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Abstract 

It has long been suspected that the rate of mutation varies across the human 

genome at a large scale based on the divergence between humans and other 

species. It is now possible to directly investigate this question using >40,000 

de novo mutations (DNMs) that have been discovered in humans through the 

sequencing of trios. We show that there is variation in the mutation rate at the 

100KB and 1MB scale that cannot be explained by variation at smaller scales, 

however the level of this variation is modest. Different types of mutation show 

similar levels of variation and appear to vary in concert, and in a manner such 

that they are not predicted to generate variation in base composition across 

the genome. Regressing the rate of DNM against a range of genomic features 

suggests that nucleosome occupancy is the most important correlate, but that 

GC content, recombination rate, replication time and various histone 

methylation signals also correlate significantly. In total the model explains 

~75% of the explainable variance suggesting that it will be useful for 

predicting large scale variation in the mutation rate. As expected the rate of 

divergence between species and the level of diversity within humans are 

correlated to the rate of DNM. However, the correlations are weaker than if all 

the variation in divergence was due to variation in the mutation rate. We 

provide evidence that this is due the effect of biased gene conversion on the 

probability that a mutation will become fixed. Finally, we show that the 
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correlation between divergence and DNM density declines as increasingly 

divergent species are considered. Our results have important implications for 

understanding large scale variation in base composition and the use of 

divergence and diversity data to study variation in the mutation rate.  

 

Author summary 

Using a dataset of 40,000 de novo mutations we show that there is large-

scale variation in the mutation rate at the 100KB and 1MB scale. We show 

that different types of mutation vary in concert and in a way that is not 

expected to generate variation in base composition; hence mutation bias is 

not responsible for the large-scale variation in base composition that is 

observed across human chromosomes. The variation in the mutation rate 

appears to depend on the density of nucleosomes, DNA replication and DNA 

repair and a simple model can explain over 70% of the variation in the density 

of mutations. As expected large-scale variation in the rate of divergence 

between species and the variation within species across the genome, is 

correlated to the rate of mutation, but the correlations are not as strong as 

they could be. We show that biased gene conversion is responsible for 

weakening the correlations. Finally, we show that the correlation between the 

rate of mutation in humans and the divergence between humans and other 

species, weakens as the species become more divergent. 

 

 

Introduction 

Until recently, the distribution of germ-line mutations across the genome was 

studied using patterns of nucleotide substitution between species in putatively 

neutral sequences (see [1] for review of this literature), since under neutrality 

the rate of substitution should be equal to the mutation rate. However, the 

sequencing of hundreds of individuals and their parents has led to the 

discovery of thousands of de novo mutations (DNMs) in humans [2-6]; it is 

therefore possible to start analysing the pattern of DNMs directly rather than 

inferring their patterns from substitutions. Initial analyses have shown that the 

rate of DNM increases with paternal age [4], a result that was never-the-less 

inferred by Haldane some 70 years ago [7], varies across the genome [5] and 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2017. ; https://doi.org/10.1101/110452doi: bioRxiv preprint 

https://doi.org/10.1101/110452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

is correlated to a number of factors, including the time of replication [3], the 

rate of recombination [3], GC content [5] and DNA hypersensitivity [5].  

 

Here we use a collection of over 40,000 DNMs to address a range of 

questions pertaining to the large-scale distribution of DNMs. First, we 

investigate whether there is variation in the mutation rate at a large-scale that 

cannot be explained in terms of variation at smaller scales. We quantify this 

variation and investigate to what extent the variation is correlated between 

different types of mutation, and to what extent it is correlated to a range of 

genomic variables. 

 

We also use the data to investigate a long-standing question – what forces 

are responsible for the large-scale variation in GC content across the human 

genome, the so called “isochore” structure [8]. It has been suggested that the 

variation could be due to mutation bias [9-12], natural selection [8, 13, 14], 

biased gene conversion [15-18], or a combination of all three forces [19]. 

There is now convincing evidence that biased gene conversion plays a role in 

the generating at least some of the variation in GC-content [20-22]. However, 

this does not preclude a role for mutation bias or selection. With a dataset of 

DNMs we are able to test explicitly whether mutation bias causes variation in 

GC-content.  

 

The rate of divergence between species is known to vary across the genome 

at a large scale [1]. As expected this appears to be in part due to variation in 

the rate of mutation [3]. However, the rate of mutation at the MB scale is not 

as strongly correlated to the rate of nucleotide substitution between species 

as it could be if all the variation in divergence between 1MB blocks was due to 

variation in the mutation rate [3]. Instead, the rate of divergence appears to 

correlate to the rate of recombination as well. This might be due to one, or a 

combination, of several factors. First, recombination might affect the 

probability that a mutation becomes fixed by the process of biased gene 

conversion (BGC) (review by [20]). Second, recombination can affect the 

probability that a mutation will be fixed by natural selection; in regions of high 

recombination deleterious mutations are less likely to be fixed, whereas 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2017. ; https://doi.org/10.1101/110452doi: bioRxiv preprint 

https://doi.org/10.1101/110452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

advantageous mutations are more likely. Third, low levels of recombination 

can increase the effects of genetic hitch-hiking and background selection, 

both of which can reduce the diversity in the human-chimp ancestor, and the 

time to coalescence and the divergence between species. And fourth, the 

correlation of divergence to both recombination and DNM density might 

simply be due to limitations in multiple regression; spurious associations can 

arise if multiple regression is performed on two correlated variables that are 

not known without error. For example, it might be that divergence only 

depends on the mutation rate, but that the mutation rate is partially dependent 

on the rate of recombination. In a multiple regression, divergence might come 

out as being correlated to both DNM density and the recombination rate, 

because we do not know the mutation rate without error, since we only have 

limited number of DNMs. Here, we introduce a test that can resolve between 

these explanations. 

 

As with divergence, we might expect variation in the level of diversity across a 

genome to correlate to the mutation rate. The role of the mutation rate 

variation in determining the level of genetic diversity across the genome has 

long been a subject of debate. It was noted many years ago that diversity 

varies across the human genome at a large scale and that this variation is 

correlated to the rate of recombination [23-25]. Because the rate of 

substitution between species is also correlated to the rate of recombination, 

Hellmann et al. [23, 24] inferred that the correlation between diversity and 

recombination was at least in part due to a mutagenic effect of recombination. 

