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Abstract

Our behavior entails a flexible and context-sensitive interplay between brain

areas to integrate information according to goal-directed requirements. How-

ever, the neural mechanisms governing the entrainment of functionally special-

ized brain areas remain poorly understood. In particular, the question arises

whether observed changes in the regional activity for different cognitive condi-

tions are explained by modifications of the inputs or recurrent connectivity? We

observe that fMRI transitions over successive time points convey information

about the task performed by 19 subjects, namely watching a movie as opposed
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to a black screen (rest). We use a theoretical framework that decomposes this

spatiotemporal functional connectivity pattern into local variability received by

the 66 cortical regions and recurrent effective connectivity between them. We

find that, among the estimated model parameters, movie viewing affects to a

larger extent the local excitabilities, which we interpret as extrinsic changes re-

lated to the increased stimulus load. However, detailed changes in the effective

connectivity preserve a balance in the propagating activity and select specific

pathways so as to integrate visual and auditory information to high-level brain

regions and across the two brain hemispheres. These findings speak to a dy-

namic coordination underlying the functional integration in the brain.

1. Introduction

The brain comprises a large number of functionally distinct areas in which

information and computational processes are both segregated and integrated

[1, 2]. A fundamental question in system neuroscience is how information can

be processed in a distributed fashion by the neuronal architecture. Brain re-5

gions exhibit a high degree of functional diversity, with a massive number of

connections that coordinate their activity. Accordingly, empirical evidence from

functional magnetic resonance imaging (fMRI), electro-encephalography (EEG),

magneto-encephalography (MEG) in humans, as well as cell recordings in ani-

mals, supports the notion that brain functions involve multiple brain areas [3].10

Long-range synchronization of brain activity has been proposed as a dynamical

mechanism for mediating the interactions between distant neuronal populations

at the cellular level [4, 5], as well as within large-scale cortical subnetworks both

at rest [6, 7, 8, 9] and when performing a task [10, 11].

Depending on the task, cortical dynamics reshape the global pattern of corre-15

lated activity observed using neuroimaging - denoted by functional connectivity

(FC) [9, 12]. Presumably, both sensory-driven and cognitive-driven processes

are involved in shaping FC from its resting state [13, 14]. Recently, the temporal

aspect of fMRI signals has been much studied - in relation to tasks performed
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by subjects or their behavioral conditions - via the concept of ‘dynamic FC’20

that evaluates the fluctuations of fMRI correlation patterns over time [15], the

fractal aspect of fMRI time series [16, 17] or transitions in fMRI activity across

successive TRs [18]. The present study builds upon a recently developed whole-

cortex dynamic model [19], which extract this functionally relevant information

via the BOLD covariances evaluated with and without time shifts, which relates25

to BOLD transition statistics.

The proposed modeling allows us to examine the respective roles played by

the local variability of each brain area and long-range neuro-anatomical projec-

tions between them in shaping the cortical communication, which results in the

measured FC. We rely on the well-established hypothesis that both the activity30

and coordination of different regions depend on both the local activity and in-

tracortical connectivity [20]. Based on dynamic models for blood oxygen level

dependent (BOLD) activity at the level of a cortical region, techniques have

been developed to estimate the connectivity strengths: the notion of ‘effective

connectivity’ (EC) describes causal pairwise interactions at the network level35

[21, 22, 23, 24]. The distinction between functional and effective connectivities is

crucial here: FC is defined as the statistical dependence between distant neuro-

physiological activities, whereas EC is defined as the influence one neural system

exerts over another [25]. In the present study, the definition of EC is actually

close to its original formulation in neurophysiology [26]: estimated weights in a40

circuit diagram that replicate observed patterns of functional connectivity. Im-

portantly, the network effective connectivity is inferred for individual links here

(1180 connections between 66 cortical regions) and thus form a directed graph,

contrasting with previous studies that directly use structural connectomes as

“equivalent EC” [27, 28, 29].45

After describing the changes observed in empirical FC between subjects at

rest and watching a movie, we examine whether these FC alterations are well

captured by the proposed model. Considering the network parameter estimates

as fingerprints of the brain dynamics, we seek a mechanistic explanation for the

observed FC changes by disentangling significant changes in local variability and50
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in intracortical connectivity.

