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Abstract

Our behavior entails a flexible and context-sensitive interplay between brain

areas to integrate information according to goal-directed requirements. How-

ever, the neural mechanisms governing the entrainment of functionally special-

ized brain areas remain poorly understood. In particular, the question arises

whether observed changes in the regional activity for different cognitive con-

ditions are explained by modifications of the inputs to the brain or its con-

nectivity? We observe that transitions of fMRI activity between areas convey
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information about the tasks performed by 19 subjects, watching a movie ver-

sus a black screen (rest). We use a model-based framework that explains this

spatiotemporal functional connectivity pattern by the local variability for 66

cortical regions and the network effective connectivity between them. We find

that, among the estimated model parameters, movie viewing affects to a larger

extent the local activity, which we interpret as extrinsic changes related to the

increased stimulus load. However, detailed changes in the effective connectivity

preserve a balance in the propagating activity and select specific pathways such

that high-level brain regions integrate visual and auditory information, in par-

ticular boosting the communication between the two brain hemispheres. These

findings speak to a dynamic coordination underlying the functional integration

in the brain.

1. Introduction

The brain comprises a large number of functionally distinct areas in which

information and computational processes are both segregated and integrated

[1, 2]. A fundamental question in system neuroscience is how information can be

processed in a distributed fashion by the neuronal architecture. Brain regions ex-5

hibit a high degree of functional diversity, with a massive number of connections

that coordinate their activity. Accordingly, empirical evidence from functional

magnetic resonance imaging (fMRI), electro-encephalography (EEG), magneto-

encephalography (MEG) in humans supports the notion that brain functions

involve multiple brain areas [3]. Compared to earlier neuroimaging studies that10

mapped areas to function [4], the field has switched from a structure-centric

viewpoint to a network-oriented one. Long-range synchronization of brain ac-

tivity has been proposed as a dynamical mechanism for mediating the interac-

tions between distant neuronal populations at the cellular level [5, 6], as well

as within large-scale cortical subnetworks both at rest [7, 8, 9, 10] and when15

performing a task [11, 12].

Depending on the task, cortical dynamics reshape the global pattern of corre-
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lated activity observed using neuroimaging - denoted by functional connectivity

(FC) [10, 13]. Presumably, both sensory-driven and cognitive-driven processes

are involved in shaping FC from its resting state [14, 15]. Recently, the temporal20

aspect of fMRI signals has been much studied - in relation to tasks performed

by subjects or their behavioral conditions - via the concept of ‘dynamic FC’ that

evaluates the fluctuations of fMRI correlation patterns over time [16], the fractal

aspect of fMRI time series [17, 18] or transitions of fMRI activity between areas

[19]. The present study builds upon a recently developed whole-cortex dynamic25

model [20], which extract this functionally relevant information via the BOLD

covariances evaluated with and without time shifts that describe the BOLD

transition statistics.

The proposed modeling allows us to examine the respective roles played by

the local variability of each brain area and long-range neuro-anatomical projec-30

tions between them in shaping the cortical communication, which results in the

measured FC. We rely on the well-established hypothesis that both the activity

and coordination of different regions depend on both the local activity and in-

tracortical connectivity [21]. Based on dynamic models for blood oxygen level

dependent (BOLD) activity at the level of a cortical region, techniques have35

been developed to estimate the connectivity strengths: the notion of ‘effective

connectivity’ (EC) describes causal pairwise interactions at the network level

[22, 23, 24, 25]. The distinction between functional and effective connectivi-

ties is crucial here: FC is defined as the statistical dependence between distant

neurophysiological activities, whereas EC is defined as the influence one neu-40

ral system exerts over another [26]. In the present study, the definition of EC

is actually close to its original formulation in neurophysiology [27]: estimated

weights in a circuit diagram that replicate observed patterns of functional con-

nectivity. Our model does not involve a hemodynamic response function (HRF)

that maps neuronal activity to BOLD signals [28], as done with dynamic causal45

model (DCM) for instance [21, 29]. Nonetheless, the network EC is inferred in-

dividually for all links here (1180 connections between 66 cortical regions) and

thus form a directed graph, contrasting with previous studies that directly use
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structural connectomes as “equivalent EC” [30, 31, 32]. For two behavioral con-

ditions, a maximum-likelihood estimate is computed for each subject, allowing50

for the statistical testing of between-condition differences.

After presenting the experimental data and the whole-brain dynamic model,

we reanalyze the changes observed in empirical FC between subjects at rest

and watching a movie, to assess whether the proposed model is suited to cap-

ture them. Considering the estimated parameters as a signature or biomarker55

for the brain dynamics, we seek a mechanistic explanation for the observed

FC modifications by disentangling contributions from the local variability and

cortico-cortical connectivity.

2. Material and Methods

2.1. Study design for fMRI during rest and passive movie viewing60

As detailed in our previous papers [33, 34], 24 right-handed young, healthy

volunteers (15 females, 20-31 years old) participated in the study. They were

informed about the experimental procedures, which were approved by the Ethics

Committee of the Chieti University, and signed a written informed consent.

Only 22 participants had recordings for both a resting state with eyes opened65

and a natural viewing condition; 2 subjects with only recording at rest were

discarded. In the resting state, participants fixated a red target with a diameter

of 0.3 visual degrees on a black screen. In the natural viewing condition, subjects

watched and listened to 30 minutes of the movie ‘The Good, the Bad and the

Ugly’ in a window of 24× 10.2 visual degrees. Visual stimuli were projected on70

a translucent screen using an LCD projector, and viewed by the participants

through a mirror tilted by 45 degrees. Auditory stimuli were delivered using

MR-compatible headphones.

2.2. Data acquisition

Functional imaging was performed with a 3T MR scanner (Achieva; Philips75

Medical Systems, Best, The Netherlands) at the Institute for Advanced Biomed-
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ical Technologies in Chieti, Italy. The functional images were obtained us-

ing T2*-weighted echo-planar images (EPI) with BOLD contrast using SENSE

imaging. EPIs comprised of 32 axial slices acquired in ascending order and cover-

ing the entire brain (230 x 230 in-plane matrix, IPAT = 2, TR/TE = 2 s/35 ms,80

flip angle = 90◦, voxel size = 2.875 × 2.875 × 3.5 mm3). For each subject, 2

and 3 scanning runs of 10 minutes duration were acquired for resting state and

natural viewing, respectively. Only the first 2 movie scans are used here, to have

the same number of time points for the two conditions (i.e., 20 minutes each).

Each run included 5 dummy volumes - allowing the MRI signal to reach steady85

state and an additional 300 functional volumes that were used for analysis. Eye

position was monitored during scanning using a pupil-corneal reection system

at 120 Hz (Iscan, Burlington, MA, USA). A three-dimensional high-resolution

T1-weighted image, for anatomical reference, was acquired using an MP-RAGE

sequence (TR/TE = 8.1 ms/3.7 ms, voxel size = 0.938× 0.938× 1 mm3) at the90

end of the scanning session.