This is consistent with the results of Francioli et al. [3] who have recently 

shown that the rate of DNM is correlated to the rate of recombination. 

However, no investigation has recently been made as to whether this explains 

all the variation in diversity. 
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Results 

De novo mutations 

To investigate large scale patterns of de novo mutations in humans we 

compiled data from four studies which between them had discovered 43,433 

DNMs on the autosomes: 26,939 mutations from Wong et al. [6], 11016 

mutations from Francioli et al. [3], 4931 mutations from Kong et al. [4] and 547 

mutations from Michaelson et al. [5]. We divided the mutations up into 9 

categories reflecting the fact that CpG dinucleotides have higher mutation 

rates than non-CpG sites, and the fact that we cannot differentiate which 

strand the mutation had occurred on: CpG C->T (a C to T or G to A mutation 

at a CpG site), CpG C->A, CpG C->G and for non-CpG sites C->T, T->C, C-

>A, T->G, C<->G and T<->A mutations.  

 

The proportion of mutations in each category in each of the datasets is shown 

in figure 1. We find that the pattern of mutation differs significantly between 

the 4 studies (Chi-square test of independence on the number of mutations in 

each of the 9 categories, p < 0.0001). This appears to be largely due to the 

relative frequency of C->T transitions in both the CpG and non-CpG context. 

In the data from Wong et al. [6] and Michaelson et al. [5] the frequency of C-

>T transitions at CpG sites is ~13% whereas it is ~17% in the other two 

studies, a discrepancy which has been noted before between the studies of 

Michaelson et al. and Kong et al. [26]. For non-CpG sites the frequency of C-

>T transitions is ~24% in all studies except that of Wong et al. in which it is 

26%. It is not clear whether these patterns reflect differences in the mutation 

rate between different cohorts of individuals, possibly because of age [3, 4, 6] 

or geographical origin [27] or whether the differences are due to 

methodological problems associated with detecting DNMs. Since the 

differences are relatively small and it is not clear whether one study 

represents a more representative sample than the other, we combined the 

data. 
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Figure 1. The proportion of DNMs in each of the mutational types in the four 

datasets. 

 

 

Distribution of rates 

To investigate whether there is large scale variation in the mutation rate we 

divided the genome into non-overlapping windows of 10KB, 100KB, 1MB and 

10MB and fit a gamma distribution to the number of mutations per region, 

taking into account the sampling error associated with the low number of 

mutations per region. The coefficient of variation (CV) of the fitted gamma 

distributions are 0.41, 0.29, 0.21 and 0.17 for 10KB, 100KB, 1MB and 10MB 

respectively. If all the variation at the larger scales is explainable by variation 

at a smaller scale, then the CV at scale x should be equal to the CV at some 

finer scale, y, divided by the square-root of x/y; for example, the CV at the 

100KB scale given the variation at the 10KB scale should be 

0.13, which is considerably smaller than the observed CV, suggesting that 

there is more variation at the 100KB scale than expected. This demonstrates 

that there is large scale variation in the mutation rate. To characterise this 

further, we regressed log CV against the log of scale (Figure 2); the 

relationship is approximately linear but the slope (-0.13) is considerably less 

than the expected slope of -0.5 if all variation at larger scales was due to 

variation at smaller scales (Figure 2). For the rest of this analysis we 
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concentrate on this large-scale variation in the mutation rate and consider it at 

two scales of 100KB and 1MB. 

 

 

 

Figure 2. The coefficient of variation of the gamma distribution fitted to the 

number of DNMs per block, versus the size of the blocks. 

 

 

The level of variation at both the 100KB and 1MB scales is significant (i.e. the 

lower 95% confidence interval of the CV is not zero) when all mutations are 

considered together (Table 1), however the level of variation is quite modest 

(Figure 3). A gamma distribution with a coefficient of variation of 0.21, as we 

find for the MB data, is a distribution in which 90% of regions have a rate of 

mutation that is within 35% the mean (i.e. rates within the range of 0.65 to 

1.35); at the 100KB level, roughly 90% of regions have mutation rates that are 

within 47% the mean (Table 1) (Figure 3). 
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Figure 3. The distribution of the mutation rates, relative to the mean, inferred 

from the distribution of DNMs at the 100KB (blue line) and 1MB (orange line) 

scales.  

 

 

We also find significant variation for CpG transitions and non-CpG transitions 

and transversions (Table 1). However, we do not find significant variation for 

either CpG transversions (the lower confidence interval for the coefficient of 

variation is zero), or when we split the data into most individual mutational 

types; this is probably because we have too little data.  
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Mutation type 100KB 1MB 

All 0.29 (0.27, 0.32) 0.21 (0.20, 0.23) 

CpG 0.41 (0.32, 0.49) 0.28 (0.23, 0.32) 

nonCpG 0.30 (0.28, 0.32) 0.21 (0.19, 0.22) 

CpG transitions 0.41 (0.30, 0.50) 0.27 (0.21, 0.32) 

CpG transversions 0.24 (0.0, 0.27) 0.47 (0, 0.73) 

nonCpG transitions 0.29 (0.22, 0.30) 0.19 (0.17, 0.21) 

nonCpG transversions 0.34 (0.28, 0.39) 0.24 (0.20, 0.27) 

Table 1. The coefficient of variation for a gamma distribution fitted to the 

density of DNMs, and the 95% confidence intervals of the coefficient of 

variation. 

 

 

Given that there is variation in all mutational types, for which we have enough 

data, it is of interest to investigate whether the amount of variation differs 

between the mutational types. To investigate this, we ran a series of likelihood 

ratio tests in which fit separate and common distributions to the different 

mutational types. We found significantly more variation at non-CpG sites than 

CpG sites at both scales and more variation for non-CpG transversions than 

transitions at the 100KB scale (it is almost significant at the 1MB scale as 

well) (p<0.05) (Table S1). Never-the-less, although significant, the differences 

in terms of the coefficient of variation are quite modest (Table 1). 