2. Material and Methods

2.1. Study design for empirical fMRI data during rest and passive movie viewing

As detailed in our previous papers [30, 31], 24 right-handed young, healthy

volunteers (15 females, 20-31 years old) participated in the study. They were55

informed about the experimental procedures, which were approved by the Ethics

Committee of the Chieti University, and signed a written informed consent.

Only 22 participants had recordings for both a resting state with eyes opened

and a natural viewing condition; 2 subjects with only recording at rest were

discarded. In the resting state, participants fixated a red target with a diameter60

of 0.3 visual degrees on a black screen. In the natural viewing condition, subjects

watched and listened to 30 minutes of the movie ‘The Good, the Bad and the

Ugly’ in a window of 24× 10.2 visual degrees. Visual stimuli were projected on

a translucent screen using an LCD projector, and viewed by the participants

through a mirror tilted by 45 degrees. Auditory stimuli were delivered using65

MR-compatible headphones.

2.2. Data acquisition

Functional imaging was performed with a 3T MR scanner (Achieva; Philips

Medical Systems, Best, The Netherlands) at the Institute for Advanced Biomed-

ical Technologies in Chieti, Italy. The functional images were obtained us-70

ing T2*-weighted echo-planar images (EPI) with BOLD contrast using SENSE

imaging. EPIs comprised of 32 axial slices acquired in ascending order and

covering the entire brain (230 x 230 in-plane matrix, TR/TE=2 s/3.5 s, flip

angle = 90◦, voxel size=2.875 × 2.875 × 3.5 mm3). For each subject, 2 and 3

scanning runs of 10 minutes duration were acquired for resting state and nat-75

ural viewing, respectively. Only the first 2 movie scans are used here, to have

the same number of time points for the two conditions (i.e., 20 minutes each).

Each run included 5 dummy volumes - allowing the MRI signal to reach steady
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state and an additional 300 functional volumes that were used for analysis. Eye

position was monitored during scanning using a pupil-corneal reection system80

at 120 Hz (Iscan, Burlington, MA, USA). A three-dimensional high-resolution

T1-weighted image, for anatomical reference, was acquired using an MP-RAGE

sequence (TR/TE=8.1 s/3.7 s, voxel size=0.938× 0.938× 1 mm3) at the end of

the scanning session.

2.3. Data processing85

Data were preprocessed using SPM8 (Wellcome Department of Cognitive

Neurology, London, UK) running under MATLAB (The Mathworks, Natick,

MA). The preprocessing steps involved: (1) correction for slice-timing differences

(2) correction of head-motion across functional images, (3) coregistration of the

anatomical image and the mean functional image, and (4) spatial normalization90

of all images to a standard stereotaxic space (Montreal Neurological Institute,

MNI) with a voxel size of 3×3×3 mm3. The mean frame wise displacement [32]

was measured from the fMRI data to estimate head movements. They do not

show any significant difference across the rest and movie recordings (p > 0.4).

Furthermore, the BOLD time series in MNI space were subjected to spatial95

independent component analysis (ICA) for the identification and removal of

artifacts related to blood pulsation, head movement and instrumental spikes

[33]. This BOLD artifact removal procedure was performed by means of the

GIFT toolbox (Medical Image Analysis Lab, University of New Mexico). No

global signal regression or spatial smoothing was applied. For each recording100

session (subject and run), we extracted the mean BOLD time series from the

N = 66 regions of interest (ROIs) of the brain atlas used in [34]; see Table 1 for

the complete list.

2.4. Structural connectivity

Anatomical connectivity was estimated from Diffusion Spectrum Imaging105

(DSI) data collected in five healthy right-handed male participants [34, 23].

