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ABSTRACT 

A main challenge in genome-wide association studies (GWAS) is to prioritize genetic variants and 1 

identify potential causal mechanisms of human diseases. Although multiple bioinformatics 2 

resources are available for functional annotation and prioritization, a standard, integrative approach 3 

is lacking. We developed FUMA: a web-based platform to facilitate functional annotation of 4 

GWAS results, prioritization of genes and interactive visualization of annotated results by 5 

incorporating information from multiple state-of-the-art biological databases. 6 

 7 

Subject terms: genome-wide association study (GWAS), prioritization, functional annotation, 8 

visualization, expression quantitative trait loci (eQTLs), gene mapping 9 

  10 
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MAIN TEXT 11 

In the past decade, more than 2,500 genome-wide association studies (GWAS) have identified 12 

thousands of genetic loci for hundreds of traits1. The past three years have seen an explosive 13 

increase in GWAS sample sizes2–4, and these are expected to increase even further to 0.5-1 million 14 

in the next year and beyond5. These well-powered GWAS will not only lead to more reliable results 15 

but also to an increase in the number of detected disease-associated genetic loci. To benefit from 16 

these results, it is crucial to translate genetic loci into actionable variants that can guide functional 17 

genomics experimentation and drug target testing6. However, since the majority of GWAS hits are 18 

located in non-coding or intergenic regions7, direct inference from significantly associated single 19 

nucleotide polymorphisms (SNPs) rarely yields functional variants. More commonly, GWAS hits 20 

span a genomic region (‘GWAS risk loci’) that is characterized by multiple correlated SNPs, and 21 

may cover multiple closely located genes. Some of these genes may be relevant to the disease, 22 

while others are not, yet due to the correlated nature of closely located genetic variants, 23 

distinguishing relevant from non-relevant genes is often not possible based on association P-values 24 

alone. Pinpointing the most likely relevant, causal genes and variants requires integrating available 25 

information about regional linkage disequilibrium (LD) patterns and functional consequences of 26 

correlated SNPs. Ideally, functional inferences obtained from different repositories are integrated, 27 

and annotated SNP effects are interpreted in the broader context of genes and molecular pathways. 28 

For example, consider a genomic risk locus with one lead SNP associated with an increased risk for 29 

a disease, and several dozen other SNPs in LD with the lead SNP that also show a low association P 30 

value, spanning multiple genes. If none of these tested SNPs and none of the other (not tested but 31 

known) SNPs in LD with the lead SNP are known to have a functional consequence (i.e. altering 32 

expression of a gene, affecting a binding site or violating the protein structure), no causal gene can 33 

be indicated. However, if one or several of the SNPs are known to affect the function of one of the 34 

genes in the area, but not the other genes, then that single gene has a higher probability of being 35 

functionally related to the disease.  36 
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In practice, the extraction and interpretation of the relevant biological information from available 37 

repositories is not always straightforward, and can be time-consuming as well as error-prone. We 38 

have, therefore, developed FUMA, which functionally annotates GWAS findings and prioritizes the 39 

most likely causal SNPs and genes using information from 14 biological data repositories and tools 40 

(Supplementary Table 1). Results are visualized to facilitate quick insight into the implicated 41 

molecular functions. FUMA is available as an online tool at http://fuma.ctglab.nl, where users can 42 

set several parameters to filter SNPs or specify specific tissues to be used for annotation based on 43 

expression data (Supplementary Table 2 and Supplementary Fig. 1).  As input, FUMA takes 44 

summary statistics from GWAS.  45 

The core function of FUMA is the SNP2GENE process (Fig.1; Online Methods), in which SNPs are 46 

annotated with their biological functionality and mapped to genes based on positional and 47 

functional information of SNPs. First, conditional on the provided summary statistics, independent 48 

lead SNPs and their surrounding genomic loci are identified depending on LD structure. Lead SNPs 49 

and SNPs which are in LD with the lead SNPs are then annotated for functional consequences on 50 

gene functions (based on Ensembl genes (build 85) using ANNOVAR8), deleteriousness score 51 

(CADD score9), potential regulatory functions (RegulomeDB score10 and 15-core chromatin state 52 

predicted by ChromHMM11 for 127 tissue/cell types12,13) and effects on gene expression using 53 

expression quantitative trait loci (eQTLs) of various tissue types (see Online Methods). At this stage, 54 

lead SNPs and correlated SNPs are also linked to the GWAS catalog1 to provide insight into 55 

previously reported associations with a variety of phenotypes. Functionally annotated SNPs are 56 

subsequently mapped to genes based on functional consequences on genes annotated by 57 