 

 

Correlations between mutational types 

Given that there is variation in the mutation rate at the 1MB and 100KB levels 

and that this variation is quite similar for different mutational types, it would 

seem likely that the rate of mutation for the different mutational types are 

correlated. We find that this is indeed the case. At the 1MB scale we find 

significant correlations between the rates of CpG and non-CpG mutations (r = 

0.17, p < 0.001), CpG transitions and transversions (r = 0.050, p = 0.012), and 

non-CpG transitions and transversions (r = 0.25, p<0.001). In all cases these 
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correlations are about as strong as you would expect given the high level of 

sampling error; i.e. if we simulate data using a gamma distribution fit to both 

mutational categories, we find the mean correlation from 100 simulations are 

0.18, 0.036 and 0.20 for three comparisons respectively, with 31%, 74% and 

98% of the simulated correlations being smaller than those observed. A very 

similar pattern is apparent at the 100KB scale; the observed and expected 

correlations between CpG and non-CpG mutations, CpG transitions and 

transversions, and non-CpG transitions and transversions are 0.035 

(expected = 0.045), 0.013 (0.0086) and 0.061 (0.050) respectively, with 7%, 

76% and 94% of simulated correlations being smaller than the observed.  

 

Variation in base composition 

Since there is variation in the mutation rate across the genome it is of interest 

to ascertain whether there is also variation in the pattern of mutation that 

would result in variation in GC content across chromosomes. To investigate 

this, we fit a model to the data in which the equilibrium GC, a measure of the 

mutation bias, could vary between regions of the genome according to a 

normal distribution. For both the MB and 100KB data the best fitting model is 

one in which the equilibrium GC content is 0.33 and there is no variation in 

this across the genome. The upper confidence interval on the standard 

deviation of the normal distribution is 0.022 and 0.043 for the MB and 100KB 

data respectively. This suggests that there is little or no variation in mutation 

bias across the genome. 

 

Correlations with genomic variables 

To try and understand why there is large scale variation in the mutation rate 

and to build a predictive model, we compiled a number of genomic variables 

which have previously been shown to correlate to the rate of germline or 

somatic DNM, or divergence between species: recombination rate, GC 

content, replication time, nucleosome occupancy, transcription level, DNA 

hypersensitivity and several histone methylation and acetylation marks [3, 5, 

28, 29].  
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The results from individual regressions and a multiple regression are broadly 

concordant, as are the results at the two different scales; we find that DNM 

density is positively correlated to DNA hypersensitivity, H3K27 acetylation, 

H3K4 methylation 1, nucleosome occupancy and recombination rate, and 

negatively correlated to H3K4 methylation 3, H3K9 methylation 3 and 

replication time (indicating lower mutation rates in early replicating DNA) 

(Table 2). The correlation for GC content changes from positive when 

regressed against DNM density by itself to negative in the multiple regression, 

and the correlations with H3K27 methylation 3 is positive at the 100KB scale 

but non-significantly negative at the 1MB scale. The biggest effect, as judged 

by the standardized slope is for nucleosome occupancy followed by GC 

content, recombination rate and replication time, which are similar in their 

level of correlation in the multiple regression (Table 2). 
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 100KB  1MB  

Factor 

Individual 

regression 

slope 

Multiple 

regression 

slope 

Individual 

regression 

slope 

Multiple 

regression 

slope 

DNAse 

hypersensitivity 
0.025*** 0.027 0.026 

 

GC content 0.053*** -0.083 0.098*** -0.14 

H3K27 

acetylation 
0.030*** 0.039 0.036 

 

H3K27 

methylation 3 
0.0069***  -0.0056 

-0.034 

H3K4 

methylation 1 
0.052*** 0.042 0.083*** 

0.12 

H3K4 

methylation 3 
-0.014*** -0.039 -0.052* 

-0.089 

H3K9 

methylation 3 
-0.011*** -0.036 -0.086*** 

 

Nucleosome 

occupancy 
0.077** 0.12 0.15*** 

0.29 

Recombination 

rate 
0.071*** 0.048 0.20*** 

0.12 

Replication 

time 
-0.020*** -0.081 -0.029 

-0.13 

RNA seq. -0.0072***  -0.041*  

 

Table 2. The standardized slope from regressing DNM rate against individual 

features and all significant features in a multiple regression. The standardized 

slope is obtained by subtracting the mean from each feature and dividing it by 

its standard deviation; this makes the slopes from different features 

comparable. Note that a negative slope for replication time indicates that the 

mutation rate is higher for later replicating regions. Features were selected in 

the multiple regression model using backwards stepwise regression and AIC. 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Overall the regression models only explain 7.0% and 1.4% of the variance in 

DNM density, at the 1MB and 100KB scales respectively, however since there 

are very few DNMs per MB or 100KB there is considerable sampling error. To 

estimate how much of the variance is potentially explainable we used the 

multiple regression model to predict the mutation rate for each MB or 100KB 

region and used these expectations to simulate the observed number of 

DNMs; we then calculated the coefficient of determination without refitting the 

regression model. The average coefficient of determination from the 

simulations were 9.5% and 1.7% suggesting that the model explains 74% and 

82% of the explainable variance at the 1MB and 100KB scales respectively.  

 

This method can potentially over-estimate the explainable variance if 

sampling error affects the parameter estimates of the model substantially; i.e. 

if the fitted model was different for two sets of simulated data generated from 

the same model. To investigate whether this was the case we re-ran the 

simulation but refit the regression model each time, but only using the factors 

included in the model used to simulate the data. In this case, the average 

coefficients of determination are 9.6% and 1.8% for the 1MB and 100KB 

scales, very similar to the coefficients when not refitting the model, suggesting 

that the model does not vary greatly between different simulated datasets. 

This also suggests that our regression model has substantial predictive 

power. We will provide genome browser tracks with these predictions. 

