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Abstract

Gaussian Bayesian networks have become a widely used framework to estimate directed associa-

tions between joint Gaussian variables, where the network structure encodes decomposition of mul-

tivariate normal density into local terms. However, the resulting estimates can be inaccurate when

normality assumption is moderately or severely violated, making it unsuitable to deal with recent ge-

nomic data such as the Cancer Genome Atlas data. In the present paper, we propose a mixture copula

Bayesian network model which provides great flexibility in modeling non-Gaussian and multimodal data

for causal inference. The parameters in mixture copula functions can be efficiently estimated by a rou-

tine Expectation-Maximization algorithm. A heuristic search algorithm based on Bayesian information

criterion is developed to estimate the network structure, and prediction can be further improved by the

best-scoring network out of multiple predictions from random initial values. Our method outperforms

Gaussian Bayesian networks and regular copula Bayesian networks in terms of modeling flexibility and

prediction accuracy, as demonstrated using a cell signaling dataset. We apply the proposed methods to

the Cancer Genome Atlas data to study the genetic and epigenetic pathways that underlie serous ovarian

cancer.

Keywords: Bayesian network; Copula function; The Cancer Genome Atlas; Systems biology; Serous

ovarian cancer

1

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2017. ; https://doi.org/10.1101/110288doi: bioRxiv preprint 

https://doi.org/10.1101/110288
http://creativecommons.org/licenses/by-nc/4.0/


1 Introduction

In recent years, there has been considerable interest in estimating causal relationships between random

variables in a graphical framework. Among several types of graphical models, Bayesian networks (BN) or

equivalently, probability-weighted directed acyclic graphs (DAG) have received the most attention due to

their simplicity and flexibility in modeling directed associations in the domain [1, 2, 3, 4]. The associations

between d random variables can be summarized by a graph G = (V,E) in which V = {Xi|i = 1,2, ...,d}

represents the set of variables and E ⊂ V ×V represents the dependency between variables. Under the

acyclicity and Markov assumptions, the joint likelihood function of (X1, ...,Xd) in a BN has the following

simple form based on the conditional densities:

f (X1, ...,Xd) =
d

∏
i=1

f (Xi|Πi), (1)

where Πi denotes the parent set of Xi, i.e., Πi = {X j|X j→ Xi,X j ∈V \{Xi}} (Πi can be empty).

The two most popular BN models are Gaussian Bayesian network (GBN) model [1] and multinomial

Bayesian network (MBN) model [5], for continuous variables and discrete variables respectively. MBN

models suffer from super-exponentially increasing number of parameters, therefore can only estimate small-

scale networks in practice [5]. To deal with networks with relatively large number of nodes, GBN models

have been commonly used due to their simple setup and efficient estimation. However, GBN models may fail

to identify the true causalities when the joint distribution of interest is far from multivariate normal, for ex-

ample, when the underlying distribution is bimodal or multimodal. To tackle the problem of non-normality,

several new BN models have been developed, for instance, the logistic Bayesian network by Zhang et al.

[4] which discretizes all the continuous variables to fit a multi-category logit model. Considerable work has

also been done in nonparametric and semiparametric estimation of the BN structure. For instance, Voorman

el al. [6] proposed the following nonparametric model to deal with non-normality issue:

Xi|Πi = ∑
Xk∈Πi

fik(Xk)+ εi,

where the fik(·) lies in some function space FFF. The model by Voorman et al. focuses on estimating the
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conditional mean E(Xi|Πi). It is essentially a generalized additive model without assuming the independence

between εi and fik(·). However, this method relies on a known causal ordering of the true network which is

unavailable in most cases.

In 2010, Elidan [7] introduced an innovative copula Bayesian network (CBN), a marriage between copula

functions and graphical models, which extends conventional BN models to a more flexible framework. A

CBN model constructs multivariate distribution with univariate marginals and a copula function C that links

these marginals. In general, one can estimate marginals using parametric or non-parametric approach, and

then use a small number of parameters to capture the dependence structure. However, as we shall see in a

real data set (Section 4), the regular copula functions such as Gaussian copula may not be able to accurately

depict multimodal joint distributions. In addition, the CBN model is subject to the choice of copula function

for each local term. Motivated by Elidan’s work, we extend the regular copula Bayesian networks to a

mixture copula Bayesian network (MCBN) using finite mixture models, to better deal with non-normality,

multimodality and heavy tails that are commonly seen in current massive genomic data. The parameters

in a MCBN model can be efficiently estimated by a routine EM algorithm. As demonstrated by the real

data, the performance of a two-component Gaussian MCBN is generally promising, and our model achieves

reasonable accuracy in identifying the true edges in a sparse causal network.

