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Abstract  18 

In mammals, genomic regions with enhancer activity turnover rapidly; in contrast, gene expression 19 

patterns and transcription factor binding preferences are largely conserved. Based on this conservation, 20 

we hypothesized that enhancers active in different mammals would exhibit conserved sequence patterns 21 

in spite of their different genomic locations. We tested this hypothesis by quantifying the conservation of 22 

sequence patterns underlying histone-mark defined enhancers across six diverse mammals in two machine 23 

learning frameworks. We first trained support vector machine (SVM) classifiers based on the frequency 24 

spectrum of short DNA sequence patterns. These classifiers accurately identified many adult liver, 25 

developing limb, and developing brain enhancers in each species. Then, we applied these classifiers 26 

across species and found that classifiers trained in one species and tested in another performed nearly as 27 

well as classifiers trained and tested on the same species. This indicates that the short sequence patterns 28 

predictive of enhancers are largely conserved. We also observed similar cross-species conservation when 29 

applying the models to human and mouse enhancers validated in transgenic assays. The sequence patterns 30 

most predictive of enhancers in each species matched the binding motifs for a common set of TFs 31 

enriched for expression in relevant tissues, supporting the biological relevance of the learned features. To 32 

test the conservation of more complex sequences patterns, we trained convolutional neural networks 33 

(CNNs) on enhancer sequences in each species. The CNNs demonstrated better performance overall, but 34 

worse cross-species generalization than SVMs, suggesting the importance of combinatorial interactions 35 

between motifs, but less conservation of these more complex sequence patterns. Thus, despite the rapid 36 

change of active enhancer locations between mammals, cross-species enhancer prediction is often 37 

possible. Furthermore, short sequence patterns encoding enhancer activity have been maintained across 38 

more than 180 million years of mammalian evolution, with evolutionary change in more complex 39 

sequence patterns.  40 

 41 
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Author summary 42 

Alterations in gene expression levels are a driving force of both speciation and complex 43 

disease; therefore, it is of great importance to understand the mechanisms underlying the evolution and 44 

function gene regulatory DNA sequences. Recent studies have revealed that while gene expression 45 

patterns and transcription factor binding preferences are broadly conserved across diverse animals, there 46 

is extensive turnover in distal gene regulatory regions, called enhancers, between closely related species. 47 

We investigate this seeming incongruence by analyzing genome-wide enhancer datasets from six diverse 48 

mammalian species. We trained two machine-learning classifiers—a k-mer spectrum support vector 49 

machine (SVM) and convolutional neural network (CNN)—to distinguish enhancers from the genomic 50 

background. The k-mer spectrum SVM models the occurrences of short sequence patterns while the CNN 51 

models both the short sequences patterns and their combinatorial patterns. Both the SVM and CNN 52 

enhancer prediction models trained in one species are able to predict enhancers in the same cellular 53 

context in other species. However, CNNs performed better at predicting enhancers in each species, but 54 

they generalize less well across species than the SVMs. This argues that the short sequence properties 55 

encoding regulatory activity are remarkably conserved across more than 180 million years of mammalian 56 

evolution with more evolutionary turnover in the more complex combinations of the conserved short 57 

sequence motifs. 58 

 59 
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Introduction 65 

Enhancers are genomic regions distal to promoters that bind transcription factors (TFs) to regulate the 66 

dynamic spatiotemporal patterns of gene expression required for proper differentiation and development 67 

of multi-cellular organisms [1,2].  It is critical to understand the mechanisms underlying enhancer 68 

evolution and function, as alterations in their activity influence both speciation and disease [3–5]. Recent 69 

genome-wide profiling of TF occupancy and histone modifications associated with enhancer activity 70 

revealed that the regulatory landscape changes dramatically between species—both enhancer activity and 71 

TF occupancy at orthologous regions distal to promoters are extremely variable across closely related 72 

mammals [6–12]. However, the gene regulatory circuits [13] and expression of orthologous genes in 73 

similar tissues are largely conserved across mammals [14–16]. Much of the gene regulatory machinery is 74 

also conserved; TFs and the short DNA motifs they bind are highly similar between human, mouse, and 75 

fly [17–20]. In short, there is considerable change in the enhancer activity of orthologous regions across 76 

mammals, despite the relative conservation of gene expression and TF binding preferences. 77 

  The rapid turnover in enhancer activity between orthologous regions in different species has 78 

largely been attributed to differences in the DNA sequences of the elements involved, rather than 79 

differences in the broader nuclear context [21–25]. Genome-wide profiles of TF binding have shown that 80 

60–85% of binding differences in human, mouse, and dog for the TFs CEBPα and HNF4α can be 81 

explained by genetic variation that disrupts their binding motifs [23]. Genetic differences are also often 82 

responsible for differential enhancer activity between more closely related species; for example, variation 83 

in TF motifs at orthologous enhancers was predictive of activity differences between human and chimp 84 

neural crest enhancers [25]. This suggests that, while there is turnover at orthologous sequences, sequence 85 

properties predictive of enhancer activity may still be conserved. 86 

 Until recently, investigation of the conservation of enhancer sequence properties across 87 

mammalian evolution has been hampered by a lack of known enhancers across diverse species within the 88 

same cellular context.  The canonical definition of enhancer activity is the ability to drive expression in 89 
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transgenic reporter assays [1,26], which cannot currently be scaled to assess regulatory potential genome-90 

wide. However, high-throughput assays such as ChIP-seq can assess histone modifications associated 91 

with enhancer activity [27,28] to identify putative enhancers genome-wide in many tissues and species 92 

[12,29]. Using known enhancers, machine learning approaches have learned their sequence properties and 93 

successfully distinguished enhancers active in specific cellular contexts from both the genomic 94 

background and enhancers active in other tissues [30–39]. Moreover, some of these studies suggested the 95 

potential for cross-species enhancer prediction. For instance, the similarity of co-occurrence of sequence 96 

patterns can be used to identify orthologous enhancers in distantly related Drosophila species [40]. 97 

Furthermore, annotated cis-regulatory modules (CRMs) in Drosophila can predict CRMs in highly 98 

diverged insect species based on binding site composition similarity [41]. However, TF binding sites 99 

appear to evolve and turnover much more rapidly between closely related mammals than Drosophila 100 

species [10,42].  In mammals, a machine learning model trained with mouse enhancers accurately predict 101 

orthologous regions of the human genome [31]; however, the rapid turnover of enhancer activity between 102 

human and mouse suggests that the majority of these orthologous regions are not human enhancers [12]. 103 

