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Abstract 

While autism and attention-deficit/hyperactivity disorder (ADHD) are considered 

distinct conditions from a diagnostic perspective, they share some phenotypic features and 

have high comorbidity. Taking a dual-condition approach might help elucidate shared and 

distinct neural characteristics.  

Graph theory was used to analyse properties of cortical thickness structural 

covariance networks across both conditions and relative to a neurotypical (NT; n=87) group 

using data from the ABIDE (autism; n=62) and ADHD-200 datasets (ADHD; n=69). This was 

analysed in a theoretical framework examining potential differences in long and short range 

connectivity. 

We found convergence between autism and ADHD, where both conditions show an 

overall decrease in CT covariance with increased Euclidean distance compared to a 

neurotypical population. The two conditions also show divergence: less modular overlap 

between the two conditions than there is between each condition and the neurotypical 

group. Lastly, the ADHD group also showed reduced wiring costs compared to the autism 

groups.  

Our results indicate a need for taking an integrated approach when considering 

highly comorbid conditions such as autism and ADHD. Both groups show a distance-

covariance relation that more strongly favours short-range over long-range. Thus, on some 

network features the groups seem to converge, yet on others there is divergence. 

 

Keywords: structural covariance, autism, ADHD, cortical thickness, graph theory
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Introduction 1 

 2 

Autism spectrum conditions (henceforth autism) are characterized by deficits in 3 

social communication alongside unusually restricted interests and repetitive behaviours, 4 

difficulties adjusting to unexpected change, and sensory hypersensitivity (American 5 

Psychiatric Association 2013).  Despite a large body of research to understand its underlying 6 

neurobiology (Loth et al. 2015), no distinct set of biomarkers for autism has yet been 7 

established. With respect to the neuroimaging literature and specifically network 8 

connectivity, several authors have suggested potential differences in brain organization in 9 

autism compared to neurotypical control groups.  There is however debate about whether 10 

autism is characterized by neural over- or under-connectivity (Brock et al. 2002; Rubenstein 11 

and Merzenich 2003; Belmonte et al. 2004; Just et al. 2004; Courchesne and Pierce 2005). 12 

The working hypothesis is that people with autism suffer from atypical connectivity 13 

(Courchesne and Pierce 2005; Cherkassky et al. 2006; Just et al. 2007; Assaf et al. 2010). 14 

Specifically, there is a tendency for autism to be associated with excess local or short-range 15 

connectivity, relating to enhanced local processing. This is thought to be accompanied by 16 

decreased global or long-range connectivity, relating to impaired integration as manifested 17 

in ‘weak central coherence’. Thus, a prominent theory of neural connectivity in autism is of 18 

global under- and local over-connectivity (Belmonte et al. 2004; Vissers et al. 2012). 19 

Attention-deficit/hyperactivity disorder (ADHD) on the other hand is characterised by a triad 20 

of symptoms: hyperactivity, impulsive behaviour and inattentiveness (American Psychiatric 21 

Association 2013).  Studies using connectivity analyses have attempted to shed light on its 22 

underlying neurobiology and have found both decreased and increased functional 23 

connectivity in specific networks (Tomasi and Volkow 2012), altered connectivity in the 24 

default mode network (DMN) (Fair et al. 2010) and differences in cross-network interactions 25 

(Cai et al. 2015). These effects might be smaller than literature suggests (Mostert et al. 26 

2016).  27 

Autism and ADHD show high comorbidity and phenotypic overlap (Rommelse et al. 28 

2010, 2011; Leitner 2014), and are both also potentially marked by differences in 29 

connectivity. There have even been suggestions that these connectivity differences lie on a 30 

similar dimension of local and global connectivity imbalances (Kern et al. 2015). In addition, 31 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2017. ; https://doi.org/10.1101/110643doi: bioRxiv preprint 

https://doi.org/10.1101/110643
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

both conditions have been associated with alterations in cortical development (Shaw et al. 32 

2007; Hardan et al. 2009) that could in turn give rise to differences in the topological 33 

organisation of brain networks. In the present study, we aimed to identify distinct as well as 34 

overlapping patterns of brain organisation that might shed a light on the underlying 35 

architecture of both conditions, giving rise to divergent yet related findings using structural 36 

covariance analyses.  37 

Structural covariance analysis involves covarying inter-individual differences (i.e. 38 

coordinated variations in grey matter morphology) in neural anatomy across groups 39 