ANNOVAR (positional mapping) and/or eQTLs of user defined tissue types (eQTL mapping). 58 

Gene mapping can be controlled by setting several parameters (Supplementary Table 2) that allow 59 

to in- or exclude specific functional categories of SNPs. For example, positional mapping may 60 

optionally use only coding SNPs for gene mapping. For eQTL mapping, specific tissues can be 61 

selected to only include SNPs that influence the expression of genes in the selected tissue(s) (Online 62 
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Methods and Supplementary Table 2). By combining positional mapping of deleterious coding 63 

SNPs and eQTL mapping across (relevant) tissue types (i.e. functional mapping; Online Methods), 64 

FUMA enables to prioritize genes that are highly likely involved in the trait of interest. Due to the 65 

use of eQTL information, the prioritized genes – although influenced by SNPs within a disease-66 

associated locus - are not necessarily themselves located inside that locus.   67 

To obtain insight into putative causal mechanisms, the GENE2FUNC process annotates the 68 

prioritized genes in biological context (Fig. 1; Online Methods). Specifically, biological 69 

information of each input gene is provided to gain insight into previously associated diseases as 70 

well as drug targets by mapping OMIM14 ID and DrugBank15 ID. Tissue specific expression 71 

patterns for each gene are visualized as an interactive heatmap, and provide information on whether 72 

a gene is expressed in a certain tissue. Overrepresentation in sets of differentially expressed genes 73 

(DEG; sets of genes which are more (or less) expressed in a specific tissue compared to other tissue 74 

types) for each of 53 tissue types (Supplementary Table 3) based on GTEx v6 RNA-seq data16 is 75 

also provided to identify tissue specificity of prioritized genes (Online Methods; Supplementary 76 

Table 3). Enrichment in biological pathways and functional categories is tested using the 77 

hypergeometric test against gene sets obtained from MsigDB17 and WikiPathways18.  78 

To validate the utility of FUMA, we applied it to summary statistics of the most recent GWAS for 79 

Body Mass Index (BMI)19(see Online Methods). FUMA identified 95 lead SNPs (from 223 80 

independent significant SNPs) across 77 genomic risk loci (Fig. 2 and Supplementary Table 4-6), in 81 

accordance with the original study. Functional mapping prioritized 151 unique genes; 23 genes with 82 

deleterious coding SNPs (positional mapping), 128 genes with eQTLs that potentially alter 83 

expression of these genes (eQTL mapping), and 16 genes that had both deleterious coding SNPs 84 

and eQTLs (Supplementary Table 7). The 151 genes include 55 genes that were also reported in the 85 

original study19 and 96 novel genes implicated by FUMA (Fig. 2). These novel candidates have 86 

shared biological functions with the 55 previously known candidate genes such as ‘metabolism of 87 

carbohydrate’, ‘metabolism of lipid and lipoprotein’, ‘immune system’ and ‘calcium signalling’ 88 
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(Supplementary Table 8). In addition, the FUMA results showed that, although several genomic 89 

loci for BMI included multiple prioritized genes, a single gene was prioritized in 22 loci, suggesting 90 

that these 22 genes have a high probability of being the causal gene in that region. The 22 ‘highly 91 

likely causal genes’ include several well-known genes for BMI such as NEGR1, TOMM40 and 92 

TMEM18 (Supplementary Fig.2 and Supplementary Table 7). The strongest GWAS association 93 

signal for BMI was on 16q.12.2 where 3 genes were prioritized; FTO, RBL2 and IRX3 (Fig. 3). 94 

These three genes were only prioritized by eQTL mapping as the positional mapping showed no 95 

deleterious coding SNPs located in these genes. The original study19 only mentioned FTO, because 96 

the associated SNPs were located in this gene, however none of the associated SNPs have a 97 

potential direct affect such as coding SNPs on FTO. Two of the genes prioritized by FUMA (RBL2 98 

and IRX3) are physically located outside the genomic locus and are missed when using 99 

conventional approaches that prioritize genes located in the locus of interest based on LD around 100 

the top SNP. Although the IRX3 gene was not reported in the original study19, recent functional 101 

work has indeed validated this as the causal gene whose expression is affected by SNPs in the 102 