These previous studies suggest the potential for evolutionary conservation of sequence properties of 104 

mammalian enhancers, but comprehensive genome-wide quantification of the degree and dynamics of 105 

this conservation is needed.   106 

In this study, we investigate the degree of regulatory sequence property conservation by applying 107 

machine learning classifiers to genome-wide enhancer datasets across diverse mammals. We first confirm 108 

that Support Vector Machine (SVM) classifiers trained using short DNA sequence patterns can accurately 109 

identify many enhancers genome-wide in the adult liver [12] , developing limb and developing brain [29]. 110 

Then, by using classifiers trained in one species to predict enhancers in the others, we demonstrate that 111 

enhancer sequence properties are conserved across species, even though the enhancer activity of specific 112 

loci is not. We establish the robustness of this conservation to different enhancer identification techniques 113 

by showing that classifiers trained using high-confidence human and mouse enhancer sequences validated 114 

in transgenic assays also generalize across species, and are similar to classifiers trained on histone-115 
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modification-defined enhancers. Furthermore, the short DNA patterns most predictive of enhancer 116 

activity in each species matched a common set of binding motifs for TFs enriched for expression in 117 

relevant tissues. This suggests the patterns learned by classifiers capture biologically relevant sequences 118 

that influence TF binding. In addition to SVM classifiers, we also trained convolutional neural networks 119 

(CNNs) on enhancers in each species. The multilayer structures of CNNs can learn predictive short DNA 120 

motifs as well as combinations of motifs at different levels of complexity, and therefore are promising for 121 

modeling the complex interactions between TFs [36–39,43–45].  The CNNs predicted enhancers with 122 

higher accuracy than k-mer SVM models, but the CNNs generalized less well across species, suggesting 123 

less conservation of more complex sequence patterns.  Together, our results argue that, though there is 124 

rapid change of active gene regulatory sequences between mammalian species, the short sequence 125 

patterns of the enhancer regions encoding regulatory activity have been conserved over 180 million years 126 

of mammalian evolution. Furthermore, the combinatorial rules combining these short sequence patterns 127 

may be more divergent between species. Our findings also suggest avenues for improved enhancer 128 

identification within and between species and establish a framework for future exploration of the 129 

conservation and divergence of regulatory sequence properties between species. 130 

 131 

Results 132 

Enhancers can be predicted from short DNA sequence patterns in mammals 133 

Genome-wide enhancer activity across many mammalian species was recently assayed by profiling 134 

enhancer-associated histone modifications in the adult liver [12], developing limb [8] and developing 135 

brain [46].  Certain chemical modifications to histones, such as acetylation of lysine 27 of histone H3 136 

(H3K27ac) and lack of trimethylation of lysine 4 of H3 (H3K4me3), are significantly associated with 137 

active enhancers. Determining the genomic locations of these modifications via ChIP-seq provides a 138 

genome-wide proxy for the active enhancer landscape [27,28]. For brevity, we refer to genomic regions 139 
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with enhancer-associated histone modification combinations identified in these previous studies as 140 

“enhancers.”  141 

 For each species and tissue, we evaluated how well short DNA sequence patterns identified 142 

enhancers. We quantified DNA sequence patterns present in each genomic region by computing its k-mer 143 

spectrum—the observed frequencies of all possible nucleotide substrings of length k. We then trained 144 

SVM classifiers on the k-mer spectra to distinguish enhancers from random genomic regions matched to 145 

the enhancers on various attributes, such as length, GC-content, and repeat-content, as appropriate. We 146 

trained and evaluated our classifiers on both unbalanced and balanced positive and negative sets (see 147 

CNN results and Methods). The unbalanced set contains ten times as many negative non-enhancer regions 148 

as enhancers to reflect the fact that most of the genome does not have enhancer activity; in this test, we 149 

trained with different misclassification costs for positives and negatives (Methods). We report the 150 

unbalanced results in this section and the balanced results in the comparisons with CNN models below. 151 

We used ten-fold cross validation to evaluate classifier performance. We quantified performance by 152 

computing the average area under receiver operating characteristic (auROC) and precision-recall (auPR) 153 

curves over the ten cross-validation runs (Figure 1; Methods). 154 

We first evaluated the ability of classifiers trained on 5-mer spectra to identify liver enhancers in 155 

six representative mammals: human, macaque, mouse, cow, dog and opossum. These species were 156 

selected as representatives, since they each come from a different clade and have high-quality genome 157 

builds. As expected from previous work [31,32,47], all classifiers could distinguish active liver enhancers 158 

from length-matched background regions; auROCs ranged from 0.78 in dog to 0.84 in mouse (Figure 2a, 159 

PR curves in Figure S1a). Next, we trained 5-mer spectrum SVM classifiers to predict enhancers active in 160 

limb and brain for human, macaque, and mouse. Again, classifiers accurately distinguished enhancers 161 

from the background with even stronger performance than the liver classifiers. The limb classifiers 162 

achieved auROCs of ~0.89 in each species (Figure 2b; PR curves in Figure S1b), and the brain classifiers 163 

had auROCs from 0.90–0.93 (Figure 2c; PR curves in Figure S1c).  164 
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The choice of k did not significantly influence performance; the auROCs for human liver 165 

classifiers are 0.81, 0.82, 0.82, 0.82, respectively across a k of 4, 5, 6, and 7. We also explored the 166 

application of classifiers based on more flexible k-mer features, i.e., the gappy and mismatch k-mer 167 

kernels [48], but they did not significantly improve performance (Figure S2; Methods). These results 168 

illustrate that SVMs trained only on DNA sequence patterns can distinguish many enhancers from 169 

background sequences across a variety of mammals for three tissues and two developmental time-points.  170 

 171 

Short sequence properties predictive of enhancers are conserved across species 172 