(Alexander-Bloch et al., 2013; Evans, 2013) and is emerging as an efficient approach for 40 

assessing structural brain organization. A key assumption underlying this methodology is 41 

that morphological correlations are related to axonal connectivity between brain regions, 42 

with shared trophic, genetic, and neurodevelopmental influences (Alexander-Bloch et al., 43 

2013). Thus, structural covariance network analysis is not the same as analysis of functional 44 

connectivity or structural networks obtained with diffusion imaging, yet it has shown 45 

moderately strong overlap with both (Alexander-Bloch et al., 2013; Gong et al., 2012). In 46 

addition, structural covariance networks are highly heritable (Schmitt et al. 2009) and follow 47 

a pattern of coordinated maturation (Alexander-Bloch et al., 2013; Raznahan et al., 2011; 48 

Zielinski et al., 2010). With respect to neurodevelopmental conditions, structural covariance 49 

networks might provide a way to investigate potential differences in brain network 50 

development. Differences between neurotypical individuals and individuals with a 51 

developmental condition are likely the result of divergent developmental trajectories in 52 

coordinated development of different brain networks. The advantage of structural 53 

covariance analysis is that it focuses on this coordinated structure of the entire brain as 54 

opposed to focusing on a specific structure. In addition, structural data on which these 55 

networks are based is widely available, analysis is less computationally intensive and 56 

arguably less sensitive to noise, compared to functional imaging.  57 

 58 

Previous investigations of structural covariance in autism have shown regional or 59 

nodal decrease in centrality, particularly in key regions subserving social and sensorimotor 60 

processing, compared to neurotypical individuals (Balardin et al. 2015). Furthermore, 61 

speech and language impairments in autism have been associated with differences in 62 
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structural covariance properties (Sharda et al. 2014). Studies of functional connectivity 63 

networks in autism are more abundant (Vissers et al. 2012). In ADHD structural covariance 64 

analyses have been extremely scarce. A study that specifically investigated structural 65 

covariance in drug-naïve adolescent males found that grey matter volume covariance was 66 

significantly reduced between multiple brain regions including: insula and right 67 

hippocampus, and between the orbito-frontal cortices (OFC) and bilateral caudate (Li et al. 68 

2015).  Similar to the autism literature, studies that have explored functional connectivity 69 

differences in ADHD are more abundant (Konrad and Eickhoff 2010).  70 

 71 

While autism and ADHD are considered distinct conditions from a diagnostic 72 

perspective, clinically they share some common phenotypic features (such as social 73 

difficulties, atypical attentional patterns, and executive dysfunction) and have high 74 

comorbidity (Rommelse et al. 2010, 2011; Leitner 2014). DSM-5 (American Psychiatric 75 

Association 2013) now allows comorbid diagnosis of autism and ADHD, acknowledging the 76 

common co-occurrence of these conditions. Regardless, most studies to date have focused 77 

on each condition separately, with considerable heterogeneity in results. Taking a dual-78 

condition approach might help elucidate shared and distinct neural characteristics. Our 79 

proposal for a dual-condition approach is supported by a recent review that found both 80 

distinct as well as overlapping neural characteristics between autism and ADHD (Dougherty 81 

et al. 2015). There is also increasing interest in the clinical and research communities to 82 

investigate autism and ADHD along a continuum of atypical neural connectivity (Kern et al. 83 

2015).  84 

 85 

In the present study, we used the graph theoretical framework to analyse properties 86 

of structural covariance networks across autism and ADHD, relative to an age and gender 87 

matched neurotypical control (NT) group. One study has taken a similar approach using 88 

resting-state fMRI and diffusion weighted tractography and reported marked connectivity 89 

differences between network hubs, indicating a disruption in rich-club topology. Specifically, 90 