The rest of this paper is organized as follows: In Section 2, we review Elidan’s CBN model, and in-

troduce the proposed MCBN model using a two-component Gaussian mixture for illustration. In Section

3, we present a heuristic local search approach combined with a routine EM algorithm for graph structure

estimation, as well as the best-scoring network out of multiple predictions with random initial values. The

comparison of three BN models is carried out over a cell signaling data set in Section 4. The new model is

applied to the Cancer Genome Atlas (TCGA) data for serous ovarian cancer in Section 5. We discuss and

conclude this paper in Sections 6 and 7.
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2 Method

2.1 Copula and Elidan’s Copula Bayesian network

Unless otherwise stated, we use f (xi) ≡ fXi(xi), F(xi) ≡ FXi(xi) ≡ P(Xi ≤ xi) as the marginals, and

similarly for multivariate density f (x)≡ fX(x). The formal definition of copula function is given below:

Definition 1. Let (X1,X2, ...,Xd) be a vector of continuous random variables and (F(x1),F(x2), ...,F(xd))

be the marginal distribution functions. The copula function of (X1,X2, ...,Xd), C : [0,1]d → [0,1], is defined

as the cumulative distribution function of (F(X1),F(X2), ...,F(Xd)):

C(u1,u2, ...,ud) = P(F(X1)≤ u1,F(X2)≤ u2, ...,F(Xd)≤ ud). (2)

By definition, a copula function is a multivariate distribution function where the marginals are uniform.

By choosing an appropriate copula, one can generate multivariate distribution of any complex form. In

practice, one can completely separate the choice of marginals and the choice of dependency patterns between

random variables. Sklar’s Theorem below guarantees that any multivariate distribution can be expressed with

univariate marginals and a copula function which links these variables:

Theorem 1. Let F(x1,x2, ...,xd) be a multivariate distribution over real-valued d-dimension random vectors,

then there exists a copula function that satisfies:

F(x1,x2, ...,xd) =C(F(x1),F(x2), ...,F(xd)). (3)

Furthermore, the copula function C is unique when the marginal distribution F(xi) is continuous for i ∈

{1,2, ...,d}.

By taking the first derivative for both sides of Equation (3), we can derive the copula density function

defined as c(F(x1),F(x2), ...,F(xd)) =
∂dC(F(x1),...,F(xd))

∂F(x1)...∂F(xd)
. The copula density is simply a ratio between the
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joint density and the product of all the marginals:

c(F(x1),F(x2), ...,F(xd)) =
f (x1, ...,xd)

∏
i

f (xi)
. (4)

An immediate consequence of Equation (4) is that c(F(x1),F(x2), ...,F(xd)) = 1 if and only if X1, ...,Xd

are independent. For a subset of variables (Y,X1, ...,Xp), as f (x1, ...,xp) =
∂pC(1,F(x1),...,F(xp))

∂x1...∂xp
, the conditional

density f (y|x1, ...,xp) can be expressed as follows:

f (y|x1, ...,xp) =

c(F(y),F(x1), ...,F(xp)) f (y)
p

∏
i=1

f (xi)

∂C(1,F(x1),...,F(xp))
∂F(x1)...∂F(xp)

p
∏
i=1

f (xi)
=

c(F(y),F(x1), ...,F(xp)) f (y)∫
c(F(y),F(x1), ...,F(xp)) f (y)dy

. (5)

Motivated by Equations (1) and (5), Elidan proposed a copula Bayesian network based on the following

local density:

f (y|x1, ...,xp) = f (y)Gc(y|x1, ...,xp), (6)

where Gc(y|x1, ...,xp) =
c(F(y),F(x1),...,F(xp))∫

c(F(y),F(x1),...,F(xp)) f (y)dy =
c(F(y),F(x1),...,F(xp))

EY (c(F(Y ),F(x1),...,F(xp)))
.