16q.12.2 locus20. To assess whether the prioritized genes converge on biological shared functions or 103 

pathways, FUMA tested for enrichment in GO terms, and canonical pathways.  15 significantly 104 

enriched GO terms were detected, including known and novel pathways, e.g. ‘Zinc ion homeostasis’ 105 

and ‘Glutathione related biological processes’ (Supplementary Table 10). Thus, using BMI 106 

summary statistics, FUMA confirmed known genes but also prioritized novel genes, including 107 

potential causal genes located outside the GWAS risk loci of BMI, which were missed in the 108 

original study.  109 

To further illustrate its utility, we applied FUMA to the summary statistics of two other traits: 110 

Crohn’s disease21 (CD) and Schizophrenia3 (SCZ) (see Online Methods), where we obtained similar 111 

results: FUMA confirmed several genes that were reported in the original study, yet also prioritized 112 

genes that had not previously been reported (see Supplementary Results for details). For every 113 

prioritized gene, FUMA provides the reason for pinpointing this gene, such as for example when 114 
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the expression of the prioritized gene is altered by a SNP that is in LD with or associated with the 115 

disease of interest. Interactive regional plots (Supplementary Fig. 5-7, 10-11) show which genes in 116 

a genomic risk locus are prioritized and which genes are not, and the annotated SNPs in the 117 

prioritized genes facilitate the generation of hypotheses for functional validation experiments. For 118 

example, if a gene is prioritized because of an associated loss-of-function SNP, follow-up validation 119 

experiments focusing on a knock-out of this gene may provide disease relevant functional 120 

information. On the other hand, if a gene is prioritized because a risk associated allele of a SNP 121 

increases expression of this gene in brain, then an overexpression experiment of this gene in 122 

neuronal cell cultures would be a more relevant experiment. 123 

In summary, FUMA provides an easy-to-use tool to functionally annotate, visualize, and interpret 124 

results from genetic association studies and to quickly gain insight into the directional biological 125 

implications of significant genetic associations. FUMA combines information of state-of-the-art 126 

biological data sources in a single platform to facilitate the generation of hypotheses for functional 127 

follow-up analysis aimed at proving causal relations between genetic variants and diseases.  128 

  129 
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Figure 1. Overview of FUMA 168 

FUMA includes two core processes, SNP2GENE and GENE2FUNC. The input is GWAS summary 169 

statistics. SNP2GENE prioritizes functional SNPs and genes, outputs tables (blue boxes), and 170 

creates manhattan, quantile-quantile (QQ) and interactive regional plots (box at right bottom). 171 

GENE2FUNC provides four outputs; a gene expression heatmap, enrichment of differentially 172 

expressed gene (DEG) sets in a certain tissue compared to all other tissue types, overrepresentation 173 

y 
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of gene sets, and links to external biological information of input genes. All results are 174 

downloadable as text files or high-resolution images. 175 

  176 
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 177 

Figure 2. Overview of prioritized genes from BMI GWAS by FUMA 178 

Starting from the BMI GWAS summary statistics, boxes represent results of the SNP2GENE 179 

process. The annotated SNPs include all independent lead SNPs and SNPs which are in LD with 180 

these lead SNPs. Prioritized genes are divided into three categories; genes that are implicated by 181 

deleterious coding SNPs (colored in pink), by eQTLs for these genes (colored in blue), or genes 182 

implicated by both strategies (colored in purple). The prioritized genes are further categorized into 183 

previously reported genes (blue circles) and novel genes (red circles) prioritized genes by FUMA. 184 

*50 of the 128 genes are located outside of GWAS risk loci. #These genes are located within the 185 

GWAS risk loci (since they have coding SNPs) but were not reported in the original study because 186 

of the following reasons: 1) FUMA considers all independent significant SNPs while only top SNPs 187 

were considered in the original study, or 2) FUMA incorporates non-GWAS tagged SNPs which are 188 

in LD of independent significant SNPs, or 3) reported genes do not necessary include all genes that 189 

are located within GWAS risk loci because the authors only choose to highlight a subset. $These 190 
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genes were not prioritized by functional mapping since they do not have either deleterious coding 191 

SNPs or eQTLs, although they are located within GWAS risk loci. 192 
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194 

Figure 3. Regional plot of the locus 16q.12.2 of BMI GWAS and prioritized genes. 195 