The gray matter was first parcellated into the N = 66 ROIs, using the same
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Group ROI abbreviation Brain region ROI index

VIS CUN Cuneus 29, 38

PCAL Pericalcarine cortex 28, 39

LING Lingual gyrus 27, 40

LOCC Lateral occipital cortex 7, 60

AUD ST Superior temporal cortex 14, 53

TT Transverse temporal cortex 6, 61

IT Inferior temporal cortex 9, 58

MT Middle temporal cortex 13, 54

INT FUS Fusiform gyrus 5, 62

SP Superior parietal cortex 8, 59

IP Inferior parietal cortex 10, 57

TP Temporal pole 3, 64

SMAR Supramarginal gyrus 11, 56

BSTS Bank of the superior temporal sulcus 12, 55

SMT PREC Precentral gyrus 16, 51

PSTC Postcentral gyrus 15, 52

PARC Paracentral lobule 30, 37

FRNT FP Frontal pole 4, 63

CMF Caudal middle frontal cortex 17, 50

RMF Rostral middle frontal cortex 20, 47

PTRI Pars triangularis 19, 48

PORB Pars orbitalis 21, 46

POPE Pars opercularis 18, 49

SF Superior frontal cortex 25, 42

LOF Lateral orbitofrontal cortex 22, 45

MOF Medial orbitofrontal cortex 26, 41

CTRL ENT Entorhinal cortex 1, 66

PARH Parahippocampal cortex 2, 65

CAC Caudal anterior cingulate cortex 23, 44

RAC Rostral anterior cingulate cortex 24, 43

PC Posterior cingulate cortex 33, 34

ISTC Isthmus of the cingulate cortex 31, 36

PCUN Precuneus 32, 35

Table 1: Table of ROIs with abbreviations, names and indices. The left column indicates

ensembles used later for illustration purpose, grouping ROIs into visual, auditory, so-called

‘integration’, sensory-motor, frontal and ‘central’ areas.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2017. ; https://doi.org/10.1101/110015doi: bioRxiv preprint 

https://doi.org/10.1101/110015
http://creativecommons.org/licenses/by-nc-nd/4.0/


low-resolution atlas used for the FC analysis. For each subject, we performed

white matter tractography between pairs of cortical areas to estimate a neuro-

anatomical connectivity matrix. In our method, the DSI values are only used110

to determine the skeleton: a binary matrix of structural connectivity (SC) ob-

tained by averaging the matrices over subjects and applying a threshold for

the existence of connections. The strengths of individual intracortical connec-

tions do not come from DSI values, but are optimized as explained below. It

is known that DSI underestimates inter-hemispheric connections [34]. Homo-115

topic connections between mirrored left and right ROIs are important in order

to model whole-cortex BOLD activity [29]. Here we add all such possible ho-

motopic connections, which are tuned during the optimization as other existing

connections. This slightly increases the density of structural connectivity (SC)

from 27% to 28%.120

2.5. Empirical functional connectivity

For each of the two sessions of 10 minutes of rest and movie, the BOLD

time series is denoted by sti for each region 1 ≤ i ≤ N with time indexed by

1 ≤ t ≤ T (T = 300 time points separated by a TR=2 seconds). We denote

by s̄i the mean signal: s̄i = 1
T

∑
t s
t
i for all i. Following [19], the empirical FC125

corresponds to covariances calculated as:

Q̂0
ij =

1

T − 2

∑
1≤t≤T−1

(sti − s̄i)(stj − s̄j) , (1)

Q̂1
ij =

1

T − 2

∑
1≤t≤T−1

(sti − s̄i)(st+1
j − s̄j)

For each individual and session, we calculate the time constant τx associated

with the exponential decay of the autocovariance averaged over all ROIs:

τx =
1

N

∑
1≤i≤N

1

log(Q̂0
ii)− log(Q̂1

ii)
(2)

This is used to “calibrate” the model, before its optimization. Similar calcula-

tions are done for 2 TR.
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2.6. Model of cortical dynamics

The model uses two sets of parameters to generate the spatiotemporal FC:130

• the local variability embodied in the matrix Σ inputed individually to each

of the N = 66 ROIs (see Table 1 for the complete list) or jointly to ROI

pairs (only for bilateral CUN, PCAL, ST and TT);

• the network effective connectivity between these ROIs embodied by the

matrix C, whose skeleton is determined by DTI (see details for structural135

connectivity above).

