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Abstract 

Driven by the recent advances of next generation sequencing (NGS) technologies and an 
urgent need to decode complex human diseases, a multitude of large-scale studies were 
conducted recently that have resulted in an unprecedented volume of whole transcriptome 
sequencing (RNA-seq) data. While these data offer new opportunities to identify the 
mechanisms underlying disease, the comparison of data from different sources poses a 
great challenge, due to differences in sample and data processing. Here, we present a 
pipeline that processes and unifies RNA-seq data from different studies, which includes 
uniform realignment and gene expression quantification as well as batch effect removal. 
We find that uniform alignment and quantification is not sufficient when combining 
RNA-seq data from different sources and that the removal of other batch effects is 
essential to facilitate data comparison. We have processed data from the Genotype Tissue 
Expression project (GTEx) and The Cancer Genome Atlas (TCGA) and have successfully 
corrected for study-specific biases, enabling comparative analysis across studies. The 
normalized data are available for download via GitHub (at 
https://github.com/mskcc/RNAseqDB).  

 

Introduction 
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RNA sequencing (RNA-seq) is an important tool for understanding the genetic 
mechanisms underlying human diseases. A multitude of large-scale studies have recently 
generated an unprecedented volume of RNA-seq data. For example, The Cancer Genome 
Atlas (TCGA) has quantified gene expression levels in >8000 samples from >30 cancer 
types. On a similar scale, the Genotype Tissue Expression (GTEx) project [1], [2], has 
catalogued gene expression in >9,000 samples across 53 tissues from 544 healthy 
individuals.  

These resources offer a unique opportunity to gain better insight into complex human 
diseases. However, the integrative analysis of these data across studies poses great 
challenges, due to differences in sample handling and processing, such as sequencing 
platform and chemistry, personnel, details in the analysis pipeline, etc. For example, the 
RNA-seq expression levels of the majority of genes quantified are in the range of 4-10 
(log2 of normalized_count) for TCGA, and 0-4 (log2 of RPKM) for GTEx (Fig. S1A), a 
consequence of the use of different analysis pipelines. This makes gene expression levels 
from the two projects not directly comparable.  

To facilitate research on abnormal gene expression in human diseases, a variety of 
databases have been developed to combine RNA-seq from different studies 
[3][4][5][6][7][8][9]. However, these databases either directly incorporated expression 
data from the literature, retaining unwanted batch effects in the data [7][8], or only 
combined and reanalyzed samples from smaller studies, hence, not taking advantage of 
the power provided by the recent large data sets [3][4][5][6]. A recently published 
pipeline, Toil [10], attempts to unify RNA-seq data from different sources by uniformly 
processing raw sequencing reads. However, Toil does not remove batch effects that are 
introduced by sources other than the differences in read alignment and quantification. To 
take full advantage of the large volume of available RNA-seq data, an integrative RNA-
seq resource is still urgently required.  

Here, we present a pipeline for processing and unifying RNA-seq data from different 
studies. By unifying data from GTEx and TCGA, we provide reference expression levels 
across the human body for comparison with the expression levels found in human cancer. 
Our method removes batch effects by uniformly reprocessing RNA-seq data. 
Specifically, we used raw sequencing reads of the RNA-seq samples downloaded from 
GTEx and TCGA, realigned them, re-quantified gene expression, and then removed 
biases specific to each study.  
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Results 

 
Our analysis pipeline included realignment of raw reads, removal of degraded samples, 
expression quantification, and batch effect processing (Fig. 1, see Methods).  

To allow proper batch bias correction, we processed only samples from tissues that were 
studied by both GTEx and TCGA (Table 1). Tissues with no or insufficient numbers of 
normal samples available in TCGA (e.g., sarcoma, ovarian cancer, melanoma) were not 
processed (Table S1). 