2.3. Data processing

Data were preprocessed using SPM8 (Wellcome Department of Cognitive

Neurology, London, UK) running under MATLAB (The Mathworks, Natick,

MA). The preprocessing steps involved: (1) correction for slice-timing differences95

(2) correction of head-motion across functional images, (3) coregistration of the

anatomical image and the mean functional image, and (4) spatial normalization

of all images to a standard stereotaxic space (Montreal Neurological Institute,

MNI) with a voxel size of 3×3×3 mm3. The mean frame wise displacement [35]

was measured from the fMRI data to estimate head movements. They do not100

show any significant difference across the rest and movie recordings (p > 0.4):

for each of the two sessions of rest, the corresponding means (std) in mm over

the 22 subjects are 0.31 (0.19) and 0.31 (0.21); for movie, 0.34 (0.20) and 0.34

(0.24). Furthermore, the BOLD time series in MNI space were subjected to

spatial independent component analysis (ICA) for the identification and removal105

of artifacts related to blood pulsation, head movement and instrumental spikes
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[36]. This BOLD artifact removal procedure was performed by means of the

GIFT toolbox (Medical Image Analysis Lab, University of New Mexico). No

global signal regression or spatial smoothing was applied. For each recording

session (subject and run), we extracted the mean BOLD time series from the110

N = 66 regions of interest (ROIs) of the brain atlas used in [37]; see Table 1 for

the complete list.

2.4. Structural connectivity

Anatomical connectivity was estimated from Diffusion Spectrum Imaging

(DSI) data collected in five healthy right-handed male participants [37, 24]. The115

gray matter was first parcellated into the N = 66 ROIs, using the same low-

resolution atlas as with the FC analysis. For each subject, we performed white-

matter tractography between pairs of ROIs to estimate a neuro-anatomical con-

nectivity matrix. In our method, the DSI values are only used to determine

the cortico-cortical skeleton: a binary matrix of structural connectivity (SC)120

obtained by averaging the matrices over subjects and applying a threshold for

the existence of connections; see below for the optimization of the connection

weights in the dynamic model. It is known that DSI underestimates inter-

hemispheric connections [37]. Homotopic connections between mirrored left

and right ROIs are important in order to model whole-cortex BOLD activity125

[32]. Here we add all such possible homotopic connections, which are tuned

during the optimization as other existing connections. This slightly increases

the density of structural connectivity (SC) from 27% to 28%.

2.5. Spatiotemporal functional connectivity from empirical fMRI data

For each session of 10 minutes (two for rest and two for movie), the BOLD130

time series is denoted by sti for each region 1 ≤ i ≤ N with time indexed by

1 ≤ t ≤ T (T = 300 time points at a resolution of TR = 2 seconds). We denote

by s̄i the mean signal: s̄i = 1
T

∑
t s
t
i for all i. Following [20], the empirical FC
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Group ROI abbreviation Brain region ROI index

VIS CUN Cuneus 29, 38

PCAL Pericalcarine cortex 28, 39

LING Lingual gyrus 27, 40

LOCC Lateral occipital cortex 7, 60

AUD ST Superior temporal cortex 14, 53

TT Transverse temporal cortex 6, 61

IT Inferior temporal cortex 9, 58

MT Middle temporal cortex 13, 54

INT FUS Fusiform gyrus 5, 62

SP Superior parietal cortex 8, 59

IP Inferior parietal cortex 10, 57

TP Temporal pole 3, 64

SMAR Supramarginal gyrus 11, 56

BSTS Bank of the superior temporal sulcus 12, 55

SMT PREC Precentral gyrus 16, 51

PSTC Postcentral gyrus 15, 52

PARC Paracentral lobule 30, 37

FRNT FP Frontal pole 4, 63

CMF Caudal middle frontal cortex 17, 50

RMF Rostral middle frontal cortex 20, 47

PTRI Pars triangularis 19, 48

PORB Pars orbitalis 21, 46

POPE Pars opercularis 18, 49

SF Superior frontal cortex 25, 42

LOF Lateral orbitofrontal cortex 22, 45

MOF Medial orbitofrontal cortex 26, 41

CTRL ENT Entorhinal cortex 1, 66

PARH Parahippocampal cortex 2, 65

CAC Caudal anterior cingulate cortex 23, 44

RAC Rostral anterior cingulate cortex 24, 43

PC Posterior cingulate cortex 33, 34

ISTC Isthmus of the cingulate cortex 31, 36

PCUN Precuneus 32, 35

Table 1: Table of ROIs with abbreviations, names and indices. The left column indicates

ensembles used later for illustration purpose, grouping ROIs into visual, auditory, so-called

‘integration’, sensory-motor, frontal and ‘central’ areas.
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consists of BOLD covariances without and with time shift:

Q̂0
ij =

1

T − 2

∑
1≤t≤T−1

(sti − s̄i)(stj − s̄j) , (1)

Q̂1
ij =

1

T − 2

∑
1≤t≤T−1

(sti − s̄i)(st+1
j − s̄j) ;

For each condition, the retained empirical FC is the mean of the two ses-

sions. Similar calculations are done for 2 TR. BOLD correlations correspond to

Q̂0
ij/
√
Q̂0
iiQ̂

0
jj . For each subject and condition, we calculate the time constant

τac associated with the exponential decay of the autocovariance averaged over

all ROIs using time shifts from 0 to 2 TRs:

τac = − N∑
1≤i≤N a(vi|u)

, (2)

where a(vi|u) is the slope of the linear regression of vi = [log(Q̂0
ii), log(Q̂1

ii), log(Q̂2
ii)]135

by u = [0, 1, 2].

2.6. Model of cortical dynamics

The model uses two sets of parameters to generate the spatiotemporal FC:

• the local variability embodied in the matrix Σ inputed individually to each

of the N = 66 ROIs (see Table 1 for the complete list) or jointly to ROI140

pairs (only for bilateral CUN, PCAL, ST and TT);

• the network effective connectivity (EC) between these ROIs embodied

by the matrix C, whose skeleton is determined by DSI (see details for

structural connectivity above).

The rationale behind the use of spatially cross-correlated inputs (off-diagonal145

elements of Σ) in the model is to take into account for common sensory inputs to

homotopic visual and auditory ROIs. Ideally, the model should be extended to

incorporate subcortical areas and the existence of input cross-correlations inputs

should be evaluated for all ROI pairs. However, this level of details is out of

the scope of the present work and we constrain such input cross-correlations to150
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4 pairs of ROIs. Another improvement concerns the use of individualized EC

skeletons for each subject or refinements of SC using graph theory for subject

groups [38], but we leave this for later work.