We then investigated whether learned DNA sequence patterns predictive of enhancer activity were 173 

conserved across mammals by testing whether classifiers trained in one species could distinguish 174 

enhancers from the genomic background in another species. First, we applied the human liver classifier to 175 

the five other species. We quantified cross-species performance using the relative auROC—the auROC of 176 

the enhancer classifier trained on species A and applied to species B, divided by the average auROC 177 

obtained by the classifier trained and tested on species B. In other words, the relative auROC is the 178 

proportion of within-species performance achieved by a classifier trained in a different species. The 179 

classifier trained on human liver enhancers predicted liver enhancers in other mammals nearly as 180 

accurately as classifiers trained in each species (Figure 3a, PR curves in Figure S1c), and its relative 181 

performance decreased only slightly across species (Figure 3b, relative auROCs > 95.5%). Furthermore, 182 

the scores from the human classifier applied to human enhancers were significantly positively correlated 183 

with the scores from non-human classifiers (Figure S3; Spearman’s ρ between 0.90 for macaque and 0.66 184 

for opossum).  When expanded to all pair-wise combinations of species, classifiers accurately predicted 185 

enhancers in every mammalian species tested, regardless of the specific species they were trained in; the 186 

average relative auROC was 96.0% (Figure 3b; raw AUCs in Figure S4a-b).  187 

Classifiers generalized better to more closely related species; generalization was significantly 188 

inversely correlated with the species’ evolutionary divergence, as quantified by substitutions per neutrally 189 

evolving site (Figure S5, Pearson’s r = –0.585, P = 0.022). Furthermore, classifiers trained to identify 190 
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enhancers in developing limb and brain also accurately generalized across species. The average relative 191 

auROC for the developing limb classifiers was 95.0% across all species pairs (Figure 3c-d, Figure S6), 192 

and the average relative auROC for the developing brain classifiers was 98.6% (Figure 3e-f; raw AUCs in 193 

Figure S7). The ability of classifiers to generalize to other species illustrates the conservation of sequence 194 

properties predictive of enhancers across mammals. 195 

To ensure that the small fraction of liver enhancers shared between pairs of species were not 196 

driving performance, we identified enhancers human liver enhancers that overlapped enhancers from each 197 

of the other five mammalian species in genome-wide multiple sequence alignments from Ensembl 198 

(macaque: 24.0%; mouse: 13.6%; cow: 20.0%; dog: 16.7%; and opossum: 3.4%). For each pair of 199 

species, the overlapping enhancers were removed from the human training set and a new human classifier 200 

was trained and evaluated. Removal of these enhancers had little impact on classifier performance across 201 

species, illustrating that the small fraction of orthologous enhancers did not drive the cross-species 202 

generalization of the classifiers (Figure S8).  203 

Genome-wide mapping of enhancer-associated histone modifications is a cost-effective means to 204 

identify putative enhancers; however, the presence of these modifications does not guarantee enhancer 205 

activity. Many experimental and computational approaches have been used to identify enhancers [1,49], 206 

and there is considerable disagreement among different strategies [50]. To investigate the generality of 207 

our conclusions drawn from histone-modification-derived enhancers, we also analyzed enhancers 208 

validated in vivo via transgenic assays from the VISTA enhancer database. We included six tissues (limb, 209 

forebrain, midbrain, hindbrain, heart and branchial arch) with a sufficient number of validated enhancers 210 

(at least 50) in human and mouse. Consistent with the results from classifiers trained on histone-211 

modification defined enhancers, the classifiers trained and evaluated on VISTA human enhancers 212 

accurately predicted VISTA mouse enhancers in the corresponding tissue from genomic background, and 213 

vice versa (Figure S9, average relative auROC = 96.3%). This suggests that sequence patterns in 214 

enhancers confirmed via reporter assays are conserved between human and mouse. Moreover, the 215 

histone-modification trained limb classifiers accurately predicted VISTA enhancers (auROC = 0.83 in 216 
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human, 0.76 in mouse) competitively with the VISTA-trained limb classifier itself (auROC = 0.81 in 217 

human, 0.78 in mouse), suggesting that sequence properties predictive of histone-modification defined 218 

enhancers are also predictive of transgenic assay validated enhancers. Thus, in spite of the limited number 219 

and biases present in the sequences tested for enhancer activity by VISTA, these analyses demonstrate 220 

that our models capture conserved sequence attributes of functionally validated enhancers. 221 

Overall, these results show that the DNA sequence profiles of enhancer sequences captured by 222 

species-specific 5-mer spectrum SVM classifiers are predictive of enhancers in other mammalian species 223 

in corresponding tissues. The strong generalization of performance and correlation of the predictions for 224 

specific sequences by classifiers trained in different species indicates that sequence properties predictive 225 

of enhancers are conserved across mammals.  226 

 227 

Short DNA sequence patterns remain predictive of enhancer activity after controlling for GC 228 

content and repetitive elements 229 

Enhancer activity is positively correlated with GC content (Figure S3), and enhancers can be born from 230 

repetitive sequences derived from transposable elements [51–54]. Thus, we sought to evaluate the extent 231 

to which these properties influenced the generalization of our enhancer prediction models across species. 232 

First, we trained GC-controlled classifiers using negative sets of random genomic regions matched on GC 233 

content. The predictive power of the GC-controlled classifiers was substantial (average auROC of 0.75 234 

for liver, 0.79 for limb and 0.81 for brain; Figures S10a, S11a and S12a), but as expected, less than the 235 

corresponding classifiers without GC-control (average auROC of 0.81 for liver, 0.89 for limb and 0.92 for 236 

brain; Figure 2). Nevertheless, GC-controlled classifiers maintained strong cross-species generalization: 237 

liver classifiers had an average relative auROC of 94.8% when applied to the other five species (Figures 238 

