

primary cells be differentiated from metastatic cells [2]. Single-cell expression data can also be 6 

used to describe trajectories of cell differentiation and development [3]. However, analyzing data 7 

from scRNA-seq brings new computational challenges, e.g., accounting for inherently high drop-8 

out (artificial loss of RNA expression information) [4]. 9 

Software that has been developed to address these challenges may have very limited accessibility 10 

for biologists with only general computer skills, as they typically require the ability to use a 11 

computing language like R [5,6]. Other existing workflows that can be used to analyze scRNA-seq 12 

data, such as Singular (Fluidigm, Inc., South San Francisco, CA, USA), Cell Ranger/ Loupe 13 

(Pleasanton, CA, USA), and Scater [7] all require some non-graphical interactions and they may not 14 

provide a comprehensive set of scRNA-seq analysis methods. To fill this gap, we have developed 15 

Granatum, a fully interactive graphical scRNA-seq analysis tool. Granatum is the Latin word for 16 

pomegranate, which bears many seeds, resembling single cells within the entity. This tool employs 17 

an easy-to-use web browser interface for a wide range of methods suitable for scRNA-seq analysis: 18 

removal of batch effects, removal of outlier cells, normalization of expression levels, filtering of 19 

under-informative genes, clustering of cells, identification of differentially expressed genes, 20 

identification of enriched pathways/ontologies, visualization of protein networks, and 21 

reconstruction of pseudo-time paths for cells. Our software will empower a much broader 22 
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audience of research communities to study single cell complexity, by allowing them to readily 23 

explore single-cell expression data from a graphical user interface. 24 

Implementation 25 

Overview 26 

Both the front-end and the back-end of Granatum are written in the R software language, and built 27 

with the Shiny framework [8]. Multiple concurrent users are handled by Shiny and each user works 28 

on its own data space. To protect the privacy of users, the data submitted by one user is not visible 29 

to any other user. The front-end is implemented as a web page with dynamically loaded pages, 30 

and is arranged in a step-wise fashion. The default theme uses the Bootstrap framework. ShinyJS 31 

[9] is used to power some of the interactive components. To allow users to redo a task, each 32 

processing step is equipped with a reset button. 33 

 34 

Interactive widgets 35 

The package visNetwork is used for the layout and physics simulation of the network modules [10]. 36 

DataTables are used to preview user submitted data and to show tabular data in various modules 37 

[11]. Plotly is used for the interactive outlier identification step [12]. The package ggplot2 is used 38 

for the scatter-plots and box-plots, which is also used by the Monocle package for the Pseudo-time 39 

construction step [3,13]. 40 

 41 

Back-end variable management 42 

The expression matrix and the metadata sheet are stored separately for each user. The metadata 43 

sheet can refer to groups, batches, or other properties of the samples in the corresponding 44 
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expression matrix. These two types of tables are shared across all modules. Other variables shared 45 

across all modules include the log-transformed expression matrix, the filtered and normalized 46 

expression matrix, the dimensionally reduced matrix, species (human or mouse) and the primary 47 

metadata column. 48 

 49 

Deployment 50 

Granatum is deployed from a pre-configured VirtualBox Appliance (machine image), which is 51 

configured with all tool files and dependencies. VirtualBox is an open-source hypervisor developed 52 

by the Oracle Corporation – https://www.virtualbox.org/. The Granatum image is provided as an 53 

Open Virtual Appliance file, which is loaded by clicking through the Import Appliance function of 54 

VirtualBox installed on a Windows or Linux system. When the Granatum image is running, it opens 55 

an Ubuntu desktop and starts the Granatum server (Additional file 1). When the server has 56 

completely loaded a text, a welcome message will appear on the screen indicating that Granatum 57 

is ready for use. The server can also be accessed from a web browser outside of the VirtualBox 58 

instance, by navigating to the appropriate local port, e.g., http://localhost:8028. Accessing the 59 

server from outside of VirtualBox simplifies data transfer to/from the server, e.g., files can be 60 

loaded from the user’s desktop outside of VirtualBox. 61 

 62 

Batch-effect removal 63 

Batch-effect removal is done using the following procedure. First, we calculate the median 64 

expression of each sample, denoted as ����  for sample �. Second, we calculate the mean of ���� 65 

for each batch, denoted as ����	
���� for batch �, 66 

����	
���� � ��������
�����������������. 
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 Finally, each batch will be multiplied by a factor which pulls towards the global geometric mean of 67 

the sample medians, i.e., when � � ����	� and � is the number of samples, 68 

���������� � ���������� �
��������
������,..,�������

����	
����
. 