By Equation (6), we have the following decomposition for the joint density of variables in a Bayesian

network:

Theorem 2. Let (X1, ...,Xd) be d random variables (nodes) in a Bayesian network, and πi = {x j|X j ∈ Πi}.

The joint density can be represented as follows:

f (x1, ...,xd) =
d

∏
i=1

Gc(xi|πi)
d

∏
i=1

f (xi). (7)

Although the construction of local copulas can significantly reduce the complexity of the structure learn-

ing, choosing an appropriate copula for each local term Gc(xi|πi) is essential. Elidan suggested a small set

of pre-selected copula functions (or copula families) such as Gaussian copula, Frank’s copula, Ali-Mikhail-

Haq (AMH) copula and Gumbel-Barnett (GB) copula. However, as we will discuss in Section 4, these

regular copula functions might be inadequate to model the complex dependence structure. To this end, we
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extend the copula Bayesian network to a more flexible framework using finite mixture model.

2.2 A Mixture Copula Bayesian Network

For illustration purpose, we limit ourselves to Gaussian MCBN, but other mixture models such as

Gamma mixture and Beta mixture models can be adapted similarly. The K-component Gaussian mixture

copula for variables (Y,X1, ...,Xp) can be formulated as follows:

C(F(y),F(x1), ...,F(xp)) =
K

∑
k=1

α
(k)

Φ
(k)
Σk
(Φ−1(F(y)),Φ−1(F(x1)), ...,Φ

−1(F(xp))),

where α(k) and Φ
(k)
Σk

denote the weight and cumulative distribution function (CDF) of the kth Gaussian

component respectively, and Φ−1(·) represents the quantile function of N(0,1). The corresponding copula

density can be obtained immediately:

c(F(y),F(x1), ...,F(xp))=
∂C(F(y),F(x1), ...,F(xp))

∂F(y)∂F(x1)...∂F(xp)
=

K
∑

k=1
α(k)φ

(k)
Σk
(Φ−1(F(y)),Φ−1(F(x1)), ...,Φ

−1(F(xp)))

φ(Φ−1(F(y)))φ(Φ−1(F(x1)))...φ(Φ−1(F(xp)))
,

where φ(·) represents the standard normal density function.

The Gaussian MCBN model above takes advantage of finite mixture model to better fit the bimodal

and multimodal distributions. Similar as in the Elidan’s copula Bayesian network, the marginals should

be estimated prior to fitting the mixture copula, with either parametric or nonparametric method. We can,

for example, fit the marginals using parametric or nonparametric method, then transform (y,x1, ...,xp) to

(F(y),F(x1), ...,F(xp)) using the fitted CDF functions. The transformed values will be used for estimating

the copula function. Based on the estimated mixture copula for each local term in BN, we can calculate the

joint likelihood by Equation (7).
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3 Graph estimation using EM and local search algorithms

3.1 EM algorithm for finite Gaussian mixture

In this part, we introduce the EM algorithm to estimate the mixture copula for each local term Gc(xi|πi).

For a given variable Xi and its parent set Πi, the regular k-means algorithm can provide warm starts for the

mean vector µµµk (of dimension |Πi|+1) and the covariance matrix ΣΣΣk (of dimension (|Πi|+1)×(|Πi|+1)) for

each mixture component, as well as the mixing rate α(k). Let uh j = Φ−1(FXh(xh j)) and uuu j = {uh j}, where

xh j is the observed value for variable Xh and sample j, Xh ∈ {Xi,Πi}, j = 1,2, ...,N. Let zzz = (z1, ...,zN)

be the vector of indicators for the membership of each sample (mutually exclusive and exhaustive), i.e.,

α(k) = P(z j = k), j = 1, ...,N and
K
∑

k=1
α(k) = 1. Denote Θk = (µµµk,ΣΣΣk) and ΘΘΘ = {Θk}, the EM algorithm with

missing information zzz can be implemented as follows:

• E Step: Given current estimate of all the parameters (α(k), ΘΘΘ), we compute the weighted membership

as follows:

ω jk← P(z j = k|uuu j,ΘΘΘ) =
φk(uuu j|z j = k,Θk)α

(k)

K
∑

m=1
φm(uuu j|z j = m,Θm)α(m)

,1≤ j ≤ N,1≤ k ≤ K.