 

 

Correlation with divergence 

The rate of divergence between species is expected to depend, at least in 

part, on the rate of mutation. To investigate whether variation in the rate of 

substitution is correlated to variation in the rate of mutation we calculated the 

divergence between humans and chimpanzees. There are however at least 

three different sets of human-chimpanzee alignments: pairwise alignments 

between human and chimpanzee (PW)[30] found on the University of 

California Santa Cruz (UCSC) Genome Browser, the human-chimp alignment 
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from the multiple alignment of 46 mammals (MZ)[31] from the same location, 

and the human-chimp alignment from the Ensembl Enredo, Pecan and 

Ortheus primate multiple alignment (EPO) [32]. We find that the correlation 

depends upon the human-chimpanzee alignments used and the amount of 

each block (either 1MB or 100KB) covered by aligned bases (Figure 4). The 

correlation is significantly negative if we include all windows for the UCSC PW 

and MZ alignments at the 1MB scale (similar results are obtained at 100KB), 

but becomes more positive as we restrict the analysis to windows with more 

aligned bases. In contrast the correlations are always positive when using the 

EPO alignments, and the strength of this correlation does not change once we 

get above 200,000 aligned bases per 1MB. Further analysis suggests there 

are some problems with the PW and MZ alignments because divergence per 

MB window is inversely correlated to mean alignment length (r = -0.31, p < 

0.0001) for the PW alignments and positively correlated (r = 0.57, p < 0.0001) 

for the MZ alignments (Figure S1). The EPO alignment method shows no 

such bias and we consider these alignments to be the best of those available. 

Therefore, we use the EPO alignments for the rest of this analysis. 

 

 

Figure 4. The correlation between the divergence from human to chimpanzee 

and the density of DNMs in humans as a function of the number of aligned 

sites per window for three sets of alignments: UCSC pairwise alignments 

(PW, blue), UCSC multi-way aligments (MZ, orange) and EPO multi-species 

alignments alignments (EPO, green).  
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The EPO alignments allow us to consider lineage specific changes using 

parsimony to reconstruct ancestral states (these rates are highly correlated to 

the rates used by [3] inferred using the method of [15] which treats CpG and 

non-CpG sites separately and corrects for multiple substitutions). As expected 

the divergence along the human lineage is correlated to the rate of DNMs 

(0.24 at the 1MB scale, 0.064 at the 100KB scale). However, the correlation 

between the rate of DNMs and divergence is not expected to be perfect even 

if variation in the mutation rate is the only factor affecting the rate of 

substitution between species; this is because we have relatively few DNMs 

and hence our estimate of the density of DNMs is subject to a large amount of 

sampling error. To investigate how strong the correlation could be, we follow 

the procedure suggested by Francioli et al. [3]; we assume that variation in 

the mutation rate is the only factor affecting the variation in the substitution 

rate across the genome between species and that we know the substitution 

rate without error (this is an approximation, but the sampling error associated 

with the substitution rate is small relative to the sampling error associated with 

DNM density because we have so many substitutions). We generate the 

observed number DNMs according to the rates of substitution, and then 

consider the correlation between these simulated DNM densities and the 

observed substitution rates. We repeated this procedure 100 times to 

generate a distribution of expected correlations. Performing this simulation, 

we find that we would expect the correlation between divergence and DNM 

density to be 0.50 at the 1MB level and 0.24 at 100KB level, if variation in the 

mutation rate explained all the variation in the substitution rate, considerably 

greater than the observed values of 0.24 and 0.064 respectively. In none of 

the simulations was the simulated correlation as low as the observed 

correlation. Similar patterns hold for almost all mutational types; the level of 

divergence is positively correlated to the density of DNMs, often significantly 

so, but the observed correlations are substantially lower than the simulated 

correlations (Table S2). 
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There are several potential explanations for why the correlation is weaker 

than it could be; the pattern of mutation might have changed, or there might 

be other factors that affect divergence. Francioli et al. [3] showed that 

including recombination in a regression model between divergence and DNM 

density significantly improved the coefficient of determination of the model; a 

result we confirm here; the coefficient of determination when recombination is 

included in a regression of divergence versus DNM density increases from 

0.058 to 0.18, and from 0.0041 to 0.048 for the 1MB and 100KB datasets 

respectively.  

 

As detailed in the introduction there are at least four explanations for why 

recombination might be correlated to the rate of divergence independent of its 

effect on the rate of DNM: (i) biased gene conversion, (ii) recombination 

affecting the efficiency of selection, (iii) recombination affecting the depth of 

the genealogy in the human-chimpanzee ancestor and (iv) problems with 

regressing against correlated variables that are subject to sampling error. We 

can potentially differentiate between these four explanations by comparing the 

slope of the regression between the rate of substitution and the recombination 

rate, and the rate DNM and the recombination rate. If recombination affects 

the substitution rate, independent of its effects on DNM mutations, because of 

GC-biased gene conversion (gBGC), then we expect the slope between 

divergence and recombination rate to be greater than the slope between DNM 

density and recombination rate for Weak->Strong (W->S), smaller for S->W, 

and unaffected for S<->S and W<->W changes. The reason is as follows; 

gBGC increases the probability that a W->S mutation will get fixed but 

decreases the probability that a S->W mutation will get fixed. This means that 

regions of the genome with high rates of recombination will tend to have 

higher substitution rates of W->S mutations than regions with low rates of 

recombination hence increasing the slope of the relationship between 

divergence and recombination rate. The opposite is true for S->W mutations, 

and S<->S and W<->W mutations should be unaffected by gBGC. If selection 

is the reason that divergence is correlated to recombination independently of 

its effects of the mutation rate, then we expect all the slopes associated with 

substitutions to be less than those associated with DNMs. The reason is as 
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follows; if a proportion of mutations are slightly deleterious then those will 

have a greater chance of being fixed in regions of low recombination than 

high recombination. If the effect of recombination on the substitution rate is 

due to variation in the coalescence time in the human-chimp ancestor, then 

we expect all the slopes associated with substitution to be greater than those 

associated with DNMs; this because the average time to coalescence is 

expected to be shorter in regions of low recombination than in regions of high 

recombination. Finally, if the effect is due to problems with multiple regression 

then we might expect all the slopes to become shallower. Since the DNM 

density and divergences are on different scales we divided each by their 

mean to normalise them and hence make the slopes comparable. 