Ray and colleagues (Ray et al. 2014) report a decrease in connectivity within the rich-club 91 

but increased connectivity outside the rich-club in ADHD. The autism group showed an 92 

opposite pattern of increased connectivity within rich-club connectivity. These findings may 93 

fit with the idea of increased local connectivity in autism (i.e., increased within rich-club 94 
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connectivity), with ADHD showing the opposite pattern. Yet, these findings could also 95 

mediate increased strength in long-range connections within the rich-club. In the present 96 

study we aimed to further investigate the relation between distance and connectivity by 97 

looking at group-wise cortical thickness covariance as a function of Euclidean distance. In 98 

addition, we investigate potential overlap in modular and hub organization as assessed by 99 

structural covariance network analyses.  100 

 101 

Methods 102 

Image processing and quality control 103 

Structural T1-weighted MPRAGE images were collected from two publically available 104 

datasets: ABIDE (http://fcon_1000.projects.nitrc.org/indi/abide/) and ADHD-200 105 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/). From these datasets, 3 diagnostic 106 

groups (autism, ADHD and neurotypical individuals) of males between the ages of 8 and 12 107 

years old were selected. The initial sample consisted of 348 eligible individuals. The 108 

structural T1-MPRAGE data were pre-processed using Freesurfer v5.3 to estimate regional 109 

cortical thickness. Cortical reconstructions were checked by three experienced independent 110 

researchers. Images were included in the analyses only when a consensus on the data 111 

quality was reached (see Supplementary Information for more details on data selection). 112 

The cortical thickness maps were automatically parcellated into 308 equally sized cortical 113 

regions of 500 mm
2
 that were constrained by the anatomical boundaries defined in the 114 

Desikan-Killiany atlas (Desikan et al. 2006; Romero-garcia et al. 2012). The backtracking 115 

algorithm grows subparcels by placing seeds at random peripheral locations of the standard 116 

atlas regions and joining them up until a standard pre-determined subparcel size is reached 117 

(Romero-garcia et al. 2012). It does this reiteratively (i.e., it restarts at new random 118 

positions if it fails to cover an entire atlas region) until the entire atlas region is covered. 119 

Individual parcellation templates were created by warping this standard template 120 

containing 308 cortical regions to each individual MPRAGE image in native space. A key 121 

advantage of warping of the segmentation map to the native space relates to the 122 

attenuation of possible distortions from warping images to a standard space that is normally 123 

needed for group comparisons. Lastly, average cortical thickness was extracted for each of 124 

the 308 cortical regions in each individual participant.  125 
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As a secondary post-hoc step in quality control, individuals that had an average 126 

variability in cortical thickness of more than two standard deviations away from the group 127 

mean were removed from further analysis.  After quality control and matching on age and 128 

IQ, our final sample consisted of 218 participants: ADHD (n=69, age = 9.99 ±1.17, IQ = 129 

107.95 ±14.18), autism (n=62 age=10.07 ±1.11, IQ = 108.86 ±16.94) and NT (n=87, age = 130 

10.04 ±1.13, IQ = 110.89 ±10.39). See SI Fig. S1 for an overview and Table S1 for details on 131 

scanner site and matching procedure. Scanner site was regressed out from raw cortical 132 

thickness estimates across groups. To aid interpretation of the cortical thickness estimates, 133 

the residuals from this regression where added to the sample mean. Group-wise structural 134 

covariance matrices were then computed by taking the inter-regional Pearson correlation of 135 

these parcel-wise cortical thickness estimation. This was done within each group to create 136 

group-wise structural covariance matrices. 137 

 138 

Data Analysis 139 

Distance connectivity differences  140 

To determine potential group effects on the CT covariance for short and long range 141 

associations, we investigated the linear slope differences in the relationship between 142 

correlation strength and Euclidean distance between nodal centroids. Consequently, one-143 

way analysis of covariance (ANCOVA) were performed with the diagnosis group as a factor 144 

and Euclidean inter-regional distance as a covariate. For significant group effects, post-hoc 145 

paired t-tests were used to identify which slopes are significantly different from each other. 146 

 147 

Graphs  148 

To construct adjacency matrices for graph analyses, the minimal spanning tree (van Wijk et 149 

al. 2010) was used as the threshold starting point for building covariance networks at a 150 

representative density of 10%. The density of a network relates to the fraction of edges 151 

present in the network compared to the maximum possible number of edges. Graph 152 

analyses were performed across densities and between-group differences were compared 153 

using non-parametric permutation tests on paired group comparisons (1000 permutations). 154 

