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Abstract

How do people explore in order to gain rewards in uncer-
tain dynamical systems? Within a reinforcement learning
paradigm, control normally involves trading off between ex-
ploration (i.e. trying out actions in order to gain more knowl-
edge about the system) and exploitation (i.e. using current
knowledge of the system to maximize reward). We study a
novel control task in which participants must steer a boat on
a grid, assessing whether participants explore strategically in
order to produce higher rewards later on. We find that partic-
ipants explore strategically yet conservatively, exploring more
when mistakes are less costly and practicing actions that will
be needed later on.
Keywords: Reinforcement Learning, Strategic Exploration,
Control, Exploration-Exploitation

Introduction
Acting under uncertainty is a core problem for cognition.
Cognitive agents must be able to navigate a world whose dy-
namics are initially unknown and generally uncertain, learn-
ing to generate rewards as they go along. In the context of
reinforcement learning, we can think of control as a trade-off
between exploration (i.e. trying out actions in order to gain
more knowledge about the underlying system) and exploita-
tion (i.e. using current knowledge of the system to maximize
reward). However, whether and how human explorative con-
trol reflects future goals and current uncertainty is still unclear
(Wilson, Geana, White, Ludvig, & Cohen, 2014). Are human
explorative actions strategic and goal-directed? Or are they
rather passive, for instance involving a simple “exploration
bonus” that treats uncertainty equally across all actions?

Traditionally, reinforcement learning models have ad-
dressed exploration rather implicitly, letting the agent learn
about the underlying system en passant via outcomes pro-
duced while she tries to produce high rewards (Rescorla,
Wagner et al., 1972). Exploration, according to this defini-
tion, is what happens when an agent optimizes noisily. We
will refer to this kind of exploration as passive exploration.

More recently, exploration has been incorporated into rein-
forcement learning models more explicitly via an exploration
bonus (Schulz, Konstantinidis, & Speekenbrink, 2016). An
exploration bonus assigns additional utility to currently less
explored actions and thereby assumes that the agent values
uncertainty equally across all actions. Exploration, accord-
ing to this definition, is what happens when expectations are
inflated by their attached uncertainties. We will refer to this
kind of exploration as agnostic exploration.

Another line of research tries to redefine exploration as
goal-directed behavior (e.g., Thrun, 1992). The idea behind
this approach is that not all uncertainty should be treated
equally but rather that exploration should be driven by both

the current knowledge of the system and the agent’s overall
goal. Exploration, according to this definition, is a strategic
action. We will refer to this kind of exploration as strategic
exploration.

Many real world scenarios are non-episodic such that ac-
tions influence the system the agent is in, and it is the agent’s
ongoing task to control this system. Within such scenarios,
there are no “second chances”; one may be unable to return
to known states, and therefore must treat exploration strate-
gically and with great caution to avoid accidents (Klenske &
Hennig, 2015). Imagine having to learn how to drive in a
country with left-hand traffic when visiting from a country
with right-hand traffic. Strategically exploring how to drive
on the left side could allow you to make your mistakes on
the quiet roads first before hitting the highway. Moreover, as
turning right will be harder than you are used to, practicing
how to turn right is more important than practicing how to
turn left and therefore should be exercised more frequently.

In machine learning, problems of planning under uncer-
tainty have been approached via Bayesian reinforcement
learning (BRL) (Poupart, 2010), which assigns probabilistic
beliefs over the dynamics of a system and the costs of states
and actions to reason about potential changes to beliefs from
future observations, and their influence on future decisions
(Duff, 2002). BRL therefore provides a useful framework for
assessing strategic exploration behavior as we do here. More
specifically, we will make use of the duality between rein-
forcement learning and control, that is tasks in which an agent
has to keep a system at a certain state in order to generate re-
wards (Feldbaum, 1960; Klenske & Hennig, 2015).