Formally, the network model is a multivariate Ornstein-Uhlenbeck process,

where the activity variable xi of node i decays exponentially with time constant155

τx - estimated using Eq. (2) - and evolves depending on the activity of other

populations: dxi =
(−xi

τx
+
∑
j 6=i Cijxj

)
dt+ dBi. Here, dBi is spatially colored

noise with covariance matrix Σ, with the variances of the random fluctuations on

the diagonal and cross-correlated inputs corresponding to anti-diagonal elements

for CUN, PCAL, ST and TT (see Table 1). In the model, all variables xi have160

zero mean and their spatiotemporal covariances Qτij , where τ is the time shift,

can be calculated by solving the Lyapunov equation: JQ0 + Q0J† + Σ = 0

for τ = 0; and Qτ = Q0expm(J†τ) for τ > 0. Here J is the Jacobian of the

dynamical system and depends on the time constant τx and the network EC:

Jij =
−δij
τx

+Cij , where δij is the Kronecker delta and the superscript † denotes165

the matrix transpose; expm denotes the matrix exponential. In practice, we use

two time shifts: τ = 0 on the one hand and either τ = 1 or 2 TR on the other

hand, as this is sufficient to characterize the network parameters.

2.7. Parameter estimation procedure

We tune the model such that its covariance matrices Q0 and Qτ reproduce

the empirical FC, namely Q̂0 and Q̂τ , with τ being either 1 or 2 TR. The unique-

ness of this maximum-likelihood estimation follows from the bijective mapping

from the model parameters C and Σ to the FC pair (Q0, Qτ ). Apart from a

refinement for the estimation of the input cross-correlation in Σ, the essential

steps are similar to the iterative optimization procedure described previously

[20] to tune the network parameters C and Σ. The model is initialized with

τx = τac and no connectivity C = 0, as well as unit variances without covari-

ances (Σij = δij). At each step, the Jacobian J is straightforwardly calculated

from the current values of τx and C. Using the current Σ, the model FC ma-

trices Q0 and Qτ are then computed from the consistency equations, using the

9
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Bartels-Stewart algorithm to solve the Lyapunov equation. The difference ma-

trices ∆Q0 = Q̂0 −Q0 and ∆Qτ = Q̂τ −Qτ determine the model error

E =
1

2

∑
i,j(∆Q

0
ij)

2∑
i,j(Q̂

0
ij)

2
+

1

2

∑
i,j(∆Q

τ
ij)

2∑
i,j(Q̂

τ
ij)

2
, (3)

where each term - for FC0 and FC1 - is the matrix distance between the model

and the data observables, normalized by the latter. The desired Jacobian update

is the matrix

∆J† = (Q0)−1[∆Q0 + ∆Q1expm(J†τ)] , (4)

which decreases the model error E at each optimization step, similar to a gra-

dient descent. The best fit corresponds to the minimum of E. Finally, the

connectivity update is

∆Cij = ηC∆Jij (5)

for existing connections only; other weights are forced at 0. We also impose

non-negativity for the EC values during the optimization. To take properly the

effect of cross-correlated inputs into account, we adjust the Σ update from the

heuristic update in [20]:

∆Σ = −ηΣ(J∆Q0 + ∆Q0J†) . (6)

As with weights for non-existing connections, Σ elements distinct from the di-

agonal and cross-correlated inputs are kept equal to 0 at all times. Last, to

compensate for the increase of recurrent feedback due to the updated C, we

also tune the model time constant τx as

∆τx = ητ

(
τac +

1

λmax

)
, (7)

where λmax is the maximum negative real part of the eigenvalues of the Jacobian170

J . The rationale is to avoid an explosion of the network dynamics (when λmax →

0) while letting the model connectivity C develop a non-trivial structure to

reproduce FC. In numerical simulations, we use ηC = 0.0005, ηΣ = 0.05 and

ητ = 0.0001.

10
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To verify the robustness of the optimization with respect to the choice for175

ROIs with (spatially) cross-correlated inputs, we compare the tuned models with

input cross-correlation for 1) CUN, PCAL, ST and TT; 2) CUN, PCAL, LING,

LOCC, ST, TT and MT; 3) none. Although estimates differ in their detail, the

results presented in this paper are qualitatively observed for all three models.

In practice, the model compensates the absence of input cross-correlations by180

overestimating the connections between the corresponding ROIs. For simplicity,

we only consider cross-hemispheric inputs for putative primary sensory ROIs

involved in the task here.

A version of optimization code without cross-correlated inputs is available

with the empirical data on github.com/MatthieuGilson/EC_estimation. The185

discarded subjects in the present study are 1, 11 and 19, among the 22 subjects

available (numbered from 0 to 21).

2.8. Contributions of EC and input covariances in shaping spatiotemporal FC

To evaluate how the connectivity C and input covariances Σ contribute in

shaping Q0 and Q1, we consider the models by mixing the estimates for the rest

and movie conditions (with labels R and M, respectively):

JX ⊗ ΣY → (Q0, Q1)X/Y . (8)

We compare them in terms of the model error defined in Eq. (3) with respect

to the movie empirical FC, for which M/M is expected to give the best fit.190

In practice, we calculate the distance between model and empirical matrices,

but considering the variances Q0
ii and the covariances Q0

ij for i 6= j separately

within FC0; for instance, we use for variances
∑

i(Q
0
ii−Q̂

0
ii)

2∑
i(Q̂

0
ii)

2
, where the empirical

Q̂0 corresponds to M/M and Q0 to the evaluated model X/Y. For FC1, the

matrix is taken as a whole to compute the corresponding distance.195
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2.9. Normalized statistical scores and effective drive (ED)

We define the following statistical scores for C or Σ to evaluate - for a given

matrix element - whether the values over all subjects are consistently strong:

score(Vij) =
mean(Vij)− lV

std(Vij)
, (9)

where the variable V is either C or Σ; the ‘mean’ and ‘std’ correspond to the

mean and standard deviation over subjects for the considered matrix element;

lV is the median of all relevant non-zero matrix elements for C or Σ at rest,

grouping the parameters over all subjects. We also define the effective drive to

measure how the fluctuating activity at region j with amplitude corresponding

to the standard deviation
√
Q0
jj propagates to region i:

EDij = Cij

√
Q0
jj , (10)

and the score(EDij) with the corresponding median lED for rest.

2.10. Louvain community detection method

We identify communities in networks based on the modularity of a partition

of the network [39]. The modularity measures the excess of connections between200

ROIs compared to the expected values estimated from the sum of incoming

and outgoing weights for the nodes (targets and sources, respectively). The

Louvain method [40] iteratively aggregates ROIs to maximize the modularity of

a partition of the ROIs in community. Designed for large networks, it performs

a stochastic optimization, so we repeat the detection 10 times for each subject in205

practice and calculate the average participation index - in the same community

- for each pair of ROIs over the subjects and 10 trials for each of the two

conditions (rest and movie).