(a) Extended region of the FTO locus, which includes prioritized genes RBL2 and IRX3. Genes 196 
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prioritized by FUMA are highlighted in red. (b) Zoomed in regional plot of FTO locus with, from 197 

the top, GWAS P-value (SNPs are colored based on r2), CADD score, RequlomeDB score and 198 

eQTL P-value. Non-GWAS-tagged SNPs are shown in the top of the plot as rectangles since they 199 

do not have a P-value from the GWAS, but they are in LD with the lead SNP. eQTLs are plotted 200 

per gene and colored based on tissue types. From these results, it can be seen e.g. that SNPs that 201 

were not originally included in the GWAS, but are known to be in LD with the lead SNP using the 202 

1000 genomes reference panel, influence expression of RBL2 in several different tissues. In addition, 203 

GWAS SNPs with a significant BMI association P-value and which are located in the FTO gene act 204 

as eQTL for expression of IRX3 in the pancreas. The web-based version of this plot is interactive 205 

and allows zooming in or out as well as obtaining specific details about single SNPs. 206 

  207 
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ONLINE METHODS 208 

Data Sources and Pre-processes 209 

Data repositories and tools used in FUMA are available in Supplementary Table 1. All genetic data 210 

sets used in this study are based on the hg19 human assembly and rsIDs were mapped to dbSNP 211 

build 146 if necessary. To compute minor allele frequencies and LD structure, we used the data 212 

from the 1000 Genomes Project22 phase3. Minor allele frequency and r2 of pairwise SNPs (up to 213 

1Mb apart) were pre-computed using PLINK23 for each of available populations (AFR, AMR, EAS, 214 

EUR and SAS). Functional annotations of SNPs were obtained from the following three 215 

repositories; CADD9, RegulomeDB10 and core 15-state model of chromatin11–13. Cis-eQTL 216 

information was obtained from the following 4 different data repositories; GTEx portal v616, Blood 217 

eQTL browser24, BIOS QTL Browser25 and BRAINEAC26 and genes were mapped to ensemble 218 

gene ID if necessary. Genomic coordinate of GWAS catalog1 reported SNPs was lifted down using 219 

liftOver software from hg38 to hg19. Normalized gene expression data (RPKM, Read Per Kilo bae 220 

per Million) from GTEx portal v616 for 53 tissue types were processed for different purposes. The 221 

details are described in ‘GTEx Gene Expression Data Set’ section. Curated pathways and gene sets 222 

from MsigDB v5.217 and WikiPathways18 which are assigned entrez ID.  223 

 224 

Characterization of genomic risk loci based on association summary statistics (step 1 in 225 

SNP2GENE) 226 

To define genomic loci of interest to the trait based on provided GWAS summary statistics, pre-227 

calculated LD structure based on 1000G of the relevant reference population (EUR for BMI, CD 228 

and SCZ) is used. First of all, independent significant SNPs which have the genome-wide 229 

significant P-value (≤ 5e-8) and independent from each other at r2 0.6. For each independent 230 

significant SNP, all known (i.e. regardless of being available in the GWAS input) SNPs that have r2 231 

≥ 0.6 with one of the independent significant SNPs are included for further annotation (candidate 232 
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SNPs). These SNPs may thus include SNPs that were not available in the GWAS input, but are 233 

available in the 1000G reference panel and are in LD with an independent significant SNP. 234 

Candidate SNPs can be filtered based on a user defined minor allele frequency (MAF ≥ 0.01). 235 

Based on the identified independent significant SNPs, lead SNPs were defined if they are 236 

independent from each other at r2 0.1. Additionally, if LD blocks of independent significant SNPs 237 

are closely located to each other (less than 250kb, distance if based on the most right and left SNPs 238 

from each LD block), they are merged into one genomic locus. Each genomic locus can thus 239 

contain multiple independent significant SNPs and lead SNPs.  240 

Besides using FUMA to determine lead SNPs based on GWAS summary statistics, users can 241 

provide a list of pre-defined lead SNPs. In addition, users can provide a list of pre-defined genomic 242 

regions to limit all annotations carried out in FUMA to those regions.  243 

 244 

Annotation of candidate SNPs in genomic risk loci (step 2 in SNP2GENE) 245 

Functional consequences of SNPs on genes are obtained by performing ANNOVAR8 (“gene based 246 

annotation”) using Ensembl genes (build 85). Note that SNPs can be annotated to more than one 247 

gene in case of intergenic SNPs which are annotated to the two closest up- and down-stream genes. 248 

CADD, RegulomeDB score and 15-core chromatin state are annotated to all SNPs in 1000G phase 249 