In what follows, we will assess how participants exert con-
trol within a novel control paradigm. Therein, strategic explo-
ration allows them to produce greater long-term rewards —
formally, within a non-episodic, finite-horizon system with
initially-unknown dynamics. We will build on recent work by
Klenske & Hennig (2015) and assess behavior in two tasks:
one in which exploration can be delayed until it is more op-
portune, due to time-varying state costs; and one in which the
learning agent can distinguish between important and unim-
portant exploration of directional actions. We first describe
three perspectives on exploration in control theory: passive,
agnostic and strategic exploration. We then assess qualita-
tive predictions derived from these in two experiments. We
find participants’ behavior to be more in line with predictions
derived by strategic exploration.
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Control task
Participants played a simple game in which the goal was to
control a boat as it crosses an ocean. The boat moves incre-
mentally from left to right and by changing its current angle
of direction (see Figure 2), participants could attempt to steer
the boat up or down, so as to remain in calm waters (blue)
and avoid perilous rough seas (red).

Participants’ overall goal was to minimize the “cost” of
the voyage while simultaneously learning both how to control
their boat and about an underlying position-dependent “cur-
rent” that drags the boat off course. In some periods, the area
of low cost was very narrow, while in other periods, the area
was very wide. Analogous to real sailing, participants had
to learn to control the boat through experience, by trying dif-
ferent angles and observing the effect on the boat’s position.
This exploration is costly when the low-cost region is narrow,
whilst exploration is almost “free” when the low-cost region
is very wide.

Our control task is adapted from Klenske & Hennig (2015)
and involved an experimental modification of a “cart on a
rail” control problem. Therein, the boat is influenced by
two factors, its current position x1 and an underlying current
x2. This means that where the boat will end up on the next
trial is influence by both its current position and an under-
lying current which is determined by an unknown nonlinear
function. Within our experiments, the underlying current de-
creased from its full strength to zero, and constantly pulled
the boat upwards. For example, if participants entered the an-
gle of 0 in the center of the ocean, the boat would be pulled
upwards more than if they entered the same angle at another
position further up.

Formally, at each time t, the (vertical) position of the boat,
yt , depends on a two-dimensional latent state variable xt and
independent random noise γt as

yt = Cxt + γt γt ∼N (0,σγ). (1)

The latent state depends through a nonlinear function on the
previous latent state, the controller input (i.e., the chosen an-
gle) ut , and additional noise ξt , as:

xt+1 = Aφ(xt)+But +ξt ξt ∼N (0,Σξ), (2)

where

Aφ(xt) =

[
1 0.4
0 1

][
x1,t
x2,t

]
+

[
0 0
θ1 θ2

][ 1
1+ex1,t+5

1
1+e−x1,t+5

]
, (3)

θ = [0.8,0.4]>, and B = [0,1]>. The underlying drift is deter-
mined by the shifted sigmoid functions on the right-hand side
of Equation 3. Given a finite-time horizon with terminal time
T , the following quadratic cost function was used:

L(x,u) =
T

∑
t=0

(xt − rt)
>Wt(xt − rt) (4)

where r = [r0, . . . ,rT ] is the target trajectory and Wt the time-
varying state cost. The goal of the controller is to find the

action sequence u = [u0, . . . ,uT ] that minimizes the expected
cost (and thereby maximizes the expected reward) to the hori-
zon T .

Control strategies
Controlling a system as defined in Eqs. (1) – (3) is difficult,
as the state dynamics are nonlinear with an unknown function
φ and parameters A and B. The controller then not only needs
to control the states in accordance to the reference path r, but
also learn the parameters (and functions) in order to derive a
good control strategy u. One view on this problem is that the
controller not only needs to control the states, but also control
her knowledge about the model, hence the term dual control.

We will now provide a description of the three different
forms of exploration mentioned earlier, and their qualitative
predictions in the present control task. The predictions are
shown graphically in Figure 1 for the variants of the task
used in Experiment 1, which tests whether participants will
hold off exploration until it is most opportune, and Exper-
iment 2, which tests whether participants perform strategic
(directional) exploration.