• M Step: Use data uuu j and membership weights to update all the parameters:

α
(k)←

N
∑
j=1

ω jk

N
,

µµµk←
1

N
∑
j=1

ω jk

N

∑
j=1

ω jkuuu j,

ΣΣΣk←
1

N
∑
j=1

ω jk

N

∑
j=1

ω jk(uuu j−µµµk)(uuu j−µµµk)
T .

Given an estimate of the graph structure G and the parameters Θ̂ΘΘ(Ĝ), the log-likelihood can be written as:
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`(Ĝ,Θ̂ΘΘ(Ĝ)) = log f (x1, ...,xd |Ĝ,Θ̂ΘΘ(Ĝ)) =
d

∑
i=1

Gc(xi|πi)+
d

∑
i=1

f (xi),

where the denominator of Gc(xi|πi), i.e., EXi(c(F(Xi),F(πi1), ...,F(πipi))) must be evaluated. Here we use

notation pi as the number of parents of Xi, i.e., pi = |Πi|. A simple idea for estimating Gc(xi|πi) is to generate

a list of Monte Carlo samples (x∗i1,x
∗
i2, ...,x

∗
iM) from f (xi), and by law of large numbers:

1
M

M

∑
j=1

c(F(x∗i j),F(πi1), ...,F(πipi))
a.s.−−→ EXi(c(F(Xi),F(πi1), ...,F(πipi))) as M→ ∞,

where x∗i j ∼ f (xi). However, it is noteworthy that drawing samples from f (xi) might be complicated

and time-consuming when marginals were estimated with nonparametric method. Further, the likelihood

`(Ĝ,Θ̂ΘΘ(Ĝ)) may fail to converge due to the randomness of Gc(xi|πi) estimation. Therefore for practical

consideration, one can directly use all the observations as samples so that the convergence is guaranteed.

3.2 Score-based local search for learning MCBN

In this part, we introduce an efficient heuristic search algorithm based on Bayesian information criterion

(BIC) to learn the structure of underlying network G. The BIC score can be evaluated by the following

formula:

BIC(Ĝ,Θ̂ΘΘ(Ĝ)) =−`(Ĝ,Θ̂ΘΘ(Ĝ))+
1
2

log(N)|Θ̂ΘΘ(Ĝ)|,

where `(Ĝ,Θ̂ΘΘ(Ĝ)) represents log-likelihood function, Θ̂ΘΘ(Ĝ) is the set of all the parameters including the

mixing rates, mean vectors and covariance matrices of Gaussian components, and |Θ̂ΘΘ(Ĝ)| denotes the total

number of free parameters in Ĝ. We start from a randomly generated network or empty network, and greedily

advances through basic edge operation including addition, deletion and reversal, until BIC score reaches the

minimum [7]. Unfortunately, this local search algorithm may easily get trapped in local maximum due

to the high dimensionality and non-convexity of the likelihood function, making it impractical to find the

global maximum. Enlightened by one of the reviewers, we conducted the heuristic search algorithm for
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multiple times, each with a random initial value, and the best-scoring network (with minimum BIC score)

was returned as the best predicted network.

4 Comparison with existing models

In this section, we compare the proposed MCBN model with two existing BN models, including the

GBN model and Elidan’s CBN model. We tested the three models using a flow cytometry dataset gener-

ated by Sachs et al. [8]. Sachs’ data contains simultaneous measurement on 11 protein and phospholipid

components, which was used for elucidating the signaling pathway structure in the cells of human immune

system. The known network shown in Figure 1a is a Bayesian Network containing 11 nodes and 20 causal

relations. Each causal edge in the network was well validated by experimental intervention, therefore this

network structure is often used as the benchmark to assess the accuracy of different directed or undirected

graphical models.

[Figure 1 about here]

Sachs’ data has both continuous and discrete versions. In our analysis, we used the continuous data

which was log-transformed and normalized by subtracting the mean and dividing by standard deviation.

Three BN models were then applied to the preprocessed data for network structure learning, with detailed

implementation as follows:

• GBN: We considered the linear regression setting, Xi = ∑
X j∈Πi

β jX j +εi,εi ∼N(0,σ2
i ), where the graph

structure and parameters were estimated by a Blockwise Coordinate Descent (BCD) algorithm pro-

posed by Fu and Zhou [1]. It has been shown that the BCD algorithm outperforms the popular

PC algorithm [9] under regular settings. The intervention information was also incorporated in the

modeling and a geometric sequence of 100 candidate tuning parameters (λ1, ...,λ50) were predefined

(λ1 = 0.001,λ100 = 1). All the calculations were done using the source code provided by the authors

(personal communication).
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• MCBN: For simplicity of calculation, we considered a two-component Gaussian MCBN. The two-

component Gaussian mixture model were also applied to the univariate marginals. Figure 2 shows

two examples of fitted marginals for proteins Art and Erk.