We downloaded and processed raw paired-end RNA-seq data from 10,366 samples, 
including 2,790 from GTEx and 7,576 from the TCGA project (Table 1). 831 samples 
(8%) exhibited 5’ degradation (as described previously [11]) and were excluded from 
further analysis. We also discarded samples with low alignment rates and samples not 
used in the final GTEx study, resulting in a total of 9109 (89%) high-quality samples for 
further analysis.  
 
To correct for batch biases, we first created a sample-gene matrix for each tissue-tumor 
pair by merging gene expression levels of the corresponding GTEx and TCGA samples. 
Regardless of the actual batch that a sample belonged to in an RNA-seq experiment, we 
treated all GTEx samples as one batch and TCGA samples as another. Then, we ran 
ComBat in the R package SVAseq [12] to correct for non-biological variation accounting 
for unwanted differences between GTEx and TCGA samples of a particular tissue type 
(see Methods).  

To examine how well our pipeline was able to correct study-specific batch effects, we 
systematically compared the effects of uniform realignment, expression quantification, 
and batch effect correction for three tissues: bladder, prostate and thyroid. When using 
expression levels reported by the TCGA and GTEx projects, even after applying upper-
quartile normalization to bring expression levels into comparable ranges (Fig. S1B), 
samples from the same study were more similar to each other than samples from the same 
tissue, as shown by PCA analysis (Fig. 2A). This result indicates the necessity to 
uniformly reprocess RNA-seq samples. 

However, uniform realignment and expression quantification using our pipeline did not 
fully resolve these differences; while the first principal component was now the tissue, 
the second principal component was still defined by the source (Fig. 2B), indicating that 
study-specific biases still accounted for significant variation in RNA-seq expression 
levels within each tissue type. This result shows that consistent realignment and 
expression quantification alone are not sufficient, and that further study-specific batch 
effects need to be removed in order to be able to compare expression data from TCGA 
and GTEx. 

To this end, we next added a batch-effect correction step to our pipeline, using ComBat 
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[12] (see Methods), which successfully corrected our example data and resulted in 
clustering by tissue type (Fig. 2C).  

To determine whether uniform alignment and expression quantification was an essential 
step, or whether batch effect removal via ComBat by itself was sufficient, we also applied 
ComBat directly to the level 3 data from GTEx and TCGA (GTEx-quantified data was 
rescaled using quantile normalization). We found that batch effect removal by itself is not 
sufficient, and that the combination of uniform processing of sequencing reads followed 
by additional batch effect removal is required to make data from the TCGA and GTEx 
projects comparable (Fig. S2). We validated the expression similarities observed in the 
principal component analysis through hierarchical clustering (Fig. 3). 

Our results demonstrate that uniform realignment and expression quantification, together 
with explicit correction for study-specific biases, are not only effective, but also 
necessary for removing batch effects and making samples from different studies 
comparable. 

Finally, we examined the expression levels of three cancer driver genes, ERBB2, IGF2, 
and TP53, in our batch-effect corrected data (Fig. 4). ERBB2 expression was 
significantly higher in a subset of tumor samples, consistent with the frequent 
amplifications observed in various tumor types. IGF2 showed a similar pattern, with a 
subset of tumor samples expressing the gene at levels several orders of magnitude higher 
than those in normal samples. TP53, on the other hand, is often affected by truncating 
mutations in cancer, which leads to decreased levels of RNA due to nonsense-mediated 
decay, an effect that is visible in the normalized RNA data.  

The data generated using our pipeline has been deposited into GitHub at 
https://github.com/mskcc/RNAseqDB. 

 

Discussion 

 
Recent large-scale studies, such as TCGA and GTEx, have resulted in an unprecedented 
volume of RNA-seq data. While these data offer new opportunities to identify the 
mechanisms underlying disease, the comparison of data from different sources poses a 
great challenge, due to batch effects inherent in the data from these studies.  