Passive exploration by certainty equivalence
A certainty equivalence controller completely ignores uncer-
tainty about the dynamics and derives a control strategy as
if the current (mean) estimates of the system are accurate and
knowledge about the system is perfect. Effectively, any learn-
ing about the system happens passively, as the control strat-
egy does not focus on minimizing uncertainty. As no active
exploration is encoded into this model, it might miss out on
important information that could be beneficial to produce bet-
ter rewards later on. This form of control predicts no explo-
ration, even when exploration is ‘free’ and beneficial to future
rewards.

Agnostic exploration by exploration bonus
To promote exploration, a straightforward adaptation of the
certainty equivalent controller is to introduce a Bayesian ex-
ploration bonus. Effectively, this means adapting the cost
function so that the costs of actions which reduce uncer-
tainty in the model of the control dynamics (as measured by
the standard deviation of the posterior distribution over the
parameters at each observation point, cf. Srinivas, Krause,
Kakade, & Seeger, 2009) is temporarily reduced. This model
is still myopic as it only calculates uncertainty at the cur-
rent control step. Moreover, exploration is not strategic, as
all uncertainty is treated equally and it does not take into ac-
count what knowledge might be most important later on. Un-
der agnostic exploration, the expected behavior would be the
attempt to identify all uncertain components, irrespective of
their future usefulness.

Strategic exploration as dual control
BRL involves reasoning about the effect of actions on future
rewards and beliefs. Where an exploration bonus renders re-
ducing uncertainty rewarding in itself, in BRL, reducing un-
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A B C

Figure 1: Control environments and qualitative model predictions for Experiment 1 and 2. The agent moves one step right each time point
(trials are delimited by white vertical lines) and can control the angle upwards/downwards in which a boat is steering. The background color
represent the cost function; the more red, the lower the score; dark blue areas mark free exploration trials. Qualitative model predictions taken
from Klenske & Hennig (2015) are represented by horizontal line called ’predictive regions’. Black lines represent the predictive region for
passive exploration, white lines for agnostic exploration, and purple lines for strategic exploration. The more space between the horizontal
lines at a trial, the wider the region and the higher the expected variance of the controller’s actions.
A: Strategic exploration holds off exploration until it comes at lower cost (broader trust region during the dark blue patch) and consequently
performs better than passive exploration later on (narrower trust region).
B: If free exploration phase is moved to the end, strategic exploration explores less overall and expedites exploration to earlier, more costly
stages, thereby reducing performance early on in order to achieve the best performance later on.
C: Instead of agnostically exploring both directions in the same way, strategic exploration uses the free exploration phase to try to move in a
trajectory which is rewarding in the future, thereby performing better later on.

certainty is only attractive insofar as it is expected to result in
an expected increase in future rewards. Optimal BRL requires
determining the consequences of strengthening beliefs on fu-
ture rewards, thereby finding the optimal balance between ex-
ploration and exploitation. Unfortunately, the optimal solu-
tion to the dual control problem of simultaneously control-
ling the system as well as possible given current knowledge
(exploitation) and learning about the system through experi-
mentation in order to control it better later on (exploration),
is known to be generally intractable.

Approximate dual control, as formulated by Tse & Bar-
Shalom (1973), involves three conceptual steps which to-
gether yield what, from a contemporary perspective, amounts
to an approximate solution to Bayesian RL: First, determine
the optimal trajectory under the current mean model of the
system (as in certainty equivalent control). Second, construct
a local quadratic expansion around the nominal trajectory
that approximates the effects of future observations. Third,
within the current time step t, perform the prediction for an
arbitrary control input ut and optimize ut numerically by re-
peated computation of steps 1 and 2 at varying uk to minimize
the approximate cost (see Klenske & Hennig, 2015, for im-
plementation). Approximate dual control does not treat all
exploration equally but rather explores strategically by, for
example, holding off exploration until it is less costly or by
exploring actions that will become important later on.