 

The results of our test are consistent with the gBGC hypothesis; the slope of 

divergence versus RR is greater than the slope for DNM density versus RR 

for all W->S mutations and less for all S->W mutations (Figure 5); these 

differences are significant for most of the comparisons at the 1MB and 100KB 

scales (Table 3)(significance was assessed by bootstrapping the data by MB 

or 100KB regions and then recalculating the slopes). There are no significant 

differences between the slopes for W<->W and S<->S mutations except at the 

100KB scale for non-CpG S<->S. Never-the-less it is worth noting that the 

DNM slope is consistently greater than the divergence slope at both spatial 

scales suggesting that there might be some effect of recombination affecting 

the efficiency of selection. Unfortunately, the obvious analysis, of regressing 

the W<->W and S<->S substitution rate against DNM density and 

recombination rate is inconclusive; rather than observe a negative correlation 

as we might expect under the efficiency of selection model we observe that 

the substitution rate is significantly positively correlated to RR. However, this 

might be simply due to RR and DNM density being positively correlated but 

DNM density being an error prone measure of the mutation rate (i.e. within the 

multiple regression we cannot hold the mutation rate constant). 
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Figure 5. The slope between normalised DNM density and recombination rate 

(RR) (blue), normalised SNP density and RR (orange), and normalised 

substitution density and RR (grey). In each case the values were normalised 

by dividing the values by the mean. 
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 100KB 1MB 

 Proportion of 

bootstraps 

diversity 

slope >  

DNM slope 

Proportion of 

bootstraps 

divergence 

slope >  DNM 

slope 

Proportion 

of 

bootstraps 

diversity 

slope >  

DNM slope 

Proportion of 

bootstraps 

divergence 

slope >  

DNM slope 

CpG C->T 0.0045 0 0.085 0.002 

CpG C->A 0.11 0.074 0.096 0.065 

non-CpG C->T 0.0016 0 0.0029 0 

non-CpG C->A 0.0010 0 0.078 0.0064 

     

non-CpG T->C 0.28 0.9997 0.54 1 

non-CpG T->G 0.67 0.9982 0.80 0.9999 

     

CpG C->G 0.13 0.13 0.24 0.29 

non-CpG C<->G 0.0041 0.0043 0.31 0.26 

non-CpG A<->T 0.19 0.22 0.17 0.28 

 

Table 3. Proportion of bootstrap replicates in which the slope of the 

normalised diversity versus recombination rate, or normalised divergence 

versus recombination rate, is greater than the slope of the normalised DNM 

density and recombination rate. 10,000 bootstrap replicates were performed 

in each case.  

 

 

 

 

Other species 

Divergence between species, usually humans and macaques, is often used to 

control for mutation rate variation in various analyses. But how does the 

correlation between divergence and the DNM rate in humans change as the 
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species being compared get further apart? To investigate this, we compiled 

data from a variety of primate species – human/chimpanzee/orang-utan 

(HCO) considering the divergence along the human and chimp lineages, 

human/orang-utan/macaque (HOM) considering the divergence along the 

human and orang-utan lineages, and human/macaque/marmoset (HMM) 

considering the divergence along the human and macaque lineages. This 

yields two series of divergences of increasing evolutionary divergence: the 

human lineage from HCO, HOM and HMM, and chimp from HCO, orang-utan 

from HOM and macaque from HMM. All divergences were normalised by 

dividing by their mean. For both series we see a clear tendency for the slope 

of the regression between divergence and DNM rate to decrease as a 

function of evolutionary divergence at both the 100kb and 1MB scales (Figure 

6 for the human lineage, Figure S2 for the chimpanzee, orang-utan ad 

marmoset lineages). If we calculate the correlation coefficient between the 

slope and the evolutionary stratum, assigning 1, 2 and 3 to the strata (e.g. 1 

for chimp, 2 for orangutan and 3 for macaque), we find that the correlations 

are negative for all mutational types, for both sets of evolutionary divergence 

and scales (binomial test of positive versus negative for both 100kb and 1MB 

using both the human and other lineage p < 0.01) (Figure 6). 
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Figure 6. The slope of the linear regression between divergence and DNM 

rate for 100kb (top panel) and 1MB (bottom panel). HCO-H is the human 

divergence since humans split from chimpanzee, from a comparison of 

human, chimpanzees and orang-utans; HOM-H is the human divergence 

since humans split from orang-utans, using human, orang-utan and macaque; 

HMM-H is the human divergence since humans split from macaques using 

human, macaque and marmoset.  
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Correlation with diversity 

Just as we expect there to be correlation between divergence and DNM rate, 

so we might expect there to be correlation between DNA sequence diversity 

within the human species and the rate of DNM. To investigate this, we 

compiled the number of SNPs in 1MB and 100kb blocks from the 1000 

genome project [33, 34]. There is a positive correlation between SNP density 

and DNM rate at both the 1MB (r = 0.36, p<0.001) and 100KB scales (r = 

0.13, p<0.001). This positive correlation is observed for all mutational types, 

however in some cases the correlations are not significant (Table S3). 

 

Using a similar strategy to that used in the analysis of divergence we 

calculated the correlation we would expect if all the variation in diversity was 

due to variation in the mutation rate by assuming that the level of diversity 

was known without error, and hence was a perfect measure of the mutation 

rate (we have on average 31,000 SNPs per MB, so there is little sampling 

error associated with the SNPs). We then simulated the observed number of 

DNMs according to these inferred mutation rates. The expected correlations 

are 0.41 and 0.17 at the 1MB and 100KB scales; these are significantly 

greater than the observed correlation (p<0.01 in both cases) but the 

difference is less dramatic than the difference for divergence. However, this is 

deceptive because for most mutational types the observed correlation is 

considerably smaller than the expected correlation; on average the observed 

correlation is ~45% the expected correlation when each mutational type is 

considered separately (Table S3), fairly similar to the average effect seen for 

divergence (Table S2). 

 

The fact that the correlation between diversity and DNM density is not as 

strong as it could be, could be caused by BGC. To investigate this, we 

repeated our BGC test used in the analysis of the divergence data – i.e. we 

compared the slope of the relationship between diversity and recombination 

rate to the slope of the regression between DNM density and recombination 

rate (as before the variables were normalised by dividing by the mean). As 
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expected we find the slope of the regression between diversity and RR to be 

greater than the slope between DNM density and RR for all W->S mutations 

and less than for all S->W, except non-CpG T->C mutations (Figure 5). In 

almost all cases the slope of diversity versus RR is between the slope of 

divergence versus RR and DNM versus RR, as expected, since BGC is 

expected to have smaller effects on diversity than divergence. The effects are 

often significant at the 1MB scale but not significant at the 100KB scale (Table 

3). 