4a); limb classifiers had an average relative auROC of 95.0% when applied across species (Figures S11e); 239 

brain classifier had an average relative auROC of 94.8% (Figure S12e). The enhancer predictions for 240 

individual sequences by the GC-controlled classifiers were significantly correlated, and as expected, high 241 
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GC-content sequences no longer received consistently high scores (Figure S13). Ultimately, the strong 242 

cross-species generalization of the GC-controlled classifiers suggests that enhancers differ from the 243 

genomic background in higher order sequence patterns beyond GC-content, and that those patterns are 244 

conserved.  245 

The generalization of each liver GC-controlled classifier across species had the same pattern as 246 

the classifiers without GC-control: the human classifier had the best generalization (average relative 247 

auROC = 96.1%), while the opossum had the worst (average relative auROC = 92.8%). In these GC-248 

controlled analyses, we observed a stronger inverse correlation between the relative performance across 249 

species and sequence divergence (Figure S14, Pearson’s r = –0.77, P = 0.001) than in the non-GC-250 

controlled analysis (Figure S4, Pearson’s r = –0.585, P = 0.022). This indicates that both genomic 251 

differences in GC content distribution and overall evolutionary divergence influence the conservation of 252 

the sequence patterns predictive of putative enhancers.  253 

To evaluate the influence of repetitive elements on the ability to distinguish enhancers from the 254 

background and the observed conservation of sequence properties across species, we trained classifiers to 255 

distinguish enhancers that did not overlap a repetitive element (only 3.3% of all enhancers in human) 256 

from matched non-repetitive regions from the genomic background. Neither the ability to distinguish 257 

enhancers from the background in a species, nor the ability of predictive sequence properties to generalize 258 

across species, was substantially reduced (Figure S15). This demonstrates that, while repetitive elements 259 

contribute to enhancer activity, the conservation of sequence properties predictive of enhancers is not 260 

contingent on their presence. 261 

 To examine the influence of repetitive elements across all observed enhancer sequences, we also 262 

trained classifiers to distinguish all enhancers regions from genomic background regions matched for both 263 

GC-content and the proportion of overlap with a repeat element. The performance of these classifiers 264 

slightly decreased (average auROC of 0.73; Figure S16a) relative to when not controlling for repeat 265 

overlap (average auROC of 0.75; Figure S10a) or neither repeats or GC-content (average auROC of 0.81; 266 

Figure 2). This indicates that, as expected, both features are informative about enhancer function. 267 
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However, the repeat and GC-controlled classifiers still generalized across species (average relative 268 

auROC = 94.0%, Figure 4b); this demonstrates that enhancer sequence properties beyond both GC and 269 

repeat content are conserved across species. 270 

 271 

Enhancer sequence properties are more similar across the same tissue in different species than 272 

across different tissues in the same species 273 

Gene expression patterns are significantly more similar in corresponding tissues across species than 274 

between different tissues in the same species [14–16], and we demonstrated that enhancer sequence 275 

properties are strongly conserved in the same tissue across species (Figure 2). Thus, we hypothesized that, 276 

as for gene expression, enhancer sequence properties would be more similar in the same tissue across 277 

species (cross-species) than between different tissues in the same species (cross-tissue) and that the cross-278 

tissue performance could provide a benchmark for contextualizing cross-species generalization. To test 279 

this, we performed cross-tissue analysis using human enhancers identified in nine diverse cellular 280 

contexts, including liver, by the Roadmap Epigenomics Project [2] (Methods). We applied the classifier 281 

trained on human liver enhancers (from Villar et al.) to Roadmap Epigenomics enhancers from: liver, 282 

brain hippocampus middle, pancreas, gastric, left ventricle, lung, ovary, CD14 cells, and bone marrow. 283 

For consistency, we used H3K27ac without H3K4me3 to identify enhancers in these tissues. Next, we 284 

compared the relative auROC between the cross-tissue and cross-species prediction tasks (Figure 5a). In 285 

the non-GC-controlled analysis, the human liver enhancer classifier predicts enhancers in macaque, 286 

mouse, cow, dog and opossum better than all non-liver Roadmap tissues. In the GC-controlled analysis, 287 

we observed the same trend. The cross-species predictions are also more accurate than cross-tissue 288 

predictions, with the exception of the Roadmap gastric tissue (dark green), which is also a digestive 289 

tissue. When compared to the relative auROCs of all pairwise cross-species analysis in liver, limb and 290 

brain, those of human liver to non-liver Roadmap tissues are significantly lower (Figure 5b). In addition 291 

to the human cross-tissue analysis, we also examined the cross-tissue performance of the liver, limb and 292 
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brain classifiers over all three species with enhancers in three tissues: human, macaque and mouse. For 293 

each species, we applied the classifiers trained in liver, limb and brain to that species’ enhancers in other 294 

two tissues. Again, cross-species performance (all pairwise relative auROCs) was significantly higher 295 

than cross-tissue performance in both GC-controlled and non-GC-controlled analyses (Figure 5b). The 296 

ability of enhancers to regulate gene expression is often contingent on both cell-type specific attributes, 297 

such as expression patterns of TFs [55], and properties that are shared across active enhancers in general. 298 

The stronger performance of the trained classifiers in the cross-species compared to cross-tissue 299 

prediction tasks suggests that they capture cell-type-specific sequence attributes and that these features 300 

are conserved across species.  301 

 302 

The most predictive sequence patterns in different species match binding motifs for many of the 303 

same transcription factors  304 

To interpret the biological relevance of the sequence patterns learned by the trained SVM enhancer 305 

prediction models in each species, we analyzed the similarity of the sequence properties in their 306 

functional context: TF binding motifs. First, we matched the 5% (n = 52) most enhancer-associated 5-307 

mers learned by the human GC-controlled liver classifier to a database of 205 known TF motifs [56] 308 

using TOMTOM (Figure 6a). The enhancer-associated 5-mers were significantly more likely to match at 309 

least one TF motif than expected at random (46.1% vs. 27.7%; one-tailed P = 0.0035, binomial test). The 310 

5% (n=52) most background-associated 5-mers were not significantly different from random (21.6% 311 

matched at least one TF, two-tailed P = 0.43, binomial test). This illustrates that the classifiers learned 312 

sequence patterns with regulatory potential. 313 

Next, we investigated whether the TF binding motifs matched by enhancer-associated 5-mers 314 

were shared between species. The highly weighted 5-mers in the human-trained classifier matched 121 315 

TF motifs. Of these, the binding motifs for 33 TF were also matched by enhancer-associated 5-mers in all 316 

other species (Figure 6b, Table S1). This is significant enrichment for shared TF motifs among the 317 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/110676doi: bioRxiv preprint 

https://doi.org/10.1101/110676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 14

enhancer-associated 5-mers; only 0.59 TF motifs were shared across all species on average over 100 318 

random sets of 5% of 5-mers from each species (Figure 6c). Similarly, only one TF motif (MZF1) was 319 

shared among all the species’ most background-associated 5-mers. The GC-controlled limb and brain 320 

classifiers also shared more TFs among the top 5% of enhancer-associated 5-mers than expected from 321 

random sets: 12 TFs were shared among the limb classifiers and 22 were shared among the brain 322 

classifiers vs. 8.1 shared TFs expected by chance. However, it is likely that the smaller number of 323 

available species for developing limb and brain enhancers, our limited knowledge of binding motifs for 324 