Experiment 1: Holding off exploration
Our first experiment was designed to test passive exploration
against both agnostic and strategic exploration by including a
low-cost period which was either introduced relatively early
(“Free Early” condition) or at the end of the task (“Free Late”
condition). When a low-cost period is introduced early, con-

trollers can make good use of it to explore and better their
performance in later periods, while exploring in a low-cost
period at the end of the task is not beneficial as there are no
later rewards to reap.

Both conditions experienced an initial stage of medium
state costs (see Figure 1). However, whereas for the Free
Early condition that stage is followed by a stage of free ex-
ploration (no costs of errors) which then leads to a stage of
very high cost, the Free Late condition experiences the stage
with high state costs first before then experiencing the stage
with no costs (the two stages are swapped).

We expected participants to behave as strategic controllers
and to initially hold off exploration in the Free Early condi-
tion until it comes at no cost in the low-cost period, allowing
them to be prepared for the most difficult final stages. In con-
trast, participants in the Free Late condition were expected
to explore more in the initial period, in order to be prepared
for the second, most difficult stage. In addition, we expected
participants in the Free Late condition to explore less in the
low-cost period compared to those in the Free Early condi-
tion, as late exploration no longer brings benefits if the task
is nearly over. Finally, we expected participants in the Free
Early condition to generally perform better than participants
in the Free Late group, as early exploration would enhance
their knowledge of the system for the remainder of the task.

Design

The manipulation involved changing the order of the refer-
ence trajectory (the state values that would produce the high-
est rewards) and state weightings.

In the Free Early-condition the reference trajectory and
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state weightings were:

r1:22 =

[
0
0

]
r23:28 =

[
7
0

]
r29:30 =

[
0
0

]
r31:36 =

[
−7
0

]
r37:40 =

[
0
0

]
and

W1:10 =

[
1 0
0 0

]
W11:20 =

[
0 0
0 0

]
W21:40 =

[
10 0
0 0

]

In the Free Late condition, these were:

r1:12 =

[
0
0

]
r13:18 =

[
7
0

]
r19:20 =

[
0
0

]
r21:26 =

[
−7
0

]
r27:40 =

[
0
0

]
and

W1:10 =

[
1 0
0 0

]
W11:30 =

[
10 0
0 0

]
W31:40 =

[
0 0
0 0

]

Materials
Participants were told that they had to navigate a boat through
the ocean in a sailing competition. On every trial, their boat
was at a current position yt and they had to determine an an-
gle ut (between -180◦ and 180◦) in which they wanted to sail.
Additionally, they had different target areas rt on each trial
marked by dark blue colors and how far they were off from
the target area was penalized differently based on Wt . An
example trial from the task (for the Free Early condition) is
depicted in Figure 2. The cost function was shown to partic-
ipants through the color of each position in the sea. Partici-
pants could earn between 0 (positions with a red background)
and 100 points (positions with a blue background) per trial.

Participants
Sixty-one participants were recruited via Amazon Mechani-
cal Turk and received $1 and a bonus of up to $1. Thirty-nine
participants were male and the mean age was 31.31±8.43.

Results
The distribution of boat position, as well as average chosen
angles, are depicted in Figure 3. We can see that, overall,
participants managed to steer the boat reasonably well. A lin-
ear regression of condition, cost function weights, and trial
number onto participants’ scores (see Table 1) showed that,
unsurprisingly, cost function weights had the largest effect on
participants’ scores. Moreover, performance increased sig-
nificantly over trials. Importantly, condition affected overall
performance, such that participants in the Free Early condi-
tion performed better than participants in the Free Late con-
dition. This confirms the hypothesis that participants would
benefit from early free exploration.