3 by matching chromosome, position, reference and alternative alleles. eQTLs are also extracted by 250 

matching chromosome, position and alleles for each user selected tissue types, wherein SNPs can 251 

have multiple eQTLs for distinct genes and tissue types. Information on previously known SNP-252 

trait associations reported in the GWAS catalog is also retrieved for all SNPs of interest by 253 

matching chromosome and position.  254 

 255 

Gene Mapping (step 3 in SNP2GENE) 256 
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Gene annotation is based on Ensembl genes (build 85). To match external gene IDs, we mapped 257 

ENSG ID to entrez ID yielding 35,808 genes which consist of 19,436 protein-coding genes, 9,249 258 

non-coding RNA and other 7,123 genes (e.g. pseudogenes, processed transcripts, immunoglobulin 259 

genes and T cell receptor genes). 260 

Positional mapping is performed based on annotations obtained from ANNOVAR8 for which we 261 

provide two options; maximum distance from SNPs to genes and functional consequences of SNPs 262 

on gene. When the former option is defined, FUMA maps SNPs to genes based on ANNOVAR 263 

annotation and a user defined maximum distance is applied for intergenic SNPs. Note that 264 

ANNOVAR prioritize an annotation of SNPs which are located in a genomic region where multiple 265 

genes are overlapped. For these SNPs, they are mapped to the annotated gene by ANNOVAR.  266 

When the latter option is provided, FUMA maps only SNPs which have selected annotations 267 

annotated by ANNOVAR. 268 

For eQTL mapping, all independent significant SNPs and SNPs in LD of them are mapped to 269 

eQTLs in user defined tissue types. By default, only significant SNP-gene pairs (FDR ≤ 0.05) are 270 

used. Optionally, eQTLs can be filtered based on a user defined P-value. eQTL mapping maps 271 

SNPs to genes up to 1Mb apart (cis-eQTLs). 272 

Optional filtering of SNPs based on functional annotations obtained in step 2 of SNP2GENE (i.e. 273 

CADD score, RegulomeDB score, 15-core chromatin state) can be performed for positional and 274 

eQTL mappings separately.  275 

 276 

Functional Mapping: identification of potential causal genes from functional SNPs 277 

We refer to “functional mapping” as the combination of positional mapping of deleterious coding 278 

SNPs, and tissue specific eQTL mapping. With functional mapping, we aim to further identify 279 

candidate causal genes based on biological function of SNPs. We include deleterious coding SNPs, 280 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/110023doi: bioRxiv preprint 

https://doi.org/10.1101/110023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

either being exonic or splicing with CADD score ≥ 12.37 (defined by Kircher et al.9), and eQTLs of 281 

defined tissue types (FDR ≤ 0.05). 282 

 283 

MAGMA: Gene Analysis and Gene set Analysis 284 

In FUMA, input GWAS summary statistics is used to compute gene-based P-values (gene analysis) 285 

and gene set P-value (gene set analysis) by MAGMA27 to provide a genome-wide distribution of 286 

genetic associations. For gene analysis, the gene-based P-value was computed for protein-coding 287 

genes by mapping SNPs to genes if SNPs are located within the genes. For gene set analysis, the 288 

gene set P-value was computed using gene-based P-value for 4,728 curated gene sets (including 289 

canonical pathways) and 6,166 GO terms obtained from MsigDB v5.2. For both analyses, the 290 

default setting (SNP-wise model for gene analysis and competitive model for gene set analysis) 291 

were used, and the Bonferroni correction (gene) or False Discovery Rate (gene-set) was used to 292 

correct for multiple testing. 293 

 294 

GTEx Gene Expression Data Set 295 

Normalized gene expressions (Reads Per Kilo base per Million, RPKM) of 53 tissue types were 296 

obtained from GTEx (Supplementary Table 3). A total of 56,320 genes was available in GTEx, 297 

which we filtered on an average RPKM per tissue greater or equal to 1 in at least one tissue type. 298 

This resulted in transcripts of 28,520 genes, of which 22,146 were mapped to entrez ID (see ‘Gene 299 