To test the significance of the differences between the estimated communities

of each condition, we generate 1000 surrogate communities where the conditions210

are chosen randomly with equal chance for each subject. This gives a null

distribution of 1000 participation indices for each pair of ROIs, whose upper 5%

tail is used to determine significant difference across the two conditions.
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3. Results

We start with the description of changes in the spatiotemporal FC between215

rest and movie, to verify if it conveys information about the behavioral con-

dition. After ensuring that those changes are satisfactorily captured by our

proposed modeling, we will examine the strongest changes in both local and

network parameters (Σ and C, respectively) estimated across the two condi-

tions. Compared to earlier studies with DCM that focused on changes within220

a specific subnetwork relying on complete Bayesian machinery [41], we infer

the maximum-likelihood model parameters for each subject and seek differences

from the corresponding multivariate distributions across the two conditions, as

usually done with FC. Beyond individual changes for each ROI or connection,

we provide an interpretation of the parameter changes in terms of activity prop-225

agation within the cortical network. Last, we will use a community analysis to

detect areas with strong reciprocal activity propagation at the whole-cortex level

to reach a more global viewpoint. The motivation is that - as a first guess - vi-

sual and auditory ROIs should be mainly impacted by the passive viewing task

considered here [42, 43]; nonetheless, we aim to clarify whether the parameter230

changes imply localized or distributed effects in the cortical network [44, 12].

3.1. Changes in spatiotemporal FC between rest and movie viewing

We re-analyzed BOLD imaging data already reported recorded in 22 healthy

volunteers when watching either a black screen - referred to as rest - or a movie

(2 sessions of 10 minutes for each condition). Here these signals are aggregated235

according to a parcellation of N = 66 cortical regions or ROIs; see the list in

Table 1. Firstly, we examine the changes between the two conditions in BOLD

second-order statistics, which are typically used to tune whole-brain dynamic

models: BOLD correlations [31, 32] and time-shifted covariances [20]. The goal

is to evaluate how these observables discriminate between the two behavioral240

conditions. As shown in Fig. 1A, the BOLD variances (squares in the middle

panel) increase by about 50% on average when watching the movie; each symbol
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represents a subject and the black line indicates a perfect match. In contrast,

the BOLD signals do not exhibit consistent changes in their means (circles,

left panel) between rest and movie. The right panel of Fig. 1A displays time245

constants τac (triangles) estimated from BOLD autocovariance functions. They

indicate the “memory depth” of the corresponding time series, quantifying how

much the BOLD activity at a given time is influences by its past; see Eq. (2) in

Methods. Here no significant change of temporal statistics, unlike reduction of

long-range temporal correlations measured by the Hurst exponent [17]. From250

the plots in Fig. 1A, we discard three subjects (in red) with extreme values: two

for the variances (excessive variance for movie) and one for τac (small values for

both conditions). From the original 22 subjects, this leaves 19 for the following

analysis.

Now considering ROIs individually and the variability of the BOLD means255

and variances over the subjects in Fig. 1B, we observe significant changes only

for the variances in some ROIs (blue crosses). From the BOLD covariances for

pairs of ROIs - both FC0 with zero time shift and FC1 with a shift of 1 TR, see

Eq. (1) in Methods - we calculate the corresponding significance using Welch’s

t-test (for unequal variances), which are displayed in matrix form in Fig. 1C.260

As a comparison, we also show the BOLD correlations in Fig. 1D: correlations

seem to have overall larger values (some overlapping with FC0). The distri-

butions of p-values for each matrix is shown in Fig. 1E, where diagonal and

off-diagonal matrix elements are considered separately: all distributions exceed

the null distribution (dotted dark curve) in significance. In percentage, we find265

more discriminative elements - with respect to the two conditions - for diagonal

elements of FC1 (bright green) and variances (in cyan), followed by correla-

tions (black), FC0 covariances (blue) and finally off-diagonal elements of FC1

(dark green). The variance-like diagonal elements of FC0 and FC1 that pass

the corresponding Bonferroni threshold (dashed) correspond to 8% and 12% of270

all N = 66 elements. In comparison, less than 1% passes the corresponding

threshold (dashed-dotted line for FC0 covariances and correlations), because of

the large number of matrix elements; further considerations about this potential
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caveat are discussed later. We conclude from these results that the spatiotem-

poral FC defined as the BOLD covariances is informative about the behavioral275

condition, in line with previous studies [17, 18, 19].

3.2. The noise-diffusion network model captures the changes in spatiotemporal

FC across conditions

In order to interpret the (significant) changes observed in the spatiotemporal

FC and move beyond a phenomenological description, the present studies draws280

upon our recent model [20], in which the network dynamics aims to reproduce

the empirical BOLD covariances, both with and without time shift. This gen-

erative model is schematically represented in Fig. 2 with only a few cortical

regions in the diagrams, while the matrices involve all N = 66 ROIs that cover

the whole cortex. Fig. 2A shows the structural connectivity (SC), which is de-285

termined by DSI data, measuring the density of white-matter fibers between

the ROIs; gray pixels indicate homotopic connections that are added post-hoc,

as explained in Methods. The model comprises two sets of parameters: local

variability corresponding to the input covariance matrix Σ (purple fluctuating

inputs in Fig. 2B) and recurrent effective connectivity (EC) between ROIs (ma-290

trix C with directional connections represented by the uneven red arrows). The

skeleton of EC is determined by SC, assuming the existence of connections in

both directions; the weights for absent connections are always zero. Here we

include input cross-correlations for homotopic regions (anti-diagonal of Σ) in

the visual and auditory ROIs: CUN, PCAL, ST and TT (see Table 1). The295

rationale is to account for binocular and binaural stimuli related to the movie

stimulus; note that the corresponding parameters are estimated as others. The

input structure characterized by Σ is shaped by C to generate the network pat-

tern of correlated activity, which is quantified via the pair of covariance matrices,

FC0 and FC1 (see Fig. 2C).300

We perform the model optimization for each subject and condition. The

parameters for existing connections in C and input (co)variances in Σ, as well

as τx, are iteratively tuned such that the model FC0 and FC1 best fit their
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Figure 1: Comparison of fMRI data recorded with subjects watching a black

screen (rest) or a movie. A: Comparison of BOLD means, variances and time constants

τac between the two conditions. Each symbol represents a subject and red symbols indicate

the three discarded subjects, leaving 19 valid subjects for the following analysis. The black

lines indicate identical values for rest and movie. B: Changes in BOLD means and variances

between rest and movie for all ROIs. Each cross represents one of the N = 66 cortical ROIs

and the variability corresponds to the distribution over all 19 subjects. For the variances, blue

crosses indicate changes with p-value p < 0.01 (Welch-s t-test, uncorrected). C: Significance

level for the changes in for all matrix elements of FC0 (no time shift) and FC1 (time shift equal

to 1 TR); see Eq. (1) in Methods. For visualization purpose, an upper limit is set to 3 here,

although some values are larger, cf. panel E. D: Same as C for BOLD correlations instead of

covariances. E: Comparison of the cumulative distributions of p-values for variances (diagonal

of FC0 in cyan), covariances (off-diagonal elements of FC0 in blue), diagonal and off-diagonal