Figure 2: Example path in Experiment 1, Free Late condition. Star
= starting position at t = 0, circles = subsequent positions. On each
trial, the gray arrow shows contribution of underlying current and
black arrow contribution of control angle. At t = 0 the participant
takes a control angle of 0 and drifts upward. On the 10 subsequent
trials they attempt to counteract this upward drift by setting a nega-
tive angle. During the free exploration stage they use wider angles
to explore the variation in the strength of the current at different y
positions. This allows them to discover that strength of the current
is strongest in the center, approaching zero toward the top and ap-
proaching a small downward current in the bottom quarter.

Table 1: Regression estimates for Experiment 1. r2 = 0.38.

Estimate Std. Err. t value Pr(>|t|)
Intercept 99.9 2.76 36.2 0.000

Condition -3.04 1.07 -2.84 0.004
Medium -15.7 2.13 -7.39 0.000

High -47.3 1.30 -36.3 0.000
Trial 0.18 0.07 2.61 0.009

Another hypothesis was that participants in the Free Early
condition would explore more during the free exploration
stage than participants in the Free Late condition. Confirming
this hypothesis, the participant-wise variance of chosen an-
gles during the free exploration stage was significantly larger
for the Free Early condition than for the Free Late condi-
tion (t(59) = 2.62, p < 0.01). As such, participants indeed
seemed to strategically adapt their exploration behavior to the
underlying cost function.

While we expected participants in the Free Late condition
to explore more in the initial stage of medium difficulty than
those in the Free Early condition, a similar test to the one
above did not confirm this (t(59) = 0.63, p > 0.5). As such,
there is no clear evidence that participants in the Free Late
condition used the medium difficulty period to explore in or-
der to perform better in the high-difficulty period.

Overall, participants in Experiment 1 showed hallmarks of
strategic exploration. However, they did not explore as vigor-
ously as approximate dual control predicted, often only doing
so during completely free exploration periods. As soon as ex-
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Figure 3: Boat positions by condition in Experiment 1. The heat
map in the background reflects number of participants who were
at that position on a given trial. Error bars represent the standard
error of the average position per trial. Arrows indicate the average
chosen angle at a given trial. Black dots mark the target trajectory
and periods with different state weights are delimited by vertical
lines.

ploration is somewhat costly, participants seem to shift focus
back to normal (perhaps certainty-equivalence based) control,
thereby more conservatively trading off between exploration
and exploitation.

Experiment 2: Directional exploration
The second experiment was designed to distinguish between
agnostic and strategic exploration, involving the explicit ex-
ploration of directional actions. The design was again based
on ideas put forward by Klenske & Hennig (2015). In both
conditions, a free exploration phase was followed by a high
difficulty period, in which controllers either had to move the
boat first up then down again (Up-Down condition) or first
down and then up again (Down-Up condition).

If exploration is indeed strategic rather than agnostic and
simply based on an exploration bonus, then participants in the
Up-Down condition should focus exploration in the free ex-
ploration phase on first learning to travel precise increments
upwards and then precise increments downwards, whereas
participants in the Down-Up condition should explore to do
the opposite, as knowledge about these actions will be useful

later on. Note that mimicking the later target trajectory dur-
ing the free exploration phase is better then trying upwards
and downwards movements at one position as the current, and
with that the effect of a chosen angle on the position, varies
nonlinearly depending on the boat’s position.

Design
The underlying dynamics were exactly the same as in Ex-
periment 1. The manipulation solely concerned the reference
trajectory, which for the Up-Down condition was:

r1:23 =

[
0
0

]
r24:26 =

[
3
0

]
r27:29 =

[
5
0

]
r30:32 =

[
7
0

]
r33:35 =

[
5
0

]
r36:38 =

[
3
0

]
r39:40 =

[
0
0

]
And for the Down-Up condition, the reference trajectory was:

r =−r

The state weighting was the same for both groups:

W1:2 =

[
1 0
0 0

]
W3:21 =

[
0 0
0 0

]
W22:40 =

[
10 0
0 0

]

Materials
Participants were again told that they were taking part in a
sailing contest. Participants in the Up-Down condition were
then shown the control environment sketched out in Figure 1
(right panel), whereas participants in the Down-Up condition
experienced the same control environment but flipped around
the center horizontal axis.