Thus, permuted networks were constructed by permuting the underlying cortical thickness 155 

estimates for each group comparison and constructing adjacency matrices for each. In view 156 
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of the large number of comparisons across the 308 nodes, differences in local measures 157 

were subjected to a False Discover Rate (FDR) non-linear multiple comparison correction 158 

with alpha set at < 0.025 to allow simultaneous correction for two-tailed testing (Benjamini 159 

and Hochberg 1995).  160 

 161 

Degree, cortical thickness and wiring cost analysis 162 

Nodal degree reflects the number of edges connecting each node. Nodes with the highest 163 

degree of the network are defined as hubs. The present study considered a wide range of 164 

degree thresholds to reduce bias related to the choice of an arbitrary set of hubs (ranging 165 

from 0 to 100% of the nodes). Thus, group differences in degree and CT of the hubs of the 166 

networks were evaluated for each degree threshold. To decrease the noise effect, we 167 

calculated the cumulative degree distribution as .   168 

 169 

Inter-regional distance ( ) between two nodes i and j was estimated as the Euclidean 170 

distance between the centroids, , where x, y and z 171 

represents the coordinates of the centroid of each region in MNI space. The mean 172 

connection distance or wiring cost ) of a network was computed as, 173 

, where net(i,j) is equal to 1 if regions i and j are connected, 0 174 

otherwise and N is the total number of connections of the network. 175 

 176 

Modular agreement 177 

Modular agreement was evaluated by quantifying the proportion of pairs of regions 178 

that were classified within the same module in community partitions (using iterating 179 

Louvain clustering to obtain modular partitions) associated with different diagnostic groups. 180 

Thus, two groups will show high modular agreement if network modules mainly include the 181 

same set of brain regions in both groups. As modular agreement is highly affected by 182 

intrinsic trivial characteristics of the modular partition, z-scores were used as a measure of 183 

how over- or under- represented a given metric was compared with random community 184 

partitions. In order to test against appropriately designed surrogate data, statistical 185 

significance was assessed against a null distribution built from metric values computed in 186 

1000 random communities generated by preserving the number of modules, size of the 187 
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modules, spatial contiguity and hemispheric symmetry of the real community partition. The 188 

95
th

 quantile of the resulting distribution was used as a statistical threshold to retain or 189 

reject the null hypothesis of no significant modular agreement between diagnostic groups. 190 

Moreover, differences in modular agreement between pairs of groups were statistically 191 

tested using a similar procedure. Indices of modular agreement of each pair of groups were 192 

subtracted and compared with the differences of modular agreement derived from the 193 

1000 random communities in each pair of groups. Similarly, the 95
th

 quantile of the resulting 194 

distribution was used as a statistical threshold to retain or reject the null hypothesis of no 195 

modular agreement differences between pairs of diagnostic groups. Significant results were 196 

corrected for multiple comparisons using FDR (Benjamini and Hochberg 1995). 197 

 198 

Results 199 

Distance covariance topology 200 

In all groups the group-wise correlation strength decreased with increased anatomical 201 

distance. Results from the analysis of variance show a main effect of group F(2,141828) = 202 

2192.76, p<0.0001. Post-hoc analyses indicated that all three group have a small but 203 

significantly different slope: ADHD < Neurotypical (p-value < 10
-15

), Autism < Neurotypical 204 

(p-value < 0.005) and ADHD < Autism (p-value < 10
-15

). Figure 1 shows the linear relation of 205 

the inter-regional correlation as a function of Euclidean distance and the mean and 206 

confidence intervals of the slope estimates. In the ADHD group, inter regional correlation 207 

decreased the fastest whereas the neurotypical group shows the smallest decreases. This 208 

result shows that both autism and ADHD have relatively weaker long-range covariance and 209 

stronger local covariance. Compared to the neurotypical group both groups show a balance 210 

that more strongly favors short-range over long-range covariance. 211 

 212 

  << FIGURE 1 AROUND HERE>> 213 

 214 

Degree 215 

After constructing the covariance matrices (Figure 2A), the degree of each node was 216 

computed (Fig. 2B) and the top 10% nodes with highest degree were retained as hubs for 217 

visualization (Fig. 2C). Most of the hubs were located within frontal and parietal cortices in 218 
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the three groups. On the contrary, nodes with lower degree were mainly placed in the 219 

occipital cortex. There were several nodes that showed degree differences between groups, 220 

but these were not consistent across degree densities. We did however observe marked 221 

differences between groups in the overall degree distribution. Figure 3 show the cumulative 222 

degree distribution of each group. Interestingly, hubs of the autism group exhibited 223 

significantly lower degree than both neurotypical (p-value < 0.025; for degree values from 224 