FC1 values (bright and dark green, respectively), as well as correlations (black). The dotted

curve corresponds to a null distribution of p-values for two sets of 19 random variables with

the same distribution. The vertical dashed line indicates the Bonferroni family-wise error rate

p = 0.05 for N parameters (for the variances on the diagonal of FC0) and the dashed-dotted

line for N(N − 1)/2 = 2145 parameters (for the symmetric off-diagonal covariances in FC0

and correlations).
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empirical counterparts, as illustrated in Fig. 2C. In practice, we choose a sin-

gle time constant τx for all ROIs, which is motivated by our previous results305

for resting-state fMRI, where no substantial difference across ROIs was ob-

served. An improvement would consist in estimating individual values for each

ROI/subject/condition, but is out of the present scope. From an initial homo-

geneous diagonal matrix Σ and effective connectivity C = 0, each optimization

step aims to reduce the model error E, defined in Eq. (3) using the matrix dis-310

tance between the model and empirical FC matrices. The best fit corresponds to

the minimum of E, which gives the C and Σ estimates for each subject and con-

dition. In summary, the model inversion explains the observed spatiotemporal

FC by means of Σ and C.

The precision of the estimated parameters is of course limited by the number315

of time points in the BOLD signals, but this procedure unambiguously retrieves

the model parameters for accurate empirical FC0 and FC1 observables. The it-

erative approach provides an advantage compared to multivariate autoregressive

models applied directly to the data: it enhances the robustness of the estimation

by reducing the number of estimated parameters (absent connections are kept320

equal to 0) and imposing constraints (non-negativity for C and the diagonal of

Σ). Importantly, the model optimization takes network effects into account: EC

weights are tuned together such that their joint update best drives the model

toward the empirical FC matrices. It is also worth noting that we only re-

tain information about the existence of connections from DSI, whose values do325

not influence the corresponding estimates in C. In practice, EC directionality

strongly depends on the time-shifted covariance FC1. Further details about the

model and the optimization procedure are given in Methods.

The qualitative fit of the model is displayed in Fig. 3A (left panel) for FC0

and a single subject at rest. Quantified by the Pearson correlation coefficients330

between the model and empirical FC matrix elements, the model goodness of

fit is summarized in the right panel of Fig. 3A for all subjects and the two

conditions, yielding very good values larger than 0.7 for almost all cases [32];

the model error over the subjects (mean ± std) is E = 0.60 ± 0.04 for rest
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Figure 2: Noise-diffusion dynamic cortical model. A: DSI measurements provide the

skeleton of the intracortical connectivity. We add inter-hemispheric connections (gray pixels

on the anti-diagonal) as they are known to be missed by DSI. B: The parameters of the

model are the recurrent effective connectivity C and the input covariances Σ. Contrary to

SC, EC has directional connections, as represented by the red arrows with various thicknesses.

Some existing connections may have zero weights (dashed arrow), equivalent to an absence of

connections for the network dynamics. Here Σ comprises variances on the diagonal (one for

each ROI) plus 4 pairs of symmetric elements on the anti-diagonal for cross-correlated inputs

for CUN, PCAL, ST and TT (cf. Table 1). As a convention, the formatting of all matrices

in this paper shows the source and target ROIs on the x-axis and y-axis, respectively. C:

From known C and Σ, the model FC0 and FC1 matrices are calculated and compared to their

empirical counterparts, which in turn gives the updates ∆C and ∆Σ for the model parameters

(as well as ∆τx, not shown). The optimization steps are repeated until the minimal model

error E defined in Eq. (3) is reached. 18
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and 0.58 ± 0.04 for movie. Importantly, we verify that the model captures335

the change in FC between the two conditions, as illustrated in Fig. 3B: the

left panel provides the example for a subject and the right panel the summary

for all subjects, as in Fig. 3A. Once again, the Pearson correlation between

the model and empirical ∆FC (movie minus rest) is larger than 0.6 for most

subjects. Moreover, the p-values for the changes in the FC0 matrix elements are340

in good agreement with their empirical counterparts in Fig. 3C, with an overall

Pearson correlation of 0.37 with p � 10−10. Discrepancies mainly concern

absent EC connections (in black); correcting SC with the addition of missing

edges may improve this aspect, but is out of the scope here. To further verify

the robustness of estimated parameters, we repeat the same procedure using345

FC0 and FC2 with a time shift of 2 TR instead of FC0 and FC1 (with 1 TR) as

done so far. We found nearly identical Σ estimates and very similar C estimates

(Fig. 3D), which agrees with our previous results for resting-state fMRI data

[20]. This confirms that the information conveyed by the transitions of BOLD

activity between ROIs can be robustly extracted using the proposed dynamic350

model.

To finally characterize how the model parameters respectively capture the

FC statistics, we compare in Fig. 3E the model error for four models X/Y

combining the model estimates JX and ΣY, where X and Y are one of the

two conditions, rest (R) and movie (M); see Eq. (8) in Methods for details.355

The M/M model is taken as a reference and others models are compared with

it, in terms of error with respect the movie empirical data. The model error

corresponding to the movie FC is decomposed into three components: the FC0

variances (on the matrix diagonal) and covariances (off-diagonal elements), as

well as FC1 elements. As can be seen in Table 2 summarizing the p-values for360

these pairwise comparisons, the M/R, R/M and R/R models have significantly

larger model error than M/M with p < 0.01 for all for all three subsets of

FC; as expected, R/R consistently gives the worse fit. Changing Σ from movie

to rest (M/R compared to M/M) is particularly dramatic for FC0 variances

and to a lesser extent for FC0 covariances; further change C only affects FC1365
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model comparison var FC0 covar FC0 FC1

R/M versus M/M p < 10−3 p < 10−2 p < 10−2

M/R versus M/M p < 10−10 p < 10−5 p < 10−4

R/R versus M/M p < 10−12 p < 10−7 p < 10−7

R/M versus M/R p < 10−6 p > 0.1 p > 0.1

R/M versus R/R p < 10−6 p < 0.05 p > 0.1

M/R versus R/R p > 0.1 p > 0.1 p < 0.05

Table 2: Table of p-values for pairwise comparison using Welch’s t-test between the mixed

models X/Y defined in Eq. (8), as indicated on the left column. X indicates the condition for

the Jacobian JX and Y for the input covariances ΣY.

(R/R versus M/R). Conversely, when EC is changed for rest (R/M compared to

M/M), the model error increases rather homogeneously for all FC sets. However,

further changing Σ for rest (R/R versus R/M) further affects FC0 elements.

This illustrates that the local variability and network connectivity interplay in

shaping FC and motivates a proper model inversion to interpret changes in370

empirical FC. In particular, a phenomenological analysis of empirical FC0 is

not sufficient to estimate the change in cortical interactions (C) as FC0 also

strongly depends on Σ, in the limit of the proposed dynamic model.

3.3. Movie viewing induces greater changes in local variability than network

effective connectivity375

From Fig. 3, we conclude that the tuned model satisfactorily captures the

changes in empirical FC between rest and movie. Now we examine how the

estimated parameters differ between the two conditions, in this way verifying

whether C and Σ are useful signatures for changes in the cortical dynamics.