Where sampleNewi and sampleOldi  denote the expression levels (vector) for all genes within 69 

sample � before (old) and after (new) batch-effect removal. 70 

Clustering methods 71 

The following description of clustering algorithms assumes � being the number of genes, � being 72 

the number of samples, and � being the number of clusters. 73 

Non-negative matrix factorization (NMF): the log-transformed expression matrix (�-by-�) is 74 

factorized into two non-negative matrices � (�-by-�) and � (�-by-�) with � being the expected 75 

number of clusters. The latter matrix is then used to determine the membership of each cluster by 76 

determining, for each column in �, which of the � entries has the highest value [14,15]. The NMF 77 

computation is implemented in the NMF R-package, as reported earlier [14,16]. 78 

K-means: K-means is done on either the log-transformed expression matrix or the 2-by-� 79 

correlation t-SNE matrix. The algorithm is implemented by the kmeans function in R [17]. 80 

Hierarchical clustering (Hclust): Hclust is also done on either the log-transformed expression 81 

matrix or the 2-by-� correlation t-SNE matrix. The algorithm is implemented by the hclust function 82 

in R [18]. The heatmap with dendrograms is plotted using the heatmap function in R. 83 

 84 

Correlation t-SNE 85 
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Correlation t-SNE is implemented to assess heterogeneity of the data. It is calculated using a two-86 

step process. First, a distance matrix is calculated using the correlation distance. The correlation 87 

distance Di,j between sample � and sample � is defined as 88 

��,� � 1 ! Correlation�+� , +��, 

where +�  and +�  are the �-th and �-th column (sample) of the expression matrix. 89 

Next, t-SNE is performed using this distance matrix, which reduces the expression matrix to two 90 

dimensions. We use the Rtsne R package for this calculation [19]. 91 

 92 

Elbow-point finding algorithm in clustering 93 

In the clustering module with automatic determination of the number of clusters, the 94 

identification of the optimum number of clusters is done prior to presenting the clustering results. 95 

First, we calculate the k-means clusters from � � 2 to � � 10. For each �, we calculate the 96 

percentage of the explained variance (EV). To find the elbow-point � � � where the EV plateaus, 97 

we fit the �-EV data points with a linear elbow function. This function consists of a linearly 98 

increasing piece from 0 to �, and a constant piece from � to 10. We iterate from � � 1 to 10 99 

and identify � which gives the best coefficient of determination (/) of linear regression as the 100 

"elbow point". 101 

 102 

Differential expression analysis 103 

We use SCDE (version 1.99.4) in our Differential expression (DE) analysis step. The minimum size 104 

entries parameter of the scde.error.models function is set to be the lesser of 2000 or the number 105 

of genes after filtering [20]. When more than two clusters are present, a pair-wise DE analysis is 106 

performed.  107 
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 108 

Gene-set enrichment analysis 109 

The GSEA algorithm is implemented in the fgsea R-package which uses an optimized algorithm for 110 

fast calculation speed [21]. 111 

 112 

Pseudo-time construction 113 

We use Monocle (version 2.2.0) in our pseudo-time construction step. When building the 114 

CellDataSet required for monocle’s input, we set the expressionFamily to negbinomial.size(). The 115 

dimension reduction is done using the reduceDimension function with max_components set to be 116 

2. 117 

Results 118 

Overview 119 

Granatum neatly presents nine modules, arranged as steps and ordered by their dependency 120 