Participants
Forty-six participants were recruited via Amazon Mechanical
Turk and received $1 and a bonus of up to $1. 16 participants
were female and the mean age was 34.32±11.17.

Results
Figure 4 shows participants’ boat position by group. Again,
participants seemed to be able to learn how to steer the boat
towards its targets in both groups. As before, we performed
a linear regression of the weights, trials and condition onto
participants’ score (see Table 2).

Table 2: Regression estimates for Experiment 2. r2 = 0.45.

Estimate Std. Err. t-value Pr(>|t|)
Intercept 97.8 2.72 35.9 0.000

Condition 0.23 1.75 0.13 0.89
Medium -11.3 1.69 -6.56 0.000

High -26.6 1.37 -19.4 0.000
Trial 0.16 0.06 2.41 0.01

The weights had again the largest effect on participants’
scores and participants’ scores improved over time. There
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Figure 4: Boat positions by condition for Experiment 2. See legend
of Figure 3 for further details.

was no significant difference between the scores of the two
conditions.

Strategic exploration is visible in the Up-Down condition
as participants’ mean position goes up and then down again,
thereby showing clear signs of practicing the route to come.
This can also be found by testing the difference between con-
dition’s average position during times of free exploration,
which was significantly higher for the Up-Down condition
(t(44) = 3.21, p < 0.01).

Strategic exploration was not as pronounced in the Down-
Up condition, as the mean position seems closer to a straight
line than the later target trajectory. This could be either due
to participants in this condition not exploring at all or ex-
ploring in either direction, thereby producing a straight av-
erage trajectory. Additionally, since the prevailing current
would nudge any passive participants who aimed straight
ahead upward, a bias toward the upper half is to be expected
in both conditions. There is no evidence that participants
in the Down-Up condition explored less, as there was no
difference in the variance of chosen inputs during the free
exploration phase between the conditions (t(44) = −0.32,
p > 0.75). In addition, during the first 10 trials, participants
in the Down-Up condition chose angles which were on aver-
age more downwards than those in the Up-Down condition
(t(44) =−3.17, p < 0.01).

Discussion and Conclusion
Scenarios in which we have to explore to effectively exploit
dynamical systems are ubiquitous in daily life. We introduced
a novel control task and assessed to what extent people’s ex-
ploration can be seen as a strategic, opportunistic and goal-
directed behavior.

We found that participants displayed hallmarks of strate-
gic exploration, exploring differently depending on the cost
function and, in some cases, practicing part trajectories which
would become important later on. However, strategic explo-
ration seemed more conservative than that of an idealized ap-
proximate dual control strategy. During periods of medium
cost, participants seemed reluctant to explore in order to ben-
efit their performance during a following high-cost period in
Experiment 1. For controllers who learn and choose actions
more noisily than statistical algorithms, perhaps the future
benefits of this costly exploration did not outweigh the imme-
diate costs. Participants also did not always play out strate-
gies of future importance during free exploration trials as in-
dicated by Experiment 2. As participants in the Up-Down
condition could easily follow the underlying upward-current,
participants in the Down-Up condition had to go against the
current in order to explore strategically. Therefore, the dif-
ference in exploration behavior could imply that beginning
to explore strategically can sometimes be more serendipitous
than what we expected based on the dual control algorithm’s
predictions.

As strategic exploration requires considerable planning,
even when dual control is approximate, it is likely to require
considerable mental effort. Future research could look into
possible heuristics which approximate strategic exploration
whilst further reducing computational costs.
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