We find that local variability is more affected by movie viewing than EC: at380

the level of the global distribution over all parameters and subjects (Fig. 4A);

for the number of discriminative elements as measured by the distribution of

p-values using Welch’s t-test (Fig. 4B); in magnitude as illustrated in Fig. 4C,
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Figure 3: Goodness of fit of the model. A: The left panel shows the match between the

model and empirical FC0 at rest for a single subject; each dot represents a matrix element

(variances = diagonal elements in cyan, off-diagonal elements in dark blue). The right panel

summarizes the goodness of fit as measured by the Pearson correlation over all subjects for

the two conditions. B: Same as A for ∆FC0 and ∆FC1 (movie minus rest). C: Comparison

of empirical and model p-values (Welch’s t-test) for the each matrix element of ∆FC0. Cyan

crosses indicate variances, blue indicate covariances corresponding to an existing connection

in EC and black covariances for absent connections. D: Consistency between the ∆C and

∆Σ matrices obtained for each subject using two distinct optimizations: FC0 and FC1 with

τ = 1 TR; versus FC0 and FC2 with τ = 2 TR. The left and middle panels show the

correspondence of matrix elements, with the black diagonal indicating a perfect match. Mean

values over all subjects are plotted in colors. The right panel displays the Pearson correlation

coefficients - one per subject - between the model estimates. E: Comparison of the four models

combining the estimated C and Σ for the two conditions where X/Y corresponds to CX and

ΣY with X and Y being either rest (R) or movie (M); see Eq. (8) in Methods. The violin plots

indicate the difference in model error (matrix distance) between the model indicated on the

x-axis and M/M, over the 19 subjects. Here the model error is decomposed according to the

three components of FC: diagonal of FC0 (left panel), off-diagonal elements of FC0 (middle)

and whole FC1 matrix (right).
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where ∆Σ are mainly increases and ∆C are distributed around 0 (with a slight

bias toward negative values). The Kolmogorov-Smirnov distance between the385

rest and movie distributions in Fig. 4A is 0.14 for Σ, to be compared with only

0.04 for C. Fig. 4B also shows that the outgoing EC weights (thin dark red

curve, one value per ROI) experience more significant changes than individual

C elements, but not as much as Σ elements.

We now examine in Fig. 4D which connections and ROIs experience the390

most significant changes in the model parameters. For EC (left panel), only

1 connection in bright red passes the Bonferroni threshold with family-wise

error rate equal to 0.05 (dashed line corresponding to p < 0.05/m with m =

1180 matrix elements), while 81 connections passed the uncorrected threshold

p < 0.01 (7% of all connections, in dark red). These changes concern 54 ROIs395

among the 66; moreover, only 19 are EC increases (including the 4 passing the

Bonferroni threshold) versus 55 decreases. For outgoing weights, the right TT,

SMAR and LOCC show a significant increases above the Bonferroni threshold

(with m = N = 66, giving 5% of all ROIs) and 6 more ROIs pass the uncorrected

threshold (14%). For Σ, we identify 5 parameters that pass the Bonferroni400

threshold (with m = N + 4 = 70), which all concern the bilateral ST and

LOCC ROIs (7% of all parameters, in bright red); no further ROI passes the

uncorrected threshold. As can be seen in the right panel of Fig. 4C, the most

significant changes in Σ also correspond to the largest increases, occurring for

ROIs in the occipital and temporal regions.405

3.4. Dynamical balance in the integration of visual and auditory inputs

Beyond identifying the most affected ROIs, the analysis in Fig. 4 raises the

issue of comparing the significance of EC changes (Bonferroni correction with

m = 1180 EC parameters) versus that for Σ (m = 70 parameters, more than

one order of magnitude lower), as before with diagonal and off-diagonal of FC410

measures. Non-parametric permutation testing hints at the same ROIs - with

slightly higher significance - but this does not solve the problem of family-wise

error control. This motivates a complementary analysis focused on the network
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Figure 4: Changes in the estimated model parameters between rest and movie.

A: Histograms of C and Σ values in the two conditions. The medians of the distributions for

rest are indicated by the vertical dashed-dotted lines. B: Significance of the changes in C and

Σ, as well as the sum of outgoing weights (Cout) for each ROI. The curves correspond to the

cumulative distribution over all connections/ROIs of − log10(p) for the p-value obtained from

Welch’s t-test, as done in Fig. 1E for FC. The dotted curve corresponds to a null distribution of

p-values for two sets of 19 random variables with the same distribution; the vertical dashed and

dashed-dotted lines indicate the Bonferroni thresholds for Σ (p < 0.05/m with m = N+4 = 70

parameters) and C (1180 parameters). C: Histogram of the magnitudes of the changes - movie

minus rest - ∆C and ∆Σ for all connections and ROI. The right panel displays the mean Σ

over all subjects in each condition mapped on the cortical surface (left and right side views);

hot colors indicate large values. D: Connections with most significant changes in C and ROIs

with significant changes in outgoing weights Cout, local variability Σ and empirical BOLD

variances. For each panel, the vertical dashed line indicates the Bonferroni threshold and the

dotted curve the null distribution, as in B. The ROIs passing the Bonferroni threshold are

plotted in bright red, while those passing the uncorrected threshold p < 0.01 are in dark red.

For Σ, the labels for the cross-correlated inputs to visual and auditory ROIs are indicated by

‘x’.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 25, 2017. ; https://doi.org/10.1101/110015doi: bioRxiv preprint 

https://doi.org/10.1101/110015
http://creativecommons.org/licenses/by-nc-nd/4.0/


dynamics to interpret changes in C and Σ collectively. In particular, we examine

whether the effects of ∆C and ∆Σ are independent of each other.415

LOCC belongs to the visual cortex - even though it is not the primary visual

cortex - and ST hosts the primary auditory cortex. Therefore we interpret the

increase of local variability Σ for those sensory ROIs as related to the larger

stimulus load in the movie viewing condition. Interestingly, changes in BOLD

variances for rIP, rFUS and lBSTS that also pass the Bonferroni thershold in420

Fig. 4D are not straightforwardly explained by a corresponding change in the

local variability Σ. This suggests that these changes could arise instead from the

propagation of activity from other ROIs, as a network effect. In other words,

even though changes in local activity between rest and movie are stronger than

EC both in magnitude and in significance, they alone do not explain the changes425

for FC.

To deepen the analysis of the propagation of sensory information, we focus

on the visual and auditory bilateral ROIs in our parcellation: CUN, PCAL,

LOCC and LING on the one hand; ST, TT and MT on the other hand. We also

consider the above-mentioned FUS and BSTS that are known to be involved430

in downstream visual and auditory processing [42, 43]. Fig. 5A shows the SC

density between those visual (located in the lower left side and indicated by

the red bars), auditory (upper right side in blue) and so-called ‘integration’

ROIs (center in purple). The dark pixels along the diagonal of the SC matrix

hints at the hierarchy from visual ROIs (‘VIS’) and auditory ROIs (‘AUD’) to435

integration ROIs (‘INT’), corresponding to the solid arrows in the diagram on

the top. In contrast, there exist fewer direct connections between VIS and AUD

(dotted arrow in the diagram).