(Figure 1), spanning a comprehensive set of methods for single cell analysis. It starts with one or 121 

more user-supplied expression matrices and corresponding sample metadata sheet(s), followed by 122 

data-merging, batch-effect removal, outlier removal, normalization, gene filtering, clustering, 123 

differential expression, protein-protein network, and pseudo-time construction.  124 

Comparing to other freely available tools, the workflow is flexible in several aspects: (1) It supports 125 

multiple dataset submission and batch effect removal; (2) at any point of the step, the user can 126 

reset the current step for re-analysis; (3) the user can bypass certain steps and still complete the 127 

workflow; (4) the user can select subsets of samples/data for their customized analysis need; (5) 128 

the user can identify outlier samples either automatically by a pre-set threshold, or manually by 129 
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simply clicking the samples the PCA plot or the correlation t-SNE plot; (6) multiple cores can be 130 

specified in the differential expression module for speed-up; (7) GSEA can be performed for the 131 

differentially expressed genes in all pairs of subgroups, following clustering analysis; (8) Monocle 132 

pseudo-time construction can be performed to gain insights of relationships between the cells. We 133 

elaborate the details of each step in chronological order, in the following sections.  134 

 135 

Upload data 136 

Granatum accepts one or multiple expression matrices as the input. Each expression matrix can be 137 

accompanied by a table describing the groups, batches, or other properties of the samples in the 138 

corresponding matrix. This accompanying table is called the metadata sheet. Multiple matrices 139 

may be uploaded sequentially. The user also specifies the species of the data, either human or 140 

mouse, for downstream functional analysis. After the input files are uploaded, preview tables for 141 

the matrix and metadata are displayed, providing the user an opportunity check that the data they 142 

have input is as expected. 143 

 144 

Batch-effect removalSamples obtained in batches can create unwanted technical variation, which 145 

confound the biological variation [22]. It is thus important to remove the expression level 146 

difference due to batches. Granatum provides a batch-effect removal step, where the batches are 147 

shown as different colors in the box-plot (Figure 2). If more than one datasets are uploaded, by 148 

default each dataset is assumed to be one batch. Alternatively, if the batch numbers are indicated 149 

in the sample metadata sheet, the user may select the column in which the batch numbers are 150 

stored (blue circled in Figure 2). For datasets with a large number of cells, to maintain legibility of 151 
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the box-plot a random selection of 96 sub-samples is shown in the box-plot, and can be re-152 

sampled freely. 153 

 154 

Outlier identification 155 

Computationally abnormal samples pose serious problems for many down-stream analysis 156 

procedures. It is thus crucial to identify and remove them in the early stage. Granatum's outlier 157 

identification step features PCA plot and t-SNE plot, two connected interactive scatter-plots that 158 

have different computational characteristics. A PCA plot illustrates the Euclidean distance between 159 

the samples, and a correlation t-SNE plot shows the associative distances between the samples. 160 

The interactive mode of these plots is realized by the Plotly library [12] (Figure 3A). 161 

 162 

Outliers can be identified automatically by either using a z score threshold or setting a fixed 163 

number of outliers. In addition, the user can select or de-select each sample, by clicking, boxing or 164 

drawing a lasso on its corresponding points on either PCA or t-SNE plot (Figure 3A and 3B). This 165 

level of interaction from users is one of the many examples of thoughtful tool design, in order to 166 

empower them.  167 

 168 

To help users select sample of a particular property, Granatum also allows for mapping any of the 169 

columns in the metadata sheet onto the scatter-plots (circled blue in Figure 3A). The complete 170 

metadata information of the selected samples can be found in a table at the bottom of the page 171 

(circled red in Figure 3A). 172 

 173 

Normalization 174 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 27, 2017. ; https://doi.org/10.1101/110759doi: bioRxiv preprint 

https://doi.org/10.1101/110759


Zhu et al.   Page 10 of 22 

 

 