 

As with divergence we observe that the slope associated with mutational 

types not affected by BGC is lower for diversity than DNM, which is consistent 

with selection being more efficient against deleterious mutations in regions of 

the genome with higher RR. However, the differences in slope are not 

significant except for non-CpG S<->S changes. 

 

 

Discussion 

We have considered the large-scale distribution of DNMs along the human 

genome and the relationship between the rate of DNM, divergence between 

species, and diversity within a species. We find evidence that there is large 

scale variation in the mutation at the 100KB and 1MB; this is variation that 

cannot be explained by variation at smaller scales. However, the variation in 

the mutation rate is quite modest; at the MB scale 90% of regions have a 

mutation rate that is within ± 35% of the mean, at the 100KB scale this 

increases to ± 47% of the mean. It seems likely that there will be more 

variation at smaller scales but how this will scale up remains to be 

investigated.  

 

Although we do not have enough DNM data to consider each mutational type 

individually, it is evident that the rates of CpG and non-CpG mutation vary 

across the genome as do the rates of non-CpG transitions and transversions 

at both the 1MB and 100KB scales; we do not have enough data to determine 

what is happening with CpG transversions. The rate of mutation of the 

different mutational types are about as strongly correlated to each other as 
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they could be, suggesting that they vary in concert and are likely to be 

influenced by similar factors. 

 

We confirm that replication time, recombination rate and GC content are all 

independently correlated to the rate of DNM, but we also show that 

nucleosome occupancy and two histone marks are correlated to DNM density. 

The strongest effect we find comes from nucleosome occupancy. Although, 

nucleosome occupancy has previously been investigated, no significant 

effects were detected [5]. However, Michaelson et al. [5] only considered a 

small number of DNMs at a scale of single nucleotides. Overall the regression 

model explains 73% and 82% of the explainable variance at the 1MB and 

100KB scales respectively, which is quite remarkable since the factors, such 

as replication time, are not being measured in the relevant cells, the male and 

female germ-line.  

 

Some caution should be exercised in interpreting the results of the multiple 

regression because most of the variables in the model are subject to 

experimental error. This means that some variables might be included in the 

model when they should not be. For example, let us imagine that factor X 

affects the mutation rate directly whereas factor Y does not; however, X and Y 

are mildly correlated. If we can measure X and Y without error then a multiple 

regression should show that the rate of DNM is correlated to X but not Y. 

However, if we cannot measure X without error then we may find that the rate 

of DNM correlates to both X and Y. 

 

The evolution of the large-scale variation in GC-content across the human 

genome has been the subject of much debate [19]. Mutation bias [9-12], 

selection [8, 13, 14] and biased gene conversion [15-18] have all been 

proposed as explanations. There is good evidence that biased gene 

conversion has some effect on the base composition of the human genome 

[20-22]. However, this does not preclude a role for mutation bias. We have 

tested the mutation bias hypothesis using the DNM data and found no 

evidence that the pattern of mutation varies across the genome in a way that 

would generate variation in GC-content. Instead we provide additional 
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evidence that biased gene conversion influences the chance that mutations 

become fixed in the genome.  

 

As expected the rate of divergence between species is correlated to the rate 

of DNM, however, the strength and even the sign of the correlation depends 

on the alignments being used. The correlations between divergence and DNM 

density are actually negative if no filtering is applied to the UCSC alignments, 

and there is a negative correlation between divergence and alignment length 

for the pairiwise alignments from the UCSC genome browser, and a positive 

correlation for the multi-species alignment. It is clear that there are problems 

with these alignments and results obtained using these alignments should be 

treated with caution.  

 

As Francioli et al. [3] showed, the correlation between divergence and DNM 

density is worse than it would be if variation in the mutation rate was the only 

factor affecting divergence. We show that this is also true for diversity within 

humans. Francioli et al. [3] showed that although the rate of DNM is correlated 

to the rate of recombination, divergence is correlated to the rate of 

recombination independently of this effect. We have shown that the reason 

recombination affects divergence and diversity independently of its effects on 

the rate of mutation is likely to be due to effect of biased gene conversion 

since the slope of the relationship between divergence and recombination rate 

is smaller than the slope for DNM rate and recombination for S->W changes, 

but greater for W->S changes; as expected, W<->W and S<->S changes are 

unaffected.  

 

Although, biased gene conversion appears to affect the relationship between 

both divergence and diversity, and the rate of mutation, this is clearly not the 

only factor, since the correlation between divergence, diversity and DNM 

density for mutations that are unaffected by biased gene conversion, is worse 

than it could be if all the variation in divergence and diversity for these 

mutational types was caused by variation in the rate of mutation; the 

difference between the expected and observed correlation is generally 

significant at both scales (Tables S2 and S3). The fact that the relationship 
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between divergence or diversity and DNM density is not as strong as it could, 

could be due to a number of reasons. First the mutation rate might be 

evolving through time. In this case, we might expect the ratio of the observed 

and expected correlations, for W<->W and S<->S mutations, to be smaller for 

divergence than diversity and yet they are remarkably similar (the average 

ratio between the observed and expected correlations for divergence = 0.52, 

for diversity = 0.56, Tables S2, S3). Second, there might be variation in the 

effective population size across the genome; this would generate variation in 

diversity that is not associated with the mutation rate, and potentially variation 

in the divergence through variation in coalescence time in the human-chimp 

ancestor. Here one would expect the effect on the correlation between 

divergence and DNM density to be smaller than the effect for diversity, since 

variation in the effective population size will only affect the overall divergence 

to a small extent. Third, variation in effective population size across the 

genome could generate variation in the efficiency of selection. But again, we 

would expect the effect to be different for divergence and diversity. The 

reason why the correlation between divergence, diversity is less than perfect 

for W<->W and S<->S mutations remains unclear. 