[Figure 2 about here]

We set the maximum number of parental nodes at 5, i.e., maxi |Πi| ≤ 5. The local search algorithm

with BIC criterion was applied to BN structure learning, starting from an empty network. In the

EM estimation of the copula function, we used k-means (K = 2) to obtain initial values for all the

parameters, and used threshold |α(1)
i+1−α

(1)
i | ≤ 10−4 for convergence, where α

(1)
i+1 and α

(1)
i represent

the resulting mixing rates in two consecutive EM runs.

• CBN: Elidan’s CBN model can be treated as a special case of MCBN model when the copula density

function has only one component (Gaussian copula). For the sake of comparison, all the marginals

were also fitted using two-component Gaussian mixture. Same threshold as in MCBN was used as

convergence criterion of the EM algorithm.

The estimated graphs by three different models are shown in Figure 1b-d. Table 1 summarizes true

positive rate (TPR), false discovery rate (FDR) as well as running times by the three models (all timing

were carried out on a Intel Xeon 3.2GH processor). In this comparison, a predicted edge is considered

correct if both connection and direction are correct. It can be seen that the proposed MCBN model achieves

significantly higher accuracy than the two existing models in terms of TPR and FDR, but it is more compu-

tationally expensive than the two simpler BNs. To further improve prediction, we conducted 100 predictions

using random initial networks and obtained the best-scoring network, which contained 25 predicted edges.

Out of 20 true edges, 13 were correctly identified in the best-scoring network. Furthermore, we compared

different models in capturing the dependency pattern between variables. Figure 3 shows the scatterplot of

Art and Erk, and the plots of simulated samples from three generative models. Compare to other models,

the two-component Gaussian MCBN better depicted the multimodal dependency between Akt and Erk.

[Table 1 about here]
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[Figure 3 about here]

To select the most confident edges, we calculated the log-likelihood decrease by removing one edge

from the network. We found that an edge giving more likelihood increase has higher probability to be a true

edge in the network. For instance, we selected the 10 most confident edges based on the likelihood change,

and seven of them turned out to be true edges including Akt→Erk, PKC→P38, PIP3→PIP2, PKA→Raf,

PKC→JNK, PKC→Raf and PLCg→PIP2. In addition, we evaluated the performance of our model in

predicting the network skeleton (undirected edges). The proposed MCBN was compared with two simple

alternatives including Pearson’s correlation and Spearman’s correlation. In this comparison, a predicted

edge is considered correct as long as the connection is correct. Figure 4 shows the undirected networks by

three approaches, and the TPR/FDR are summarized in Table 2.

[Figure 4 about here]

[Table 2 about here]

5 Application to TCGA ovarian cancer data

In this section, we applied the proposed MCBN to the Cancer Genome Atlas (TCGA) data [10], to study

the interactions between oncomarkers that are associated with serous ovarian cancer. The TCGA data is

one of the most comprehensive cancer genomic data sets, with more than 30 cancer types and subtypes

which include but not limited to ovarian cancer, breast cancer, lung cancer, brain cancer and liver cancer.

The sample sizes range from 50 to 1200 for different cancer types, and each sample is represented by both

the molecular profile and clinical information. The molecular profile contains measurements for various

types of (epi)genetic factors including gene expression quantification (both microarray and RNAseq), DNA

methylation, single nucleotide polymorphism (SNP), copy number variation (CNV), somatic mutation, and

microRNA etc. The clinical data provide information such as race, gender, tumor stage, outcome of surgery

and resistance to chemotherapy.
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The TCGA ovarian cancer data collected 567 tumor samples and 8 organ-specific normal controls. We

incorporated three data types into our model including gene expression level, DNA methylation level (on

gene promoter region) and CNV. The data were normalized using a quantile normalization method by Bal-

stad et al. [11, 12] to correct the bias due to non-biological causes. In addition, we applied an effective