The rationale behind the use of spatially cross-correlated inputs (off-diagonal

elements of Σ) in the model is to take into account for common sensory inputs to

homotopic visual and auditory ROIs. Ideally, the model should be extended to

incorporate subcortical areas and the existence of input cross-correlations inputs140

should be evaluated for all ROI pairs. However, this level of details is out of

the scope of the present work and we constrain such input cross-correlations to

4 pairs of ROIs. Another point concerns the use of individual EC skeletons or

refinements of SC using graph theory for individual groups [35], but we leave

this for later work.145

Formally, the network model is a multivariate Ornstein-Uhlenbeck process,

where the activity variable xi of node i decays exponentially with time constant

τx - estimated using Eq. (2) - and evolves depending on the activity of other

populations: dxi =
(−xi

τx
+
∑
j 6=i Cijxj

)
dt+ dBi. Here, dBi is spatially colored

noise with covariance matrix Σ, with the variances of the random fluctuations on150

the diagonal and cross-correlated inputs corresponding to off-diagonal elements

for CUN, PCAL, ST and TT (see Table 1). In the model, all variables xi

have zero mean and their spatiotemporal covariances Qτij , where τ indicates

time shift, can be calculated by solving the Lyapunov equation: JQ0 +Q0J† +

Σ = 0 for τ = 0; and then Qτ = Q0expm(J†τ) for τ > 0. Here J is the155

Jacobian of the dynamical system and depends on the time constant τx and the

network effective connectivity: Jij =
−δij
τx

+Cij , where δij is the Kronecker delta
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and the superscript † denotes the matrix transpose; expm denotes the matrix

exponential. In practice, we use two time shifts: τ = 0 on the one hand and

either τ = 1 or 2 TR on the other hand, as this is sufficient to characterize the160

network parameters.

2.7. Parameter estimation procedure

We tune the model such that its covariance matrices Q0 and Qτ repro-

duce the empirical FC, namely Q̂0 and Q̂τ , with τ being either 1 or 2 TR.

The uniqueness of this estimation follows from the bijective mapping from the165

model parameters C and Σ to the FC pair (FC0,FC1). Despite the estimation

of input cross-correlation, the essential steps are similar to the iterative opti-

mization procedure described previously [19] to tune the network parameters

C and Σ. At each step, the Jacobian J is calculated from the current value

of C. Then, the model FC matrices Q0 and Qτ are calculated from the con-170

sistency equations, using the Bartels-Stewart algorithm to solve the Lyapunov

equation. The difference matrices ∆Q0 = Q̂0 − Q0 and ∆Qτ = Q̂τ − Qτ de-

termine the model error E =
∑
i,j(∆Q

0)2 +
∑
i,j(∆Q

τ )2, which is the matrix

distance between the model and the data observables. The desired Jacobian

update is the matrix ∆J† = (Q0)−1[∆Q0 + ∆Q1expm(J†τ)], which decreases175

the model error E at each optimization step, similar to a gradient descent. The

best fit corresponds to the minimum of E. Finally, the connectivity update is

∆Cij = ηC∆Jij for existing connections only; other weights are forced at 0.

We also impose non-negativity for the EC values during the optimization. To

take properly the effect of cross-correlated inputs into account, we adjust the180

Σ update from the heuristic update in [19]: ∆Σ = −ηΣ(J∆Q0 + ∆Q0J†). As

with weights for non-existing connections, Σ elements distinct from the diago-

nal and cross-correlated inputs are kept equal to 0 at all times. In numerical

simulations, we use ηC = 0.0005 and ηΣ = 0.05.

To verify the robustness of the optimization with respect to the choice for185

ROIs with (spatially) cross-correlated inputs, we compared the tuned models

with input cross-correlation for 1) CUN, PCAL, ST and TT; 2) CUN, PCAL,
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LING, LOCC, ST, TT and MT; 3) none. Although detailed estimates differ, the

results presented in this paper are qualitatively observed for all three models.