 

We also show that the relationship between divergence and DNM rate gets 

weaker (the slopes get shallower) as more and more divergent species are 

considered. This might be due to two factors. First, we might expect the 

mutation rate of a region to evolve through time eroding the relationship 

between divergence and the current mutation rate [35]. Second, the 

relationship might get weaker because we are underestimating the divergence 

as species get more divergent. This might tend to affect the most divergent 

blocks the most. However, we see no obvious effect of this; the mutation type 

that should be most affected is CpG transitions and the decay in the slope 

(between divergence and DNM rate) is no faster than for other mutational 

types (Figure 6). 

 

These results are consistent with those of Terekhanova et al. [35] who 

showed that the substitution rate for W<->W and S<->S along the human 

lineage was correlated to that of other primates at the 1MB scale, but that the 
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strength of this correlation declined as more divergent species were 

considered. They showed that a fraction of this correlation was due to 

variation in the substitution rate that was not correlated to genomic features in 

humans; possibly the 25% of the variance that we find is unexplainable by 

genomic features. 

 

Divergence between species has often been used to control for mutation rate 

variation in humans (for example [36-38]). This is clearly not satisfactory given 

that divergence is more strongly correlated to the rate of recombination than 

the rate of DNM, and the relationship between divergence and the rate of 

DNMs decreases as evolutionary divergence increases. However, although 

we have too few DNMs to construct a mutation rate map directly, our 

regression model for predicting the mutation rate from genomic features is 

sufficiently good to yield a reasonable prediction of the mutation rate, at least 

down to 100KB scale. Never-the-less it should be appreciated that there may 

be much more variation in the mutation rate at finer scales and that it may be 

necessary to control for this variation in some analyses. 

 

It has been known for sometime that diversity across the human genome is 

correlated to the rate of recombination[23-25] and there has been much 

debate about whether this is due to mutagenic effects of recombination or the 

effect of recombination on processes such as genetic hitch-hiking and 

background selection. Divergence between humans and other primates is 

correlated to the rate of recombination, which was initially interpreted as being 

due to a mutagenic effect of recombination [23, 25] but subsequently it has 

been interpreted as evidence of gBGC [15]. Both of these hypotheses appear 

to be correct – the rate of DNM is correlated to the rate of recombination ([3]; 

results above), but recombination also affects which mutations become fixed 

through gBGC.  
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Materials and methods 

DNM data 

Details of DNM mutations were downloaded from the supplementary tables of 

the respective papers: 26,939 mutations from Wong et al. [6], 11016 

mutations from Francioli et al. [3], 4931 mutations from Kong et al. [4] and 547 

mutations from Michaelson et al. [5]. These were all mapped to 

hg19/GRCh37. Only autosomal DNMs were used. From these DNMs we 

constructed a series of datasets. In the first we considered all DNMs; in 

subsequent analyses we only considered DNMs that mapped to regions of the 

genome for which we had all genomic variables, such as replication time data, 

or which mapped to regions for which we had divergence data. 

 

Alignments. 

Three sets of alignments were used in this analysis, all based on human 

genome build hg19/GRCh37: (i) the University of California Santa Cruz 

(UCSC) pairwise (PW) alignments [30] for human-chimpanzee (hg19-panTro4 

downloaded from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsPanTro4/ ) (ii) the UCSC 

MultiZ (MZ) 46-way alignments [31] downloaded from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz46way/ and (iii) 

Ensembl Enredo, Pecan, Ortheus (EPO) 6 primate multiple alignment, release 

74, [32] downloaded from ftp://ftp.ensembl.org/pub/release-74/emf/ensembl-

compara/epo_6_primate/. We found that the EPO alignments were the most 

reliable – see main text – and they were used for the majority of the analyses. 

 

Filtering of EPO alignments and construction of main data set. 

In analyses involving the divergence between species we only considered 

DNMs that mapped to sequences that were alignable between species, in 

100KB and 1MB blocks in which at least half the sequence was alignable 

between the species. This left us with 35,401 DNMs for the 

human/chimpanzee/orang-utan comparison, 31,185 DNMs for the 

human/orang-utan/macaque comparison and 23,534 DNMs for the 

human/macaque/marmoset comparison. 
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Selection and filtering of SNPs. 

All SNPs from the 1000 genomes project phase 3 [34] were downloaded from 

hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/phase3/. After removing 

all multi-allelic SNPs and, structural variants and indels we were left with 

77,818,368 autosomal SNPs. After filtering out windows which had less than 

50% of nucleotides aligning between human-chimpanzee-orangutan and no 

recombination rate scores we were left with 71,917,321 SNPs. 

 

Genomic features. 

Male specific standardised recombination rate data [39] was downloded from 

http://www.decode.com/additional/male.rmap, which provides recombination 

rates in 10KB steps. For each 100KB and 1Mb window the recombination rate 

was calculated as the mean of these scores with a score assigned to the 

window in which the position of its first base resided. For replication time data 

we downloaded the Encode Repli-seq wavelet smoothed signal data [40, 41], 

provided in 1kb steps, for the GM12878, HeLa, HUVEC, K562, MCF-7 and 

HepG2 cell lines from the UCSC ftp site 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/. We computed the 

mean replication time for all autosomes for 100kb and 1Mb windows across 

all 6 cell lines. Replication times were assigned to windows based upon their 

start coordinates. GC content was calculated directly from the human genome 

(hg19/GCRh37) for 100kb and 1Mb windows. Nucleosome occupancy for the 

GM12878 cell line was used [42] downloaded from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSyd

hNsome/. Nucleosome occupancy scores are provided at high, but variable 

resolution, with scores spanning 1 to 27,362 bases. Mean nucleosome 

occupancy was calculated per 100kb and 1Mb window, accounting for this 

variation.  

 

Statistical analysis. 

The R stats package, R version 3.3.1, was used for all correlations and 

regression analyses of observed variables. Simulations to derive expected 

variables and comparisons to observed variables were done using 

Mathematica version 10. 
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To estimate the mutation rate distribution we use the method of [43]. In brief 

we assume that the mutation rate in each block is �� � where �� is the average 

mutation rate per site and � is the rate above or below this mean. α is 

assumed to be gamma distributed. The number of mutations per block is 

assumed to be Poisson distributed with a mean ���� where l is the length of 

the block. This means that the number of mutations per block is a negative 

binomial. We fit the distribution using maximum likelihood using the 

NMaximize function in Mathematica. 