TFs active in developing limb and brain, and the heterogeneity of developing limb and brain tissue 325 

reduced power to detect sharing compared to liver. We obtained similar results when comparing the TFs 326 

matched by 5-mers from non-GC-controlled SVM models (Figure S17).   327 

To evaluate the relevance of the shared TF motifs to liver function, we evaluated the expression 328 

patterns of the TFs across 12 tissues [57]. Shared TFs among liver enhancer-associated 5-mers were 329 

significantly enriched for liver expression (Table 1, P = 0.011, one-tailed Fisher’s exact test). Many of the 330 

shared TFs play an essential role in liver function. For instance, they are enriched for activity in the TGF-331 

β signaling pathway compared to non-shared TFs; the enrichment is mainly due to members of the AP-1 332 

(JUN, FOS, and MAF subfamilies) and SMAD families (Methods) [58,59]. TGF-4 signaling is a central 333 

regulatory mechanism that is disrupted in all stages of chronic liver disease [60]. Further, mice deficient 334 

in c-JUN or MAF have an embryonic lethal liver phenotype [61,62]. We also searched for matches to the 335 

binding motifs of known liver master regulators among the highly weighted motifs. While none of them 336 

were shared among all models, several including, HNF1α, HNF4α, and FOXA1 matched highly weighted 337 

motifs in three or more species (Table S2). This demonstrates that the sequence patterns learned in each 338 

species capture similar motifs that are recognized by TFs that important to the relevant tissue context. 339 

 340 

Table 1. The TFs with motifs shared among the top 5-mers across all species’ liver enhancer SVM 341 

classifiers are significantly enriched for liver expression (P = 0.011, one-tailed Fisher’s exact test). 342 

 343 
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 Shared TFs Not shared TFs 

Liver expressed 26 89 

Not liver expressed 7 70 

Percent Liver expressed  78.8% 56.0% 

 344 

Convolutional neural networks predict enhancers more accurately than SVMs, but 345 

generalize less well across species 346 

Although the k-mer SVM model accurately classified many enhancers, its performance was not 347 

perfect. We hypothesized that using models with the potential to learn combinatorial interactions 348 

between short sequence patterns in enhancers could further improve performance. To model 349 

these more complex patterns, we trained convolutional neural networks (CNNs) to distinguish 350 

liver enhancers from the genomic background in each species. Here, we used a balanced dataset 351 

due to challenges of training CNN classifiers on unbalanced sets (Methods). To compare the 352 

performance of CNNs with the SVM models, we retrained k-mer spectrum SVM classifiers on 353 

the same balanced data in each species and performed cross-species enhancer predictions 354 

(Supplementary Figure 18a,b). The CNN model performance is substantially better than the k-355 

mer spectrum SVM classifiers at predicting enhancers from genomic background in each species 356 

(Figure 7a), suggesting that the ability to model complex interactions between short sequence 357 

patterns improves predictions. Moreover, the first layer of the human liver CNN learned many 358 

binding motifs for TFs relevant to liver biology, including CEBPB, HNF4A, and HNF1A (Figure 359 

7b).  360 

Next, we performed the cross-species enhancer prediction with the CNNs. The CNN 361 

models generalize well across species (relative auROC from 0.79 to 0.97), but their 362 

generalization is consistently worse than the k-mer SVM models (Figure 7c; Raw auROCs and 363 
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auPRs is in Supplementary Figure 18c,d). This suggests that the combinatorial sequence patterns 364 

captured by the internal layers of CNN models is less conserved across species then the 365 

individual short sequence motifs.  366 
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Discussion 367 

In this study, we trained SVM and CNN classifiers based on DNA sequence patterns to distinguish 368 

enhancers from the genomic background in diverse mammalian species. We then showed that, in spite of 369 

significant changes in the enhancer landscape between species, the k-mer SVM models trained using short 370 

sequence patterns as features exhibited minimal decreases in performance when applied across species. 371 

This indicates that short sequence patterns predictive of enhancer activity captured by these models are 372 

conserved across mammals. Furthermore, the DNA patterns most predictive of activity across species 373 

matched a common set of TF binding motifs with enrichment for expression in the relevant tissues. The 374 

sequence properties predictive of histone-mark defined enhancers were also predictive of enhancers 375 

confirmed in transgenic reporter assays. We then showed that CNN models performed better than the 376 

SVMs at identifying enhancers, but they generalized less well across species. These results suggest that 377 

conserved regulatory mechanisms have maintained constraints on short sequence motifs present in 378 

enhancers for more than 180 million years, while more evolutionary change in regulatory mechanisms has 379 

occurred at the level of combinations of motifs, likely representing cooperative interactions between TFs. 380 

Confidently identifying and experimentally validating enhancers remains challenging [50]. We 381 

showed that short sequence properties are conserved across species using enhancers identified via two 382 

complementary techniques: histone modification profiling and transgenic assays. Each of these 383 

approaches has strengths and weaknesses. The histone modification based enhancer predictions enable 384 

genome-wide characterizations across many species, but this approach is prone to false positives. On the 385 

other hand, the transgenic assays clearly demonstrate the competence of a sequence to drive gene 386 

expression, but are restricted to a biased set of relatively few sequences from two species that are tested at 387 

one developmental stage. By showing the cross-species conservation is maintained in both categories, and 388 

that models trained on each set perform similarly, we argue the conservation of enhancer short sequence 389 

properties is robustness to the methodology used to define enhancers. 390 
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The design of this study can serve as a framework for further examining the conservation and 391 

divergence of regulatory sequence patterns across species. We trained sequence-based machine learning 392 

models within a species, and then applied them to other species; this approach can be applied on a 393 

genome-wide scale, is not dependent on knowledge of TF binding motifs, and allows some flexibility in 394 

the weights assigned to each feature while directly testing the generalization of overall sequence patterns. 395 