The EC statistical scores in Fig. 5B - defined to identify consistently strong

values over all subjects, see Eq. (9) - suggest that direct anatomical connections440

between VIS and AUD are not “used” for both rest and movie in practice; rather,

fluctuating activity propagates between VIS and AUD via INT, back and forth.

In comparison, Σ exhibits increases for most ROIs, except LING and BSTS. To

further quantify the hierarchical propagation via INT, we use the effective drive
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(ED), which is a canonical measure for our noise-diffusion network: as illustrated445

in the left diagram, it measures the amount of fluctuating activity at ROI j sent

to ROI i multiplied by the EC weight Cij from j to i, thus contributing to i’s

activity (Q0
jj is the model variance on the diagonal of FC0, so

√
Q0
jj corresponds

to the standard deviation). Although Fig. 5B shows a picture globally similar for

rest and movie, the difference of ED scores in Fig. 5C (middle panel) indicates450

increases 1) from LOCC to PCAL, CUN, FUS and BSTS; 2) from almost all

ROIs to FUS; 3) from ST to all ROIs except the visual ones; 4) from MT to ST

and FUS. Together, most increases occur along the diagonal corresponding to

the hierarchical integration mentioned above.

Thanks to our model-based approach, we can decompose the change in ED455

into two components related to the changes in C and Σ between rest and movie.

If we retain only the increase in local variability Σ for the movie condition, ED

increases almost everywhere, and in a particularly large amount for direct con-

nections from ST to visual ROIs (left panel); note that visual ROIs also increase

their direct effect on ST. However, negative changes in C nullifies this increase,460

as shown in the right panel. In addition, increased C values boost ED along the

diagonal. The mixed positive and negative changes in C thus select pathways

to preserve the hierarchical integration of sensory influx. To check whether this

balancing effect is significant, we calculate the asymmetry between the left and

right matrices in Fig. 5C; in practice, this is given by the scalar product of the465

vector obtained by stacking the matrix columns, normalized by the total ED

changes in absolute value (matrix in center). The asymmetry corresponding to

the 18 bilateral ROIs in Fig. 5C is represented by a diamond in Fig. 5D and

compared to a surrogate distribution for the same number of randomly cho-

sen ROIs in the rest of the cortex, while preserving the hemispheric symmetry.470

The significance for the observed asymmetry in the VIS-INT-AUD subnetwork

is p < 0.04 and the 104 surrogate values are mainly distributed around zero,

confirming that these opposing contributions do not come artificially from the

model, but from the estimated parameters instead.
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Figure 5: Changes in activity in the early visual and auditory pathways. A:

Structural connectivity between 14 ROIs in the early visual (bottom left corner) and auditory

(top right) pathways, as well as 4 integration ROIs (center). Connections from the left and

right hemispheres are grouped together. B: Statistical scores for the C, Σ and effective drive

(ED) in each condition for the ROIs and connections displayed in A. For each matrix element,

the statistical score evaluates how strong the estimates are over all subjects; see Eq. (9) in

Methods where the medians lV for C and Σ correspond to the dashed-dotted lines in Fig. 4A.

On the bottom left, the schematic representation describes the propagation of fluctuating

activity from ROI j to ROI i quantified by ED, which contributes to the variance of the ROI

activity Q0
ii in addition to the input variance Σii; see Eq. (10) in Methods. C: Changes in

ED for ROIs between rest and movie (middle panel), as well as contributions from ∆C (right)

and ∆Σ (left). D: Comparison of the asymmetry of the contributions to ED from ∆Σ and

∆C for the subnetwork in C (diamond marker) with a null distribution obtained from similar

subnetworks of randomly chosen ROIs in the rest of the network (violin plot).
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3.5. Path selection occurs in the whole cortex475

From Fig. 4, the main changes in the cortical network appear rather localized

in the occipital and temporal areas. However, many “small” changes in C

may have a more significant effect collectively and we keep in mind that the

limitations of the statistical tests in the high-dimensional space of the model

estimates. Therefore, we examine the changes in activity propagation at the480

whole-cortex level to determine whether the path selection - as an effect of the

changes in the model parameters - is localized or distributed. Using the Louvain

method from graph theory [39, 40], we estimate communities with higher-than-

chance exchange of fluctuating activity between them, as measured by ED. We

perform community analysis for each subject in each condition and pool the485

results over the subjects to obtain a participation index of ROI pairs, which

measures the probability for them to be in the same community. To test the

significance of these, we repeat the same procedure 103 times while mixing the

labels (rest and movie) among the subjects to generate surrogate participation

indices. This gives a null distribution of 103 values for each ROI pair, from490

which the two values for rest and movie are compared; details are provided in

Methods.

Fig. 6A displays significant increases and decreases (dark and colored pixels)

of participation indices for all ROI pairs in movie as compared to rest. For illus-

tration purpose, the ROIs grouped into 6 groups: somatosensory-motor (SMT),495

frontal (FRNT) and so-called ‘central’ ROIs (CTRL) in addition to the visual,

auditory and integration regions examined in Fig. 5; note that the integration

group includes more ROIs than before, see the Table 1. Most decreases concern

ROIs in the same hemisphere (bottom left and top right in the right panel),

whereas increases involve interhemispheric ROI pairs (top left and bottom right500

in the left panel), especially ROIs from AUD, INT and FRNT. Last, interactions

between VIS and INT strongly increase both within and between hemispheres.

To understand the changes in ED from a feedforward-feedback perspective,

Fig. 6B summarizes the percentage of increase and decrease compared to rest

between the groups, where the two hemispheres are taken together. The largest505
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increases concern feedforward projections from VIS and AUD, at the noticeable

exception of direct interactions between AUD and VIS. Once again, INT ap-

pears to be the intermediate that provide feedback to VIS and AUD. Fig. 6C

summarizes the changes in the cortical communication, in the sense of propa-

gation of fluctuating activity. At rest, AUD is strongly tied to the INT, SMT510

and part of FRNT; this cluster is decoupled in the movie condition such that

part of INT can bind to VIS. Meanwhile, INT remains linked to FRNT, whose

interhemispheric interactions are strongly boosted. This underlines a selective

coordination of cortical paths to process sensory information in a distributed

and hierarchical fashion.515

4. Discussion

Our results shed light on a fundamental question in neuroscience: how do

sensory inputs to the brain propagate via the cortical connectivity to integrate

information? To address this question, we have used a recently developed model-

based approach that decomposes FC in estimated parameters describing the lo-520

cal variability and network connectivity, EC. Moreover, the model can be inter-

preted in terms of cortical communication, taken as the propagation of activity

across brain regions (seen via the proxy of BOLD signals). Our main finding

concerns the reorganization of the cortical connectivity during movie viewing

as compared to rest: although changes in EC appear at first sight smaller than525

those in local variability, they induce strong changes in communication across

the whole cortex.