Mapping’ section for details). In the GENE2FUNC, the heatmap of prioritized genes displays two 300 

optional expression values; i. the average log2(RPKM+1) per tissue per gene, wherein RPKM was 301 

winsorized at 50, which allows comparison of expression level across genes and tissue types and ii. 302 

the average of the normalized expression (zero mean of log2(RPKM+1)) per tissue per gene which 303 

allows comparison of expression level across tissue types within a gene. 304 
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To obtain differentially expressed gene (DEG; genes which are significantly more or less expressed 305 

in a given tissue compared to others) sets for each of 53 tissue type, the normalized expression (zero 306 

mean of log2(RPKM+1)) was used. Two-sided Student’s t-tests were performed per gene per tissue 307 

against all other tissues. After the Bonferroni correction, genes with corrected p-value ≤ 0.05 and 308 

absolute log fold change ≥ 0.58 were defined as a DEG set in a given tissue, i.e. for these gene 309 

expression in the given tissue had the largest discrepancy with expression in all other tissues. In 310 

addition, we distinguished between genes that were up- and down-regulated in a specific tissue 311 

compared to other tissues, by taking the sign of t-score into account. In GENE2FUNC, genes are 312 

tested against those DEG sets by hypergeometric tests to evaluate if the prioritized genes (or a list 313 

of genes of interest) are overrepresented in DEG sets in specific tissue types. 314 

 315 

Gene Set Enrichment Test 316 

To test for overrepresentation of biological functions of prioritized genes, the prioritized genes (or a 317 

list of genes of interest) are tested against gene sets obtained from MsigDB (i.e. hallmark gene sets, 318 

positional gene sets, curated gene sets, motif gene sets, computational gene sets, GO gene sets, 319 

oncogenic signatures and immunologic signatures) and WikiPathways, using hypergeometric tests. 320 

The set of background genes (i.e. the genes against which the set of prioritized genes are tested 321 

against) is 19,264 protein-coding genes. Background genes can also be selected from gene types as 322 

described in ‘Gene Mapping’ section. Custom sets of background genes can also be provided by the 323 

users. Multiple testing correction (i.e. Benjamini-Hochberg by default) is performed per data source 324 

of tested gene sets (e.g. canonical pathways, GO biological processes, hallmark genes). FUMA 325 

reports gene sets with adjusted P-value ≤ 0.05 and the number of genes that overlap with the gene 326 

set > 1 by default. 327 

 328 

Validation with BMI GWAS 329 
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GWAS summary statistics for the BMI GWAS were obtained from 330 

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files and 331 

were used as input for FUMA. Parameters were set as described in the ‘Functional mapping’ 332 

section and we used eQTLs in 44 tissue types from GTEx. Indels were excluded. rsID was mapped 333 

to dbSNP build 146 and chromosome and positions were extracted based on human genome hg19 334 

reference. Only protein-coding genes were used in gene mapping and enrichment of DEG in 53 335 

tissue types, Canonical Pathways and GO terms were tested.  336 

 337 

Application to CD GWAS 338 

GWAS summary statistics of CD was obtained from 339 

ftp://ftp.sanger.ac.uk/pub/consortia/ibdgenetics/. We set parameters as described in the ‘Functional 340 

Mapping’ section and we used eQTLs in 5 tissue types from GTEx which are relevant to CD, i.e. 341 

Small Intestine, Colon Sigmoid, Colon Transverse, Stomach and Whole Blood. The MHC region 342 

was excluded from the analysis. Since the input GWAS summary statistics only contained results 343 

from the discovery phase, we manually submitted the 71 reported lead SNPs to FUMA in addition 344 

to the independent lead SNPs that were identified as described above (Supplementary Table 11). 345 

Only protein-coding genes were used in mappings and enrichment of DEG in 53 tissue types, 346 

Canonical Pathways and GO terms were tested.  347 

 348 

Application to SCZ GWAS 349 

GWAS summary statistics were obtained from http://www.med.unc.edu/pgc/results-and-downloads. 350 

Parameters were set as described in the ‘Functional mapping’ section, and eQTLs in 10 brain 351 

tissues from GTEx. The extended MHC region (25Mb – 34Mb), Chromosome X and indels were 352 

excluded from this analysis. The input GWAS summary statistics are based on the discovery phase 353 

and not all reported lead SNPs from the combined results of discovery and replication phases 354 
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reached genome-wide significance. To include all reported lead SNPs, 111 non-indel lead SNPs 355 

were provided to FUMA and additional independent lead SNPs were identified at P≤5e-8 356 

(Supplementary Table 19). Only protein-coding genes were used in mappings and enrichment of 357 

DEG in 53 tissue types, Canonical Pathways and GO terms were tested.  358 

  359 
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