 

We investigated the correlation between different types of mutation across 

blocks by fitting a single distribution to both types of mutation; i.e. by finding 

the distribution which when fitted to both distributions of mutations across 

sites, maximizes the likelihood. We then used this distribution to simulate 

data; we drew a random variate for each block from the distribution assigning 

this as the rate for that block. We then generated two Poisson variates with 

the appropriate means such that the total number of DNMs for each type of 

mutation was expected to be equal the total number of DNMs of those types. 

A similar procedure was used to test the fit of the regression model. 

 

To test whether the mutation pattern varied across the genome in a manner 

that would generate variation in the mutation rate we fit the following model. 

Let us assume that the mutation rate from strong (S) to weak (W) base pairs, 

where strong are G:C and weak are A:T, be ��1 
 ���, where μ is the mutation 

rate and fe is the equilibrium GC-content to which the sequence would evolve 

if there was no selection or biased gene conversion. Let the mutation rate in 

the opposite direction be ��� and the current GC-content be f. Then we expect 

the proportion of mutations that are S->W to be  

 


���, �� � ��������

�����������������
� �������

���������������
     (1) 

 

Let us assume that fe is normally distributed. Then the likelihood of observing i 

S->W mutations out of a total of n S->W and w->S mutations is 
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 � � � ����; ��� , �����, �, 
��� , ����� / � ����; ��� , ����� �

	
 �

	
   (2) 

 

The total loglikelihood is therefore the sum of the log of equation 2 for each 

MB or 100KB block across all the blocks in the genome. The maximum 

likelihood values were obtained by using the FindMaximum routine in 

Mathematica.  
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Supplementary Tables 

 

Model # of 

parameters 

Log 

likelihood 

100 kb   

Combined distribution for CpG and non-CpG 3 -57399.40 

Separate distributions for CpG and non-CpG 4 -57397.10 

Combined distribution for CpG transitions and 

transversions 

3 -18612.00 

Separate distributions for CpG transitions and 

transversions 

4 -18612.00 

Combined distribution for non-CpG transitions 

and transversions 

3 -58207.50 

Separate distributions for non-CpG transitions 

and transversions 

4 -58205.70 

   

1 MB   

Combined distribution for CpG and non-CpG 3 -13179.50 

Separate distributions for CpG and non-CpG 4 -13176.03 

Combined distribution for CpG transitions and 

transversions 

3 -6465.54 

Separate distributions for CpG transitions and 

transversions 

4 -6464.82 

Combined distribution for non-CpG transitions 

and transversions 

3 -13404.10 

Separate distributions for non-CpG transitions 

and transversions 

4 -13401.79 

 

Table S1. Likelihood values for fitting combined and separate distributions to 

categories of mutations. Each pair of lines represents a likelihood ratio test; 

bold figures denote a significant result. 
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 100kb 100kb 1MB 1MB 

Mutation Obs. 

Correlation 

Exp. 

correlation 

Obs. 

correlation 

Exp. 

correlation 

All 0.064*** 0.24** 0.24*** 0.50** 

CpG C-T 0.055*** 0.11 0.20*** 0.22 

CpG C-A 0.021** NA 0.053* 0.084 

CpG C-G 0.011 NA 0.033 0.087** 

non C-T 0.016* 0.14 0.063** 0.28** 

non C-A 0.047*** 0.12 0.16*** 0.28** 

non T-C 0.015* 0.14 0.080*** 0.32** 

non T-G 0.0099 0.096** 0.040 0.22** 

non C-G 0.059*** 0.11 0.23*** 0.25 

non T-A 0.013 0.091** 0.094*** 0.18** 

 

Table S2. The observed and expected correlations between the density of 

DNMs and substitutions at the 100kb and 1MB scales; the expected 

correlation is the mean correlation from 100 simulations assuming that all the 

variation in the substitution rate is due to variation in the mutation rate (and 

assuming the pattern of mutation has not changed along the human lineage). 

We are not able to simulate data for CpG transversions due to the fact that 

some regions have no substitutions of this type. Indicated is whether the 

observed correlation is greater than zero and whether the expected 

correlation is significantly greater than the observed. * p < 0.05, ** p < 0.01, 

*** p < 0.001. 
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 100kb 100kb 1MB 1MB 

Mutation Obs. 

Correlation 

Exp. 

correlation 

Obs. 

correlation 

Exp. 

correlation 

All 0.13*** 0.17 0.36*** 0.41** 

CpG C-T 0.074*** 0.11** 0.16*** 0.24** 

CpG C-A 0.011 0.034** 0.019 0.073* 

CpG C-G 0.019** 0.032* 0.065** 0.063 

non C-T 0.032*** 0.12** 0.082*** 0.29** 

non C-A 0.055*** 0.10** 0.13*** 0.25** 

non T-C 0.013 0.12** 0.025 0.28** 

non T-G 0.011 0.070** 0.026 0.18** 

non C-G 0.085*** 0.12** 0.25*** 0.32** 

non T-A 0.027*** 0.073** 0.069*** 0.18** 

 

Table S3. The observed and expected correlations between the density of 

DNMs and the density of SNPs at the 100kb and 1MB scales; the expected 

correlation is the mean correlation from 100 simulations assuming that all the 

variation in the density of SNPs is due to variation in the mutation rate. 

Indicated is whether the observed correlation is greater than zero and whether 

the expected correlation is significantly greater than the observed. * p < 0.05, 

** p < 0.01, *** p <0.001 
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Figure S1. Divergence (number of substitutions per bas pair) as a function of 

alignment length in the UCSD pairwise alignments (top panel) and the UCSD 

multiz alignments (bottom panel). 
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Figure S2. The slope of the linear regression between divergence and DNM 

rate for 100kb (top panel) and 1MB (bottom panel). HCO-C is the chimpanzee 

divergence since humans split from chimpanzee, from a comparison of 

human, chimpanzees and orang-utans; HOM-O is the orang-utan divergence 

since humans split from orang-utans, using human, orang-utan and macaque; 

HMC-C is the Callithrix divergence since humans split from macaques using 

human, macaque and Callithrix.  
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