method by Hsu et al. [13] to remove age and batch effects (three age groups are defined as < 40 y.o., [40,70]

y.o., and > 70 y.o.). Hsu’s method is essentially a median-matching and variance-matching strategy. For

example, the batch-effect-adjusted gene expression value can be obtained as follows:

g∗i jk = Mi +(gi jk−Mi j)
σ̂gi

σ̂gi j

,

where gi jk represents the expression level of gene i from batch j and sample k, Mi j denotes the median of

gi j = (gi j1, ...,gi jn), Mi denotes the median of gi = (gi1, ...,giJ), σ̂gi and σ̂gi j are the standard deviation of gi

and gi j, respectively.

The set of biomarkers was identified by a stepwise correlation-based feature selector (SCBS) by Zhang

et al. [4], which mimics the hierarchy of underlying causal network. The SCBS algorithm starts from

selecting the nodes that are strongly associated with the phenotype node and progressively select the nodes

that are associated with the selected nodes in previous step. This algorithm is more effective in identifying

phenotype-associated nodes, especially those nodes that are indirectly associated with the phenotype. By 3

runs of SCBS, we identified 73 oncomarkers including the expression level of 50 genes, CNV at 15 sites

and methylation level at 8 sites. Among the 73 oncomarkers, many were previously reported in the literature

including BRCA1 [10], BRCA2 [10], RB1 [14], PTEN [15], and OPCML [16].

We then fit a MCBN model to study the regulatory relationships between these oncomarkers. The

marginals were fitted by a two-component Gaussian mixture (other mixture models can also be used, e.g.,

Beta-mixture for DNA methylation). Figure 5 and 6 show several examples of the fitted marginals for TP53

(expression level), SPARC (expression level), BRCA1 (methylation level) and NOTCH3 (methylation level).

[Figure 5 about here]

[Figure 6 about here]

12

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2017. ; https://doi.org/10.1101/110288doi: bioRxiv preprint 

https://doi.org/10.1101/110288
http://creativecommons.org/licenses/by-nc/4.0/


In the biological network, we assumed that the genetic or epigenetic change (CNV and DNA methy-

lation) cannot be induced by gene expression, and imposed this constraint into our modeling (Note: this

assumption is completely from biological point of view and it can be dropped without affecting our mod-

eling and computing). The predicted graph (in Figure 7, the best-scoring network from 100 predictions)

contains 73 nodes connected by 124 directed edges. Many of the edges in the graph can be confirmed in

the literature. To name a few, the edge between AURKA and BRCA2 may be due to the fact that a negative

regulatory loop exists between AURKA and BRCA2 expression in the ovarian cancer[17]. The connection

between STAT3 and ETV6 was suggested previously that ETV6 is a negative regulator of STAT3 activity

[18]. The edges between RAB25 (methylation) and RAB25 (expression) and between CSNK2A1 (CNV) and

CSNK2A1 (expression) had been reported in several studies [10, 19, 20]. Other highly ranked edges (based

on likelihood increase) include but not limited to: STAT3→DLEC1, PTEN→EGFR, RIMBP2→BRCA2 and

ARID1A→ERD which can be confirmed in the literature of cancer biology [10, 21, 22, 23, 24, 25]. These

findings demonstrate the effectiveness of the MCBN model. In addition, as illustrated in Figure 8, the two-

component Gaussian MCBN is accurate in depicting the dependency between the gene expression level and

methylation level.

[Figure 7 about here]

[Figure 8 about here]

6 Discussion

In this paper, we proposed a novel Bayesian network model to analyze recent cancer genomic data at

the system level. The major innovation of our model is explicitly modeling the multimodal dependency

structure between variables through copula function and more accurately estimating the causal network

structure. The parameters in mixture copula were efficiently estimated by a routine EM algorithm, and the

directed network structure was estimated by minimizing the BIC score.

The proposed Bayesian network model allows strict probabilistic inference of biological pathways, how-

ever, it also has several limitations. First, it lacks flexibility to model the cyclic mechanism due to the
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acyclicity constraint, for instance, A→B→A, which though may exist in gene regulatory network. Second,

the parameter estimation assumes sparsity of network for computational feasibility. If the true network is

dense or locally dense, the weak causations may fail to be detected. Third, due to the model complexity,

the implementation of MCBN is more computationally expensive than simpler BN models such as Gaussian

BN model and regular copula BN model. For large data sets, one need reduce the number of variables by

filtering out irrelevant and redundant variables, and then feed the selected variables into network model for

causal inference.