Normalization is essential to most scRNA-seq data, except those with the UMI counts, before the 175 

down-stream functional analyses. The current version of Granatum has implemented three 176 

commonly used normalization algorithms: rescale to geometric mean, quantile normalization, and 177 

size-factor normalization [23,24]. A box-plot is shown post normalization, to help illustrate its 178 

effect to the median, mean, and extreme values across samples. As is the case in the batch-effect 179 

removal step, for a dataset with a large number of samples, 96 sub-samples are randomly chosen 180 

for the visualization purpose (Figure 3C). 181 

 182 

Gene filtering 183 

Due to scRNA-seq's relative high level of noise, it has been recommended to remove lowly 184 

expressed genes as well as lowly dispersed genes [4]. To this end, Granatum has a step to remove 185 

these genes. The user can interactively select both the average expression level threshold and the 186 

dispersion threshold (Figure 3D). The dispersion calculation and negative binomial model fitting 187 

are calculated by modifying the output of the Monocle package [3]. We have customized the 188 

visualization code to enhance integration with the other components, by setting up the threshold 189 

selection sliders and number of genes statistics message on the Granatum web page (Figure 3D). 190 

On the mean-dispersion plot, each gene is represented by a point, where the x-axis is the mean of 191 

the expression levels after log transformation, and the y-axis is the dispersion factor calculated 192 

from a negative binomial model. The preserved genes are highlighted as black and the genes to be 193 

removed are labeled as gray colors. The number of genes before and after filtering are also 194 

displayed. 195 

 196 

Clustering 197 
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Clustering is a routine heuristic analysis for scRNA-seq data. Granatum selects five commonly used 198 

algorithms: non-negative matrix factorization [14], k-means, k-means combined with correlation t-199 

SNE, hierarchical clustering (hclust), and hclust combined with correlation t-SNE. The number of 200 

clusters may be set manually, or automatically determined using an elbow-point finding algorithm 201 

(Methods, Figure 4A).  For the latter approach, the algorithm will attempt to cluster samples with 202 

number of clusters (�) ranging from 2 to 10, and determine the best number by finding the elbow-203 

point �. � indicates the starting point of plateau for explained variance (EV), above which EV 204 

creases only minimally. If hclust is selected, a heatmap with hierarchical grouping and 205 

dendrograms be shown in a pop-up window (Figure 4B). 206 

 207 

Next, the resulting cluster labels obtained above, are then super-imposed onto the two 208 

unsupervised PCA and correlation t-SNE plots (Figure 4A). The user can also represent user-defined 209 

labels in the sample metadata as different colors in these plots.  By comparing the two sets of 210 

labels, the users can quickly check the concordance between the prior metadata labels and the 211 

computed clusters. 212 

 213 

Differential expression 214 

After obtaining a set of clusters, it is intuitively important to identify genes that are differentially 215 

expressed between any two clusters. Granatum uses the state-of-the-art SCDE method for its 216 

single-cell DE analysis [20]. The DE comparison is performed in a pair-wise fashion when more than 217 

two clusters are present. This step is computationally time and memory consuming. To shorten 218 

computation time, a user can select the number of cores for parallelization on multi-core machines 219 

(Figure 5A). When SCDE is completed, tabbed tables show the genes sorted by their Z-scores, 220 
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along with the model coefficients (Figure 5B). As another feature to empower the users, the gene 221 

symbols are linked to their corresponding GeneCards pages (www.genecards.org) [25]. The DE 222 

results can be downloaded as a CSV file via the "Download CSV table" button. 223 

To investigate the collective biological functions of these genes, the user can further perform Gene 224 

Set Enrichment Analysis (GSEA) with either KEGG pathways or Gene Ontology (GO) terms (circled 225 

blue in Figure 5B) [26–29]. We have employed a very intuitive bubble-plot to visualize the GSEA 226 

results, where the vertical position of the bubble indicates the enrichment score of the gene sets, 227 

and the size of the bubble indicates number of genes in that set (KEGG pathway or GO term) 228 

(Figure 5C). 229 

 230 

Protein network visualization 231 

Protein-protein interaction (PPI) network gives straightforward and systematic understanding of 232 

the connections between these differentially expressed genes. Granatum selects the top K (default 233 