Identification of enhancers in more divergent species would enable us better quantify how deeply 396 

conserved enhancer sequence properties are. This remains an open question, as more divergent animal 397 

species have very little conservation of TF co-associations at putative enhancers despite conservation of 398 

TF binding preferences [63]; however, enhancer properties appear to be conserved over greater 399 

evolutionary timescales in insects [41,42,64].  Identification of enhancers in the same cellular context for 400 

more closely related species would also be valuable to enable the investigation of lineage-specific 401 

regulatory sequence patterns. Thus, additional comparative studies of regulatory sequence features in 402 

more species are needed to better understand both recent and ancient influences on regulatory sequences.  403 

While both the SVM and CNN classifiers correctly distinguished many enhancers from the 404 

genomic background, neither performed perfectly. Many factors contribute to this, including: false 405 

positives in the training data, noise from the low resolution of the histone modification peaks (i.e., they 406 

include non-functional sequence flanking the enhancer), and the features considered in our models. As 407 

enhancer datasets and prediction methods improve, it will be valuable to continue to evaluate 408 

generalization across species. Additionally, the features learned by the enhancer CNNs are difficult to 409 

interpret biologically, especially for higher-level neurons. The interpretation of internal layers of accurate 410 

CNNs would facilitate the understanding of how more complex rules of the enhancer sequence 411 

architecture, such as motif spacing, order, combinations, and hierarchies, change during evolution. The 412 

interpretation and comparison of conserved and diverged rules between species is an important area for 413 

future work. Furthermore, our framework could also be adapted to investigate conservation of other 414 

functionally relevant factors, such as histone modifications and DNA shape [10,65].  415 
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 416 

Conclusions 417 

We demonstrated that short DNA sequence patterns predictive of enhancer activity learned in one species 418 

generalize very well to other mammals. Furthermore, deep neutral network models that can learn complex 419 

combinations of short sequence patterns identified enhancers even more accurately, but generalized less 420 

well across species. This suggests evolutionary conservation short sequence motifs, but turnover of their 421 

some of their combinatorial patterns between species. The commonality of short sequence elements 422 

predictive of enhancer activity across mammals argues that much of what we learn about enhancer 423 

biology, particularly at the basic sequence motif level, in model organisms could be extrapolated to 424 

humans. Sequence-based cross-species enhancer prediction could be of particular use in studying difficult 425 

to obtain human tissues and providing preliminary annotations in uncharacterized species and tissues. 426 

There is also the potential to combine sequence-based models with successful cross-species enhancer 427 

prediction strategies based on functional genomics data [66]. Nonetheless, much work remains to 428 

understand how regulatory programs are robust to sequence changes, yet receptive to functional 429 

divergence, and to facilitate our interpretation of the effects of non-coding variants in diverse mammals. 430 

431 
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Methods 432 

Genomic data 433 

All work presented in this paper is based on hg19, rheMac2, mm10 (mouse liver dataset), mm9 (mouse 434 

limb and brain dataset), bosTau6, canFam3 and monDom5 DNA sequence data from the UCSC Genome 435 

Browser. For consistency with the original studies, liver gene annotations are from Ensembl v73, limb 436 

and brain gene annotations are from Ensembl v67 [67]. The sequence divergence between each pair of 437 

species was computed from the neutral model built from fourfold degenerate sites in the 100-way 438 

multiple species alignment from UCSC Genome Browser 439 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way/). 440 

 441 

Enhancer and genomic background datasets 442 

We evaluated the ability of machine learning models to distinguish different sets of enhancers (positives) 443 

from sets of matched regions from the genomic background (negatives). In this section, we describe the 444 

collection and processing of the enhancer and genomic background sets. In the next section, we describe 445 

the training and evaluation of the SVM classifiers. 446 

We analyzed three multi-species histone-modification-defined enhancer datasets in this study. 447 

The first consisted of liver enhancers identified by genome-wide ChIP-seq profiling of histone 448 

modifications (H3K27ac without H3K4me3) in 20 species from five mammalian orders [12].  We 449 

selected a member of each order with a high-quality genome build for analysis when possible; however, 450 

the most diverged order—marsupials—did not have a species with a high-quality genome build. We 451 

consequently selected opossum, as it was the most diverged from humans. This resulted in the following 452 

species, with the number of observed enhancers in each: human (N=29512), macaque (N=22911), mouse 453 

(N=18517), cow (N=30892), dog (N=18966), and opossum (N=23160) [12].  454 

We generated three different sets of matched genomic background regions for use as negatives in 455 

the training and evaluation of the liver classifiers for each of the six species. The first are random 456 
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genomic regions matched on length and chromosome to the observed enhancers. Second, for the GC-457 

controlled analyses, we generated genomic background regions matched to the enhancers on length, 458 

chromosome, and GC-content. Finally, for the repeat controlled analysis, we obtained repetitive elements 459 

identified by RepeatMasker for each species [68] and generated random regions from the genomic 460 

background matched on length, chromosome, GC-content, and proportion overlap with repetitive 461 

elements. To reflect the fact that enhancers make up a small portion of the genome, we chose an 462 

imbalanced data design with 10 times as many of the genomic background (negative) regions as there 463 

were enhancers. For all analyses, we did not consider enhancers or random regions that fell in genome 464 

assembly gaps (UCSC gap track) when generating negatives. For human and mouse, we also excluded the 465 

ENCODE blacklist regions [57] (https://sites.google.com/site/anshulkundaje/projects/blacklists). 466 

The second enhancer dataset contained human (N=25304), macaque (N=88560), and mouse 467 

(N=87406) enhancers identified from profiling the H3K27ac modification in developing limb tissue [8]. 468 

The third enahncer dataset contained human (N=48853), macaque (N=57446), and mouse (N=51888) 469 

enhancers identified from profiling the H3K27ac modification in developing brain tissue [69].  For limb 470 

and brain enhancers, we excluded regions within 1 kb of a transcription start site. For each species, we 471 

combined the enhancer regions from different development stages. The genomic background regions for 472 

each species were defined following the same procedure as for the liver enhancers. 473 

To determine how well classifiers generalized across additional tissue types, we used human 474 

enhancers identified by the Roadmap Epigenomics Project [2] in nine tissues from diverse body systems: 475 

liver (GI, E066), hippocampus middle (brain, E071), pancreas (exocrine-endocrine, E098), gastric (GI, 476 