It is noteworthy that the Gaussian MCBN used in the two illustrative examples can be generally adapted

to other mixture models such as Gamma mixture and Beta mixture. The number of mixture components

can be further increased depending on the complexity of the underlying dependency structure. For relatively

small data set, it is also possible to conduct statistical testing to select the best number of mixture components

for each local term, however, this will significantly increase the computational complexity.

7 Conclusions

Understanding the biological mechanism of cancers has significant practical importance for clinical di-

agnosis and treatment. In this paper, we developed a mixture copula Bayesian network model for causal

inference using complex cancer genomic data. The proposed model is based on finite mixture models and

copula functions, and it explicitly models multimodality in the data. The graph structure and model parame-

ters can be efficiently estimated by a routine EM approach, embedded in a heuristic search algorithm based

on Bayesian information criterion. The prediction could be further improved by selecting the best-scoring

model from multiple predictions with random initial values. In addition, we proposed a likelihood-based

approach to select the most confident edges. The proposed MCBN model was applied to a flow cytometry

data and the TCGA ovarian cancer data for inferring the causal relationships between different biological

features. Compare to existing Bayesian network models, MCBN better depicts the complex dependency

structure between variables, therefore may better predict the underlying causal network.
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Tables and Figures

Table 1: Comparison of three different BN models

Model P TPR FDR Time(seconds)
Gaussian BN 27 0.40 0.704 5.60
Copula BN 24 0.40 0.667 1.39

Mixture Copula BN 25 0.650 0.480 22.67

Presented in the table are number of predicted edges (P), true positive
rate (TPR), false discovery rate (FDR), as well as the CPU time (in
seconds) by three different BN models.

Table 2: Comparison with Pearson’s and Spearman’s methods

Model P TPR FDR
Pearson’s correlation 25 0.55 0.56

Spearman’s correlation 25 0.50 0.60
Mixture Copula BN 25 0.75 0.40

Presented in the table are number of undirected edges (P), true positive
rate (TPR), false discovery rate (FDR) by three different approaches.
For Pearson’s and Spearman’s methods, we selected top 25 edges with
strongest correlation coefficients.
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a b

c d

Figure 1: Comparison of three Bayesian network models on Sach’s data: (a) The benchmark network; (b)
Network predicted by GBN model; (c) Network predicted by Gaussian CBN model; (d) Network predicted
by two-component Gaussian MCBN model.

20

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2017. ; https://doi.org/10.1101/110288doi: bioRxiv preprint 

https://doi.org/10.1101/110288
http://creativecommons.org/licenses/by-nc/4.0/


Akt

Akt

D
en
si
ty

-2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Gaussian components
Fitted density

Erk

Erk

D
en
si
ty

-2 -1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Gaussian components
Fitted density

Figure 2: Fitted marginals by a two-component Gaussian mixture for the abundance of proteins Akt (left)
and Erk (right).
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Figure 3: Dependence between proteins Art and Erk: (a) Observations; (b) Simulated samples from GBN;
(c) Simulated samples from Gaussian CBN; (d) Simulated samples from two-component Gaussian MCBN.
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Figure 4: Comparison of three undirected networks: (a) Skeleton of the known network presented in Figure
1a; (b) Network consisted of top 25 edges based on Pearson’s correlation coefficient; (c) Network consisted
of top 25 edges based on Spearman’s correlation coefficient; (d) Skeleton of network predicted by MCBN
model presented in Figure 1d.
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Figure 5: Fitted marginals by a two-component Gaussian mixture for the expression level of gene TP53
(left) and SPARC (right).
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Figure 6: Fitted marginals by a two-component Gaussian mixture for the promoter methylation level of gene
BRCA1 (left) and NOTCH3 (right).
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Figure 7: Predicted network by a two-component Gaussian MCBN model, containing the expression level
of 50 genes (in light yellow), methylation level at 8 sites (in light green) and CNV at 15 sites (in light blue).
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Figure 8: Dependence between the methylation level and expression level of gene C19orf53: (a) Observa-
tions; (b) Simulated samples from the two-component Gaussian MCBN.
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