K=200) genes in the DE results, and super impose the PPI network on them. Genes that are not 234 

connected to any other genes in the list are removed from the PPI network. We use visNetwork to 235 

enable the interactive display of the graph [10]. The user can freely rearrange the graph by 236 

dragging the nodes to the desired location, and reconfiguring the layout to achieve good visibility 237 

of the modules (via elastic-spring physics simulation) (Figure 6A). In this interactive graph, the Z-238 

scores are mapped as colors on the nodes where red indicates up-regulation and blue indicates 239 

down-regulation. 240 

 241 

Pseudo-time constructionGranatum has included the Monocle algorithm, a widely-used method to 242 

reconstruct a pseudo-timeline for the samples [3]. Monocle uses the Reversed Graph Embedding 243 
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algorithm to learn the structure of the data, and the Principal Graph algorithm to find the time-244 

lines and branching points of the samples. We superimpose the timeline on the samples scatter-245 

plot projected on the two components of the learned projection matrix. The user may map any 246 

pre-defined labels or numeric assays provided in the metadata sheet on to the scatter-plot (Figure 247 

6B). The plotting functions are adapted from the visualization code in Monocle. 248 

Discussion 249 

The field of scRNA-seq is fast-evolving both in terms of the development of instrumentation and 250 

the innovation of computational methods. However, it becomes exceedingly hard for a wet-lab 251 

researcher without formal bioinformatics training to catch up with the latest iterations of 252 

algorithms [5]. This poses major barriers to them and many resort to sending their generated data 253 

to third-party bioinformaticians, before they are able to visualize the data themselves. This 254 

segregation often prolongs the research cycle time, as it often takes significant effort to maintain 255 

effective communications between the two sides (sometimes even more complicated with a third 256 

party of the genomics core). Also, issues with the experimentations do not get the chance to be 257 

spotted early enough, to avoid significance loss of time and cost in the projects. It is thus very 258 

attractive to have a non-programming graphical application which includes state-of-the-art 259 

algorithms as routine procedures, in the hands of the bench-scientist who generate the scRNA-seq 260 

data. 261 

Granatum is our attempt to fill this void. It is to our knowledge the first solution that aims to cover 262 

the entire scRNA-seq workflow with an intuitive, step-wise graphical user interface. Throughout 263 

the development process our priority has been to make sure that it is fully accessible to 264 
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researchers with no programming experiments. We have strived to achieve that the plots and 265 

tables are self-explanatory, interactive and visually pleasant. We have sought inputs from our 266 

single-cell bench-side collaborators, to ensure that the terminologies are easy to understand by 267 

them. We also supplement Granatum with a manual and video that guide the users through the 268 

entire workflow, using example datasets. Currently Granatum targets users who have their 269 

expression matrices and metadata sheets ready. However, we are developing the next version of 270 

Granatum, which will handle the entire scRNA-seq data processing and analysis pipeline including 271 

FASTQ quality control, alignment, and expression quantification. In the future, we will enrich 272 

Granatum with capacities to analyze and integrate other types of genomics data in single cells, 273 

such as exome-seq and methylation data.   274 

Conclusions 275 

We have developed a graphical web application called Granatum, which enables bench 276 

researchers with no programming expertise to analyze state-of-the-art scRNA-Seq data. This tool 277 

offers many interactive features to allow routine computational procedures with a great amount 278 

of flexibility. We expect that this platform will empower the bench-side researchers with more 279 

independence in the fast-evolving single cell genomics field. 280 

 281 

Figure legends 282 

Figure 1: Granatum workflow. Granatum is built with the Shiny framework, which supports both 283 

front-end and the back-end. The user uploads one or more expression matrices with 284 
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corresponding metadata for samples. The back-end stores data separately for each individual user, 285 

and invokes third-party libraries on demand. 286 

Figure 2: The batch-effect removal steps. A box-plot is shown for the samples. The colors indicate 287 

the batch labels, which can be selected using the batch factor selection box circled in blue. In cases 288 

where more than 96 cells are present in the data, only a random sample of 96 cells are shown. The 289 

user can re-sample the data by clicking the “Re-plot random 96 cells” button. 290 