E094), left ventricle (heart, E095), lung (E096), ovary (reproductive, E097), bone marrow derived 477 

mesenchymal stem cell cultured cells (stromal-connective, E026) and CD14 primary cells (white blood, 478 

E029). We defined enhancers in these tissues as H3K27ac without H3K4me3 regions. For each tissue, we 479 

generated not-GC-controlled and GC-controlled negative training examples as described for the liver 480 

enhancers above. 481 
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In addition to the histone-modification-defined enhancers, we also analyzed enhancers validated 482 

in transgenic reporter assays in embryonic day 11.5 mouse embryos from VISTA [70]. We investigated 483 

all six tissues with at least 50 positive enhancer elements in both species: forebrain, midbrain, hindbrain, 484 

limb, heart and branchial arch. These enhancers comprised the positive training examples. For each tissue, 485 

we additionally generated 10 times the number of enhancers length and chromosome matched random 486 

genomic regions as negative training examples. 487 

 488 

Spectrum kernel SVM classification 489 

An SVM is a discriminative classifier that learns a hyperplane to separate the positive and negative 490 

training data in feature space. We used the k-mer spectrum kernel to quantify sequence features for the 491 

SVM [71]. Training, classification, evaluation, and the computation of features weights were performed 492 

with the kebabs R package (v1.4.1) [48]. We used the default kernel normalization to the unit sphere, 493 

considered reverse complements separately, used the cosine similarity, and used a cost parameter (C) of 494 

15. Due to the imbalanced training dataset, we set class weights of 10 for the positives and 1 for the 495 

negatives to increase the penalty on misclassification of positives. We report all analyses with k = 5, but 496 

classifier performance and generalization were similar for k = 4–7 (0.81, 0.82, 0.82, 0.82, respectively for 497 

liver). 498 

 To evaluate classifier performance within-species, we performed ten-fold cross validation. In other 499 

words, for each set of positives and negatives, the entire data set was randomly partitioned into ten 500 

independent sets that maintained the ratio of positives and negatives. Positives and negatives from nine of 501 

the ten sets were then used to train the classifier, the trained classifier was then applied to the remaining 502 

partition, and these predictions were used to evaluate the classifier. This process was performed ten times, 503 

testing each partition once. To summarize performance, we averaged the auROC and auPR over the ten 504 

runs. For cross-species classification, we trained on the whole dataset in the training species and 505 

evaluated the performance on a random half of the dataset in the test species due to computational 506 

limitations of the kebabs package. 507 
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  We also evaluated more flexible models, such as the mismatch [48,71] and gappy pair kernels 508 

[48,72], These k-mer-based prediction models are similar to the spectrum kernel, but the mismatch kernel 509 

allows a maximum mismatch of m nucleotides in the k-mer and the gappy pair kernel considers pairs of k-510 

mers with maximum gap of length m between them. For comparison, we trained the gappy pair kernel 511 

with k = 2, m = 1 and mismatch kernel with k = 5, m = 1 to compare with the 5-mer spectrum kernel. The 512 

mismatch and gappy pair kernels did not significantly increase the performance (auROCs of 0.82 and 513 

0.82, respectively for liver) and are less interpretable than the k-mer spectra (Figure S2). It is possible that 514 

other parameter settings could yield slightly improved performance, but the resulting models would be 515 

more difficult to interpret, and optimizing performance was not the goal of our study. 516 

 517 

Transcription factor motif analysis 518 

5-mers were matched to known TF binding motifs in the JASPAR 2014 Core vertebrate database [56] 519 

using the TOMTOM package with default parameters [73]. The sharing of 5-mers and TFs across species 520 

was visualized using jVenn [74].  521 

 522 

Transcription factor expression data 523 

We obtained RNA-seq data for TFs across 12 tissues from the Gene Expression Atlas 524 

(https://expressionatlas.org/hg19/adult/). Genes with non-zero FPKM (Fragments Per Kilobase of 525 

transcript per Million mapped reads) in a tissue were considered as expressed. 526 

 527 

Convolutional neural network (CNN) classifiers and comparison to k-mer SVM models 528 

We used the center 3000 bp (approximately the median length) of liver enhancers in six selected species 529 

as the positive training sequences and the same number of length matched random genomic regions in the 530 

corresponding species as negative training sequences. We split the dataset into training (80%), validation 531 

(10%), and a hold-out test set (10%).  532 
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 A typical convolutional neural network consists of convolutional layers, max-pooling layers, fully 533 

connected layers, and an output layer. To define the CNN structure (Figure S19), we first defined a 534 

hyperparameter space, including a range of learning rates, number of layers, the window size of the filters 535 

(neurons), and regularization strength. Next, we trained 100 human CNN models to identify liver 536 

enhancers using keras [75] with hyperparameters suggested by the Tree-structured Parzen Estimator (TPE) 537 

approach implemented in the hyperopt [76] library and selected the best set of hyperparameters based on 538 

the smallest loss in the human validation set. Then, we trained the enhancer CNN model with the best 539 

human CNN structure in the other five species, but different regularization strengths 30 times in order to 540 

find the best performing CNN model for each species. The performance of within-species prediction is 541 

reported based on the auROC of predicting the hold-out set of the training species and the performance of 542 

cross-species prediction is reported based on the auROC of predicting all data in the testing species. 543 

 To interpret the first layer of the human liver CNN, we forward propagated sequences in the human 544 

liver validation dataset through the CNN and selected the sequence patches that maximally activate each 545 

neuron (> 0.5 maximum activation value of the neuron) in the first layer. Then, we converted the resulting 546 

sets of sequence patches to position weight matrices (PWMs) and mapped the PWMs to human TF motifs 547 

from the HOCOMOCO v11 [77] database using TOMTOM with default parameters [73]. 548 

 For direct comparison to the performance of CNNs, we also trained k-mer spectrum SVM models 549 

for each species on the same balanced dataset at the CNNs. We compared the performance for k from 4 to 550 

8 on this balanced human dataset; we report results for k of 6 based on it giving the best average auROC 551 

in ten-fold cross-validation. The performance of within-species prediction is reported based on the 552 

average auROC of ten-fold cross validation and the performance of cross-species prediction is reported 553 

based on the auROC of predicting all data in the testing species.  554 

  555 
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Figure Captions 

Fig 1. Overview of the framework for evaluating DNA patterns predictive of enhancer 

activity across diverse mammals. Starting with liver, limb and brain enhancers and genomic 

background regions from six mammals, the first step of the pipeline quantified each of these 

genomic regions by their 5-mer spectrum—the frequency of occurrence of all possible length 

five DNA sequence patterns. Using the spectra as features, we trained a spectrum kernel support 

vector machine (SVM) to distinguish enhancers from non-enhancers in each species and 

evaluated their performance with ten-fold cross validation. Then, we applied classifiers trained 

on one species to predict enhancer activity in all other species. Finally, we evaluated the 

performance of cross-species prediction compared to within species prediction and compared the 

most predictive features in classifiers from different species. Limb and brain enhancer data were 

only available for human, macaque, and mouse. 