83 to 88) and ADHD (p-value < 0.025; for degree values from 64 to 89). These difference 225 

were corrected for multiple comparisons for the range of higher degree nodes (FWE 226 

correction in the degree range from 50 to 90). 227 

  228 

  << FIGURE 2 AROUND HERE>> 229 

 230 

  << FIGURE 3 AROUND HERE>> 231 

 232 

Wiring cost 233 

In line with the group differences observed in the decay of cortical thickness correlation as a 234 

function of the inter-regional distance described above, the wiring cost analysis showed a 235 

significant decrease of the average distance between connected regions in the ADHD group 236 

compared with neurotypical (Figure 4; p-value<0.008), revealing a reduction of long range 237 

connections in the ADHD network.  238 

 239 

  << FIGURE 4 AROUND HERE>> 240 

 241 

Cortical thickness as a function of degree 242 

Given that there were notable differences in degree distributions (i.e. hubs in the autism 243 

group had lower degree than the other groups; Figure 2) we chose to analyze both the 244 

absolute degree distribution and take a percentile that was based on the group itself. 245 

Although the autism and neurotypical group showed little difference in cortical thickness 246 

across the entire range of degrees with both methods, high degree nodes had significantly 247 

reduced cortical thickness in the ADHD group (Fig. 5). This suggests that there might be 248 

increased synaptic pruning in these hub regions in the ADHD group.  249 
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  << FIGURE 5 AROUND HERE>> 250 

 251 

Modular consistency and clustering 252 

To investigate similarities in global topology, we further evaluated the modular overlap 253 

between the community structure of the three groups. The modular overlap between all 254 

group-wise comparisons were significantly higher than expected by chance (Fig. 6), 255 

suggesting that a global scale there were no marked differences in structural covariance 256 

community structure. However, the Autism-ADHD group overlap was significantly lower 257 

than the Neurotypical-ADHD overlap (p-value<10
-3

). There was also a small non-significant 258 

effect for the Neurotypical-ADHD overlap compared to Neurotypical-Autism (p-value=0.04). 259 

This indicates that although there were perhaps no massive topological differences in 260 

community structure, the autism and ADHD group differ more from one another than they 261 

do from the neurotypical group (i.e. there was lower modular agreement between autism 262 

and ADHD then there was between the other groups).  263 

 264 

  << FIGURE 6 AROUND HERE>> 265 

 266 

Discussion 267 

Comparing autism and ADHD, our findings reveal a complex topology of convergent 268 

yet distinct patterns of brain network organization. At a global level of community structure 269 

all groups show a significant degree of overlap, however the autism and ADHD group 270 

showed less similarity than they do compared to the neurotypical control group. The decay 271 

of cortical thickness correlation strength as a function of inter-regional distance was also 272 

markedly different for both clinical groups. Fitting with the idea of a local vs global 273 

connectivity difference in developmental conditions both the autism and ADHD group 274 

showed a pattern that diverges from the neurotypical control group. Yet, they do not 275 

appear to be in opposing direction. Both group showed a significantly stronger decrease in 276 

correlation strength with increased distance relative to a control group.  277 

 278 

These finding seem to suggest that in both conditions the topology favour short-279 

range correlations over long-range correlations. This idea is prominent in autism literature, 280 
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but less so in the ADHD literature. It will be interesting for future studies on different 281 

modalities such as resting-state or DTI imaging to see if potential connectivity differences 282 

follow a pattern similar to the present structural covariance properties. In addition, we 283 

found that the ADHD group a marked decrease in cortical thickness in high degree regions 284 

compared to the other two groups. A previous study showed that children with ADHD 285 

exhibited reduced CT in fronto-parietal regions, but increased CT in occipital regions 286 

(Almeida Montes et al. 2013). In the present analysis cortical hubs were mainly located in 287 

fronto-parietal networks, thus this finding fits with the idea of overall reduced CT in those 288 

areas. Interestingly, Almeida-Montes and colleagues also show that some of these 289 

difference increase with age. This would also fit with previous work showing some delay in 290 

cortical maturation of cerebrum and specifically prefrontal cortex in children with ADHD 291 