Figure 3: The outlier removal, normalization and gene filtering steps. A) The main interface of the 291 

outlier removal step. The two scatter-plots are the PCA and correlation t-SNE plots, with colors 292 

indicate the cell labels (box circled in blue). The metadata table (circled in red) shows the labels for 293 

the selected cells. B) The pop-up window for automatic outlier detection options after the “auto-294 

identify” button is clicked. C) The normalization step. The box-plot shows the expression levels of 295 

each cell in log-scale. In cases where more than 96 cells are present in the data, only a random 296 

sample of 96 cells are shown. D) The Gene filtering step. The y-axis of the scatter-plot is the 297 

empirical dispersion, estimated by a negative binomial model. The x-axis is the log mean 298 

expression of each gene. The user can change the threshold by dragging the two sliders circled in 299 

blue.  300 

Figure 4: The Clustering step. A) Main interface. PCA and t-SNE plots are shown with colors 301 

mapped to user-selected sample labels. After clustering, samples are marked with their assigned 302 

cluster numbers. The user can either choose a specific number of clusters or let Granatum 303 
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compute the best number of clusters. B) When Hclust (Euclidean) is selected, a pop-up window will 304 

show a heatmap of the expression matrix with dendrograms.  305 

Figure 5: The Differential expression (DE) step. A) Before running DE, the user may select the 306 

number of cores to use for speed. B) After DE, top differentially expressed genes for each pair of 307 

clusters are shown. Gene Set Enrichment Analysis (GSEA) can be performed, using either KEGG 308 

pathways or GO terms (circled in blue). C) The results of GSEA. The pathways on the x-axis are 309 

sorted top 20 enriched gene sets. The height of the bubble indicates the absolute normalized 310 

enrichment score, and the size of the bubble indicates the number of genes in the set.  311 

Figure 6: The Protein network and Pseudo-time construction steps. A) The Protein network step. 312 

The A tabbed panel shows the connected gene modules on the PPI network between each pair of 313 

clusters. The color on each node (gene) indicates its Z-score in the differential expression test. Red 314 

and blue colors indicates up- and down- regulation. B) The Pseudo-time construction step. 315 

Monocle algorithm is customized to visualize the paths among individual cells. The user can 316 

represent sample labels from the metadata as colors in the plot. 317 

 318 

Supplementary files 319 

Additional file 1: Granatum deployment. A screenshot of an activated VirtualBox Appliance 320 

running the Granatum server is shown behind a web browser outside of the Appliance, which is 321 

accessing the server with the URL http://localhost:8028/. The server can be started by double-322 

clicking the Granatum desktop icon within the Appliance and stopped by closing the Terminal 323 
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window, which pops up when the server is activated. All data to/from the server can be handled 324 

outside of the Appliance from the external browser. 325 

 326 

Availability of data and material 327 

Instruction to install Granatum virtual box is available at: http://garmiregroup.org/granatum/code 328 

A demonstration video can be found at: 329 

http://garmiregroup.org/granatum/video 330 
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List of abbreviations 353 

scRNA-seq: Single-cell high-throughput RNA sequencing 354 

DE: differential expression 355 

GSEA: Gene-set enrichment analysis 356 

KEGG: Kyoto Encyclopedia of Genes and Genomes 357 

GO: Gene ontology 358 

PCA: Principal component analysis 359 

t-SNE: t-Distributed Stochastic Neighbor Embedding 360 

NMF: Non-negative matrix factorization 361 

Hclust: Hierarchical clustering 362 

PPI: Protein-protein interaction 363 
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Identify and remove abnormal samples 

automatically or manually

Batch-effect Removal
Remove the confounding factors created by 

sequencing batches
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Normalize the data using various methods 

to remove unwanted variation
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Remove low-expressed genes and filter out 

over-dispersed genes

Pre-processing

Clustering
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using various algorithms

Differential Expression
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protein-protein interaction network
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