Here, we describe a pipeline for correcting and integrating RNA-seq data across studies. 
Our pipeline starts with raw sequencing reads, performs uniform alignment and read 
quantification, and then removes study-specific batch effects. We have applied our 
pipeline to two of the largest studies in the field: GTEx and TCGA, processing 2790 
normal RNA-seq samples from GTEx as well as 7576 samples from TCGA. Our results 
show that our pipeline is able to correct the biases specific to GTEx and TCGA, and, 
thus, make the samples from the two projects comparable.  
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Further efforts will be required to process samples for which there were not sufficient 
normal samples in the TCGA project, as well as GTEX samples for which there is no 
corresponding tumor type in the TCGA project. Our approach currently relies on the 
presence of normal samples in both studies that need to be integrated. 

The data created has been deposited to GitHub and will be made accessible through the 
cBioPortal for Cancer Genomics [13], [14], so that investigators can conveniently mine 
the data and conduct integrative analyses. The resulting resource will benefit the research 
of cancer and other human diseases, as the pipeline can be used for the integration of 
RNA-seq data from other sources.  

 

 

Methods 

RNA-seq data 

Raw paired-end reads of the RNA-seq samples for the TCGA project were retrieved from 
the Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu). When FASTQ files were 
not available, e.g. for stomach adenocarcinoma, we downloaded aligned sequence reads 
(in BAM format) and extracted reads from BAM files with the Java program ubu.jar 
(https://github.com/mozack/ubu) before processing samples using our pipeline. GTEx 
samples were downloaded from the Database of Genotypes and Phenotypes (dbGaP, 
http://www.ncbi.nlm.nih.gov/gap), which hosts >9,000 RNA-seq samples (in SRA 
format) for the GTEx study. 

Analysis pipeline 

We employed STAR aligner [15], a fast accurate alignment software used widely in the 
NGS community, to map reads to UCSC human reference genome hg19 and reference 
transcriptome GENCODE (v19), using recommended parameters, e.g. ‘--outFilterType 
BySJout’ and ‘--outFilterMultimapNmax 20’, etc., which are also standard options of the 
ENCODE project for long RNA-seq pipeline. Samples with alignment rates less than 
40% were excluded from further analysis. The detailed parameters we used to run STAR 
and the codes of our pipeline are available at GitHub 
(https://github.com/mskcc/RNAseqDB). 

The software tools FastQC, Picard (http://picard.sourceforge.net/index.shtml), RseQC 
[16], and mRIN [17] were used to evaluate sample quality. RNA degradation, as detected 
by mRNA, was present in some GTEx and TCGA samples. Since degradation can bias 
expression level measurements and cause data misinterpretation, we decided to exclude 
samples with evidence for degradation. To determine an appropriate degradation cutoff 
for mRIN, we used prostate cancer samples from the TCGA project, which had 
undergone extensive pathological, analytical, and quality control review and which had 
been shown to include a significant portion of degraded samples [11]. Fig. S3 compares 
mRIN scores with RNA Integrity Numbers (RIN) calculated by TCGA for prostate 
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samples [11]. It shows that mRIN is negatively correlated with RIN (Pearson 
correlation<-0.93). We used -0.11 as the degradation threshold (horizontal line in Fig. 
S3) for mRIN, which corresponds roughly to the cutoff 7.0 used by TCGA for RIN. 
Samples with mRIN<-0.11 were regarded as degraded and, thus, excluded from further 
analysis. 

To verify mRIN’s performance on other tissues, we manually examined coverage 
uniformity over gene bodies for other tissues using the tool RseQC [16] and compared it 
with mRIN scores. We calculated the number of reads covering each nucleotide position 
and the average coverage for all long genes (>4000nt). Fig. S4 shows the average 
coverage for TCGA prostate and bladder samples, each curve representing gene body 
coverage of a sample. In Fig. S4A, the 4 samples with the most uneven coverage are the 
ones deemed degraded in Fig. S3. We made similar observations in the other tissues 
examined, e.g. bladder in Fig. S4B, where the samples with the most imbalanced gene 
body coverage were the ones with the lowest mRIN scores. These results confirmed that 
mRIN is capable of measuring degradation for other tissues. 