(Shaw et al. 2007).  292 

 293 

A previous study indicated that wiring costs in autism might also fit in a model of 294 

increased local connectivity and decreased global connectivity in grey matter connections 295 

(Ecker, Ronan, et al. 2013). Thus, we extended our local versus global analysis to include 296 

wiring cost characteristics. We found that the ADHD group showed significantly reduced 297 

wiring cost. This would be consistent with the notion of a network shift towards increased 298 

segregation (i.e. more local connections) at the expense of global integration. We did not 299 

find a significant difference in the wiring cost for the autism group. The present approach to 300 

assess wiring costs differs significantly from the one taken by Ecker et al (Ecker, Ronan, et al. 301 

2013) (e.g., we use Euclidean distance between centroids of anatomically derived nodes 302 

compared to a measure of mean separation distance on the cortical sheet). It is possible 303 

that our approach might be too coarse to pick up wiring cost differences in the autism 304 

group. Our results do indicate a sharp reduction in the number of connections of the hubs 305 

regions in the autism network that can be explained in terms of a shift away from global 306 

integration. Again, future studies will have to show whether these patterns also emerge 307 

from connectomic data. 308 

 309 

Since changes in structural covariance are postulated to be a result of a prolonged 310 

developmental process, our findings also provide emerging evidence for a systematic 311 

difference in the developmental trajectory/profile of brain organization between these 312 
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groups. However, a recent large cross condition analysis of potential genetic relationship 313 

showed only moderate genetic overlap between autism and ADHD (Lee et al. 2013). Thus, 314 

the true underlying cause for these differences is likely more indirect and could emerge 315 

from long-term differences in functional connectivity.  316 

 317 

Contrary to our predictions, and in contrast to a previous study (Ray et al. 2014) that 318 

used a different imaging modality, we did not find any significant differences in rich-club 319 

topology between any of the groups. The rich-club coefficient indicates that high degree 320 

nodes are more likely to connect to other high-degree nodes (sometimes summarised as 321 

‘the rich cling together’). Although the structural covariance networks were constructed 322 

from T1-MPRAGE data, we had expected to find overlap between the fMRI, DTI and our 323 

current results. It would be highly interesting to see how these differences develop further. 324 

Connectivity findings in adult autism and ADHD are notoriously heterogeneous (Konrad and 325 

Eickhoff 2010; Vissers et al. 2012), so some developmental neuroanatomical differences 326 

might gradually change with age. The present data was restricted to a very specific age 327 

group and developmental changes continue long after this time frame. It would be 328 

interesting to see whether the currently observed lack of differences in structural 329 

covariance topology propagate in the same direction. More research is needed to assess 330 

these potential longitudinal changes in this population. 331 

 332 

Modular organization of the network of the three groups revealed no significant 333 

differences, but instead showed significant overlap. Therefore, network nodes belonging to 334 

one module in one group are likely to belong to the same module in the other group. 335 

Considered in the clinical context of overlapping phenotypes and high comorbidity, the 336 

present results strengthen the notion that these two conditions should not be studied in 337 

isolation. However, the two clinical groups (despite being significantly similar) show less 338 

modular similarity to one another than they do compared to a neurotypical group. 339 

However, both groups also showed significant overlap with the neurotypical group, 340 

suggesting that the neuroanatomical differences between the clinical and control groups 341 

operate on more fine-grained scales (such as might be observed in graph theoretical 342 

measures). This finding shows that when these groups are studied solely in contrast with a 343 

neurotypical group no difference might be observed on this metric.  344 
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 345 

There are some caveats surrounding the current study. First, and in contrast to some 346 

studies, we used cortical thickness estimates to construct our structural covariance network, 347 

thereby excluding sub-cortical regions from network analysis. For this reason, some studies 348 

have used covariations of grey matter volume instead (Balardin et al. 2015). However, grey 349 

matter volume relies on the relationship between two different morphometric parameters, 350 

cortical thickness and surface area. Cortical thickness and surface area are both highly 351 

heritable but are unrelated genetically (Panizzon et al. 2009), leading to different 352 

developmental trajectories across childhood and adolescence (Herting et al. 2015). The 353 

combination of at least two different sources of genetic and maturational influence into a 354 

unique descriptor of cortical volume may act as a confounding factor that hinders a clear 355 

interpretation in the context of cortical covariance based networks. This is particularly 356 

relevant in conditions such as autism and ADHD where differences in cortical thickness, 357 

cortical volume and surface area are highly heterogeneous (Wolosin et al. 2009; Ecker, 358 