First, they are involved in a down-regulation of forward connections in a

compensatory manner, such that increases in regional inputs do not saturate the

network (Fig. 5D). Meanwhile, specific feedforward and backward connections530

are boosted to enable a hierarchical communication across ROIs, such as top-

down signals from integration to sensory areas (Fig. 5C). The observed dynamic

balance is expected to be task dependent - in regard with extrinsic stimulus

inputs - and to result in complex patterns of functional synchronization (FC)
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Figure 6: Path selection and inter-hemispheric integration in the cortex. A:

Changes in index participation in ED-based communities estimated by the Louvain method:

increases (left) and decreases (right) for movie as compared to rest. The plotted values

correspond to averages over the 19 subjects, for each of which the Louvain method was applied

10 times on the ED matrix. ROIs are ordered separately for the two hemispheres according

to the groups in Table 1: red for visual, blue for auditory, purple for integration, yellow for

somatosensory-motor cyan for frontal and green for “central”; the pixels for ROIs belonging

to the the same group are displayed in color. B: Changes in ED between ROIs pooled in

6 groups: visual in red, auditory in dark blue, integration in purple, somatosensory-motor

in yellow, frontal in cyan and “central” (cingulate) in green. ROIs from both hemispheres

are grouped together. C: Schematic diagram of increased interactions between ROI groups

for movie compared to rest summarizing results in A and B. Arrows in solid line indicate an

increase and dotted arrows decreases (sometimes mixed with increases).
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at the network level. Our results suggest a continuum of the balanced-activity535

principle from the neuronal level [45] to the cortical level [46]. It is worth noting

that this analysis relies on the interpretation of the brain as a dynamic system

where fluctuating activity propagates; communication cannot always be simply

understood at the level of single estimated parameters.

Second, the selection of specific pathways that shape the integration of sen-540

sory information acts at the level of the whole cortex. The results in Fig. 6A

indicate a global reorganization of the functional communities (related to the

propagation of BOLD activity) and suggest an increase of the inter-hemispheric

exchange of information in the movie condition. This phenomenon is not re-

stricted to sensory areas, but also concerns parietal and temporal areas that545

are related to multimodal integration [42, 43], as well as frontal areas. This

highlights the need for examining the whole brain in order to understand such a

distributed reconfiguration [12], extending previous studies relying on hypothe-

sis testing for a-priori selected ROIs [47, 48, 18, 49]. The increased feedforward

ED from VIS to INT illustrated in Fig. 6B is in line with explain previously550

reported BOLD synchronization in association areas (as well as visual areas)

using inter-subject correlations (ISC) during movie viewing [44]; our estimates

predict that such a synchronization should also exist in the rest of the cortex,

but to a lesser extent. Moreover, our analysis hints at the same areas that

were recently found to be discriminative against subjects using FC in a similar555

task [50]; in other words, community reconfiguration as in Fig. 6A may also be

subject-specific, in addition to being task-specific.

In our study, the movie-viewing condition strongly differ from rest, as can be

seen in the increased BOLD variances that presumably arise from the increase

in stimulus load, in line with a previous analysis of MEG measurements for the560

same experiment [12]. Carefully designed experiments that controlled for the

change in stimuli showed instead a decrease of variance when a subject engages a

visual recognition task, as opposed to passive viewing [17]. In line with previous

studies that observed a decrease in brain interactions when engaging a task

[51, 49], the reconfiguration here consists in shutting down more pathways than565
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opening new ones (cf. histogram of EC changes in Fig. 4C). This corresponds to

a reduction of global synchronization (in FC), leaving aside the stimulus-related

effects.

Beyond the task analyzed here, our study demonstrates that spatiotemporal

BOLD (co)variances convey important information about the cognitive state570

of subjects, as was previously reported [17, 18]. Our spatiotemporal FC corre-

sponds to transitions of fMRI activity at the scale of a few TRs; this statistics is

averaged over the whole recording period, in contrast to other time-dependent

measures such as ISC [44], metastability [52] or measures of dynamic FC av-

eraged over 1-2 minutes, corresponding to more than 30 TRs [16]. This was575

already suggested by our previous analysis of resting state [20] and is in line

with recent results that focused on the lag structure of BOLD signals between

ROIs [53, 19]. Moreover, strong ISC during movie viewing in fMRI time series

[44] - presumably arising from a locking effect to the watched naturalistic stimuli

- result in between-subject similarities in the corresponding covariances without580

time shift (FC0). The proposed framework moves beyond spatial FC (i.e., FC0

or BOLD correlations) to perform a finer analysis of fMRI measurements, in

a way accounting for the effect of ISC with time shifts. Our model uses an

exponential approximation of BOLD autocovariance (locally over a few TRs)

and discards slow-frequency variations. In contrast, previous studies considered585

a broader spectrum including slow frequencies to account for long-range tem-

poral interactions in BOLD time series [54, 17, 55]. This multifractal property

of BOLD signals has been analyzed to describe undirected interactions between

ROIs [18] and there is also a formal relationship between the estimation of EC

described here and DCM for cross spectral density in fMRI [29]. A proper590

comparison with those models is left to future work.

The input “noise” related to Σ play a functional role in our model: our inter-

pretation links the fluctuating activity (quantified by the variances in Σ) to the

amount of information processed by each ROI that does not come from others.

The comparison of Σ across conditions allows for a estimation of intrinsic and595

extrinsic components for each ROI [14, 15]. Properly modeling the fluctuating
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nature of brain activity [56, 57, 58] remains a challenge: models such as DCM

rely on with more elaborate local dynamics to generate it [48, 29]; recent efforts

aim to extend such modeling from a small number of ROIs to the whole brain

[59]. Unlike DCM, we directly estimate the amplitude of random fluctuations of600

a simpler form of inputs (Wiener process) within each region and measure how

it is transferred via the long-range projections (whose weights are estimated).

In a way, our work extends analyses based on partial correlations that measure

undirected interactions only [51].

Although it does not focus on the mechanisms underlying the dynamic reg-605

ulation of EC [21, 48, 60], our model provides a signature of the brain dynamics

that we expect to be discriminative for a broad variety of tasks and behav-

ioral conditions. We stress again the importance of taking the whole cortex

into account - or better with subcortical regions included too - to estimate such

signatures. We expect a trade-off between the discriminative power and the610

robustness of the estimation procedure when increasing the size of the parcel-

lation. Because C and Σ lie in a high dimensional space (one per connection

and about one per node, respectively), statistical analysis of the estimated pa-

rameters across conditions (as well as FC-based measures) may suffer from an

approach based on family-wise error correction (e.g., Bonferroni as done here).615

Tools from graph theory such as community analysis can be a useful complement

to interpret the model estimates in a collective fashion.
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