When running STAR, we specified an option ‘--quantMode TranscriptomeSAM’ to make 
STAR output a file, Aligned.toTranscriptome.out.bam, which contains alignments 
translated into transcript coordinates. This file was then used with RSEM [18] to quantify 
gene expression. The program “rsem-calculate-expression” in the RSEM package 
requires strand specificity of the RNA-seq sample, which is estimated using RseQC [16].  

We also used another transcript quantification tool FeatureCounts[19] to generate integer-
based read counts. Overall, the output from FeatureCounts was highly consistent with 
that of RSEM (Spearman correlation > 0.95). However, for genes with multi-mapping 
reads (i.e., reads mapped to multiple genes), FeatureCounts differs from RSEM and tends 
to underestimate expression levels in comparison with RSEM (because it discards multi-
mapping reads). For example, the transcript from the PGA3 gene, which encodes human 
pepsinogen A enzyme that is highly abundant in the stomach, is identical to the 
transcripts of two other genes, PGA4 and PGA5. Its measurement in stomach by 
FeatureCounts (in default settings) is generally lower than that by RSEM (see Fig. S5). In 
our analysis below, we primarily used results by RSEM. 

To ensure that TCGA normal samples remain comparable with TCGA tumors after 
removing batch biases from the normals, we also included TCGA tumors in our sample-
gene matrix, which were processed in the same way as the normals using our pipeline 
from raw sequencing reads. In Table S2, we used bladder and lung as examples to show 
the parameters we used to run ComBat. As indicated in Table S2, we treated all TCGA 
samples, both tumors and normals (of the same tissue type) as one batch. To prevent 
ComBat from suppressing tumor-specific signals, we created a model to specify each 
sample to be either ‘normal’ or ‘tumor’, with which to run ComBat (see configuration file 
at https://github.com/mskcc/RNAseqDB/blob/master/configuration/tissue-conf.txt). 

Principal component analysis 
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To perform principal components analysis, we firstly remove genes with invariant 
expression levels and then log2-transform sample-gene matrix. Next, we utilize an R 
function ‘prcomp’ (with the ‘center’ option set to TRUE) to do principal components 
analysis. The two-dimensional PCA plot is created using an R function ‘autoplot’. 

Hierarchical clustering 

For hierarchical clustering of expression data, we used the R function Heatmap.3 using 
default parameters (e.g., distance: euclidean, hierarchical clustering method: ward, etc.) 
as well as the top 1000 most variable genes in the data matrix.  

 

Figure Captions 

Figure 1. Uniform processing of RNA-seq data from GTEx and TCGA.  
Figure 2. Effect of uniform processing and batch effect removal on expression levels in 
GTEx and TCGA. Two-dimensional plots are shown of principal components calculated 
by performing PCA of the gene expression values of bladder, prostate, and thyroid 
samples from GTEx and TCGA. (a) PCA of the level 3 data, i.e. the expression data from 
GTEx and TCGA. GTEx expression data was quantile normalized (see Fig. S1B). (b) 
PCA of the expression data after uniform processing through our pipeline, before batch 
bias correction. (c) PCA of the expression data after uniform processing through our 
pipeline, after batch bias correction. 
Figure 3. Hierarchical clustering of GTEx and TCGA bladder, prostate, and thyroid data 
shows the effect of uniform processing and batch effect correction.  (a) level 3 expression 
data from GTEx and TCGA; (b) gene expression calculated using our pipeline prior to 
batch bias correction; (c) our expression data after batch bias correction. 
Figure 4. Normalized expression across tissue and cancer types for three known cancer 
genes: (a) ERBB2; (b) IGF2; (c) TP53. 
 