Ginestet, et al. 2013).  359 

 360 

Secondly, it is possible that in both publically available datasets, some participants 361 

might have been comorbid for the other condition (e.g., individuals in the ABIDE might have 362 

had comorbid ADHD, and vice versa). Although all individuals in these data-sets were 363 

diagnosed under the DSM-IV criteria, which does not allow this type of comorbidity, without 364 

the availability of more detailed diagnostic data, comorbidity cannot be ruled out 365 

completely. Yet the primary aim of this study was to investigate overlap between the two 366 

conditions. If the present results were due to the individuals that shared this comorbidity, 367 

this would still support a common underlying neural architecture. Nonetheless, future 368 

longitudinal studies need to disentangle this overlap more precisely and in relation to 369 

specific phenotypic overlap as well as the trajectory of topological changes over time. 370 

 371 

In sum, we found convergence between autism and ADHD, where both conditions 372 

show stronger decrease in covariance with increased Euclidean distance between centroids 373 

compared to a neurotypical population. The two conditions also show divergence. Namely, 374 

there is less modular overlap between the two conditions then there is between each 375 

condition and the neurotypical group. The ADHD group also showed reduced cortical 376 
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thickness and higher degree in hubs regions compared to the autism group. Lastly, the 377 

ADHD group also showed reduced wiring costs compared to the autism group. Future 378 

research investigating these patterns in functional and structural connectivity and relating 379 

findings to behavioural or phenotypic data will hopefully shed light on the convergent and 380 

divergent neural substrates of autism and ADHD. Our findings do support the notion that 381 

both developmental conditions involve a shift in network topology that might be 382 

characterized as favouring local over global patterns. Lastly, they highlight the value of 383 

taking an integrated approach across conditions. 384 

 385 
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Figure Captions 586 

 587 

Figure 1: Inter-regional correlation strength as a function of Euclidean distance. Panel A 588 

shows the inter-regional correlation over the entire distance range. Panel B shows the mean 589 

slope for each group and the 95% confidence interval of the mean slope.  590 

 591 

Figure 2: Overview of procedure and metrics. Panel A shows the binary adjacency matrices 592 

for the three groups thresholded at 10% above the minimal spanning tree. Subsequent graph 593 

construction is based on these thresholded matrices. Panel B display the topological 594 

distribution of nodal degree at 10% density. Panel C illustrates the networks with nodes that 595 

have the highest degree (top 10%).  596 

 597 

Figure 3: Cumulative degree distribution. Lines represent the proportion of nodes in the 598 

network with a degree higher than k (hubs) in each group. Bars below the figure represent 599 

the areas where there is a significant difference between the groups. Hubs of the autism 600 

group showed significantly lower degree compared to the ADHD group (k-range: 83-88) and 601 

compared to the neurotypical group (k-range: 64-89).  602 

 603 

Figure 4: Violin representation of the mean inter-regional distance between connected 604 

regions in the three groups. The ADHD group has significantly lower connection distance 605 

compared to the neurotypical group. Mean is shown as a black dot with error bars 606 

representing 95% confidence intervals 607 

 608 

Figure 5: Cortical thickness as a function of degree. Bars below the figure show the degree 609 

ranges where there is a significant difference between the respective groups.   610 

 611 

Figure 6: Similarities in community structure across groups. Panel A illustrates the modular 612 

organization of the structural covariance network derived from each group. The colours 613 

show association of the region with a certain module. These colours are set for each group 614 

individually as not all groups have the same number of modules. Panel B displays the z-615 

transformed modular overlap for each group-wise comparison, colour meshes are chosen to 616 

represent the group comparison. All overlap scores are significantly different from zero, 617 
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indicating that nodes in one module are most likely part of the same module in both groups. 618 

Note that Autism-ADHD overlap was reduced compared to the NT-ADHD overlap. 619 

 620 
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