 

Fig 2. Performance of DNA sequence-based enhancer identification in diverse mammals. (a) 

ROC curves for classification of liver enhancers vs. the genomic background in six diverse 

mammals: human (Hsap), macaque (Mmul), mouse (Mmus), cow (Btau), dog (Cfam), and 

opossum (Mdom). (b) ROC curves for classification of developing limb enhancers in human, 

macaque, and mouse. (c) ROC curves for classification of developing brain enhancers in human, 

macaque, and mouse. Area under the curve (AUC) values are given after the species name. Ten-

fold cross validation was used to generate all ROC and PR curves (Figure S1a, b, c).  

 

Fig 3. Human-trained enhancer classifiers accurately predicted liver, limb and brain 

enhancers in diverse mammals. (a) ROC curves of the performance of the human liver 

enhancer classifier applied to the human (Hsap), macaque (Mmul), mouse (Mmus), cow (Btau), 
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dog (Cfam) and opossum (Mdom) datasets. Area under the curve (auROC) values are given after 

the species name. (b) Heat map showing the relative auROC of liver enhancer classifiers applied 

across species compared to the performance of classifiers trained and evaluated on the same 

species (Figure 2a). The classifiers were trained on the species listed on the x-axis and tested on 

species on the y-axis. (c) ROC curves showing the performance of the human limb enhancer 

classifier on human, macaque and mouse. (d) Heat map showing the relative auROC of limb 

enhancer classifiers applied across species compared to the performance of classifiers trained and 

evaluated on the same species (Figure 2b). (c) ROC curves showing the performance of the 

human brain enhancer classifier on human, macaque and mouse. (d) Heat map showing the 

relative auROC of brain enhancer classifiers applied across species compared to the performance 

of classifiers trained and evaluated on the same species (Figure 2c). The raw auROC and auPR 

values for all comparisons are given in Figure S4, Figure S6 and Figure S7. 

 

Fig 4. Enhancer sequence properties remain conserved across diverse mammals after 

controlling for both GC-content and repetitive elements. The heat maps give the cross-

species relative auROCs for SVM classifiers trained on 5-mer spectra to identify enhancers in the 

species along the x-axis, and then used to predict enhancers in the species on the y-axis. The 

“negative” training regions from the genomic background were matched to the enhancers’: (a) 

GC-content, and (b) GC-content and proportion overlap with repetitive elements.  

 

Fig 5. Enhancer classifiers generalize more accurately across the same tissue in different 

species than across different tissues in the same species. (a) The human-trained liver classifier 

obtains better performance when applied to liver enhancers from other species (gray dots) than 
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when applied to enhancers from other human tissues. This also holds for GC-controlled analyses, 

with the exception of predicting enhancers active in the gastric mucosa.  (b) In the not-GC-

controlled analysis, the cross-species performance (average relative auROC = 96.2%) is 

significantly better than the cross-tissue (roadmap) performance (88.4%, Mann Whitney U test, 

P = 0.00005) and the cross-tissue (Villar, Cotney, Reilly) performance (92.0%, Mann Whitney U 

test, P = 2.2E-05). This also holds true for the GC-controlled analysis. The cross-species 

performance (average relative auROC = 94.6%) is significantly better than the cross-tissue 

(roadmap) performance (91.2%, Mann Whitney U test, P = 0.008) and the cross-tissue (Villar, 

Cotney, Reilly) performance (85.8%, Mann Whitney U test, P = 7.6E-07). 

 

Fig 6. The DNA sequence patterns most predictive of liver activity across species matched a 

common set of transcription factors. (a) Transcription factor analysis workflow. For each 

species enhancer classifier, we found TF motifs matched by the top 5% positively weighted 5-

mers. Note that different 5-mers (marked with black box on the left) can match the same motif, 

e.g., MAFB and its reverse complement (RC). The overlap of matched TFs were then compared 

across each species’ classifier. (b) Venn diagram of the sharing of the TF motifs matched by the 

top 5% positive 5-mers from each GC-controlled liver classifier. The total number of TFs 

matched by top 5-mers in each species was: 121 (human), 104 (macaque), 100 (mouse), 81 (cow), 

118 (dog), 102 (opossum). Similar results were observed for the non-GC-controlled classifier 

(Figure S17a). (c) The number of TFs matched by all species based on 5-mers in top positive, top 

negative, and 100 random sets of 5% of all possible 5-mers. The 33 TF motifs shared among the 

high-weight set for each species is thus significantly more than expected.  
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Fig 7. CNNs identify enhancers more accurately than 6-mer-based SVM models, but 

generalize less well across species. (a) The auROCs of CNN models perform substantially 

better than the 6-mer SVM model in each species. The error bars give the standard error of ten-

fold cross-validation for the SVM models.  (b) Neurons in the first layer of the CNN learned the 

motifs of important liver TFs, including HNF4A, HNF1A, and CEBPB. (c) The relative auROCs 

of the CNN models applied across species are consistently lower than for the 6-mer SVMs 

applied across the same species. This suggests that the CNN models do not generalize as well 

across species as the SVM models. 

 

Supporting information 

S1 Appendix. Supplementary figures S1–S19 

S1 Table.  Liver expression of the shared TF motifs in the liver GC-controlled analysis 

S2 Table.  The sharing of the TF motifs matched by the top 5% positive 5-mers from each 

classifier. 
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