 
Figure S1. (a) Ranges of GTEx and TCGA RNA-seq gene expression levels in bladder 
normal samples. (b) Gene expression levels in GTEx samples were scaled using quantile 
normalization.  
Figure S2. PCA plot after applying quantile normalization and ComBat to the level 3 
data of the 3 tissues, bladder, prostate, and thyroid, from GTEx and TCGA 
Figure S3. Comparing mRIN with RNA Integrity Number (RIN) calculated by TCGA 
for prostate cancer samples. The horizontal line at -0.11 is our cutoff. A sample with 
mRIN < -0.11 is deemed degraded. TCGA prostate cancer group used 7.0 (vertical line) 
as cutoff. 
Figure S4. Gene body coverage of the TCGA prostate and bladder samples. Each curve 
in the figure represents average coverage of genes (from 5’ to 3’) in a sample. To ease 
visual examination, only long genes (>4000nt) were used in the calculation of the 
coverage and only the normal samples were plotted.  
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Figure S5. Expression of gene PGA3 in six tissues. Gene expression in (a) and (b) were 
quantified using FeatureCounts and RSEM, respectively. The same set of GTEx and 
TCGA (both tumor and normal) samples was used to compare FeatureCounts and RSEM 
for each tissue type. 
 

 
Table 1. GTEx and TCGA RNA-seq samples processed by our pipeline. Only paired-end 
RNA-seq samples were included. 
 

GTEx tissue / TCGA cancer type GTEx  TCGA normal TCGA tumor Total 

bladder / blca 11 19 411 441 

breast / brca 218 114 1112 1444 

cervix / cesc 11 3 304 318 

uterus / ucec 90 24 180 294 

uterus / ucs   0 57 57 

colon-sigmoid / read 173 10 94 277 

colon-transverse / coad 203 41 295 539 

liver / lihc 136 50 371 557 

Salivary Gland / hnsc 70 44 520 634 

esophageal / esca 790 11 185 986 

prostate / prad 119 52 497 668 

stomach / stad 204 35 415 654 

thyroid / thca 355 59 505 919 

lung / luad 374 59 528 961 

lung / lusc   51 504 555 

kidney cortex / kirc 36 72 541 649 

kidney cortex / kirp   32 290 322 

kidney cortex / kich   25 66 91 

Total 2790 701 6875 10366 

 

 
Table S1. Samples with no or insufficient numbers of normal samples available in TCGA 
or GTEx. 
 

GTEx tissue / TCGA cancer type GTEx  TCGA normal TCGA tumor Total 

adipose / sarc 621 2 259 882 

blood / laml 456 0 0 456 

none / chol 0 9 36 45 
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none / dlbc   0 48 48 

adrenal gland / acc 159 0 79 238 

adrenal gland / pcpg   3 179 182 

brain / gbm 1403 0 156 1559 

brain / lgg   0 516 516 

ovary / ov 108 0 294 402 

pancreatic / paad 197 4 178 379 

skin / skcm 974 1 103 1078 

small intestine / none  104 0 0 104 

testis / tgct 203 0 150 353 

none / thym   2 120 122 

none / meso   0 87 87 

none / uvm   0 80 80 

Total 4225 21 2285 6531 

 

Table S2. ComBat parameters for: (a) bladder, (b) lung. TCGA lung cancer has two 

subtypes: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). We 

designated LUSC in same batch as LUAD. 

(a) Parameters of ComBat for bladder 

 

 GTEx bladder TCGA BLCA 
normal 

TCGA BLCA 
tumor 

Batch 1 2 2 

Variable of interest normal normal tumor 

 

 

(b) ComBat parameters for lung 

 

 GTEx 
lung 

TCGA LUAD 
normal 

TCGA 
LUAD tumor 

TCGA LUSC 
normal 

TCGA 
LUSC tumor 

Batch 1 2 2 2 2 

Variable of 
interest 

normal normal tumor normal tumor 
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