In practice, the model compensates the absence of input cross-correlations by190

overestimating the connections between the corresponding ROIs. For simplicity,

we only consider such inputs for putative primary sensory ROIs involved in the

task here.

The optimization code is available with the empirical data on github.com/

MatthieuGilson/EC_estimation. The discarded subjects in the present study195

are 1, 11 and 19, among the 22 subjects available (numbered from 0 to 21).

2.8. Normalized statistical scores and effective drive (ED)

We define the following z-scores for X being C or Σ with respect to the

whole distribution over all connections/ROIs and subjects as

score(Xij) =
mean(Xij)− lX

std(Xij)
, (3)

where mean and std correspond to the mean and standard deviation over sub-

jects for the considered matrix element, while lX is the median of all relevant

non-zero elements of C or Σ, as illustrated by the dashed-dotted line in Fig. 5A.

We also define the effective drive as

EDij = score(Cij

√
Q0
jj) , (4)

with the corresponding median lED. It measures how the fluctuating activ-

ity at region j with amplitude corresponding to the standard deviation
√
Q0
jj

propagates to region i.200

2.9. Louvain community detection method

We identify communities in networks based on the modularity of a partition

of the network [36]. The modularity measures the excess of connections between

ROIs compared to the expected values estimated from the sum of incoming

and outgoing weights for the nodes (targets and sources, respectively). The205

Louvain method [37] iteratively aggregates ROIs to maximize the modularity of
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a partition of the ROIs in community. Designed for large networks, it performs

a stochastic optimization, so we repeat the detection 10 times for each subject in

practice and calculate the average participation index - in the same community -

for each pair of ROIs over the subjects and 10 trials for each of the two conditions210

(rest and movie).

To test the significance of the differences between the estimated communities

of each condition, we generate 1000 surrogate communities where the conditions

are chosen randomly with equal chance for each subject. This gives a null

distribution of 1000 participation indices for each pair of ROIs, whose upper 5%215

tail is used to determine significance.

3. Results

3.1. Changes in spatiotemporal FC between rest and movie viewing

We re-analyzed BOLD imaging data already reported recorded in 22 healthy

volunteers when watching either a black screen - referred to as rest - or a movie220

(2 sessions of 10 minutes for each condition). Here these signals are aggregated

according to a parcellation of N = 66 cortical regions, or regions of interest

(ROIs), listed in Table 1. Firstly, we examine the changes in BOLD statis-

tics up to the second-order between the two conditions, since these functional

observables are typically used to tune whole-brain dynamic models: BOLD cor-225

relations [27, 28, 29] and time-shifted covariances [19]. Doing so, we address

the question of which statistics of the BOLD time series discriminate between

the two behavioral conditions. As shown in Fig. 1A, the BOLD signals do not

exhibit consistent changes in their means (circles) between rest and movie at the

subject level. In contrast, the BOLD variances (squares) increase by about 50%230

on average when watching the movie; the black lines indicate a perfect match.

The right panel of Fig. 1A displays time constants τx (triangles) estimated from

BOLD autocovariance functions. They indicate the “memory depth” of the

corresponding time series, quantifying how much the BOLD activity at a given

TR influences the successive TRs; see Eq. (2) in Methods. Here no significant235
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change of temporal statistics, unlike reduction of long-range temporal corre-

lations measured by the Hurst exponent [16]. From the plots in Fig. 1A, we

discard three individuals (in red) with extreme values: two for the variances

(excessive variance for movie) and one for τx (small values for both conditions).

From the original 22 subjects, this leaves 19 for the following analysis.240

Now considering ROIs individually and the variability of the BOLD means

and variances over the subjects in Fig. 1B, we observe as before significant

changes only for the variances in some ROIs (blue crosses). Considering BOLD

covariances for pairs of ROIs, we calculate for each matrix element the signif-

icance for each matrix element using Welch’s t-test: both FC0 with zero time245

shift and FC1 with a shift of 1 TR are displayed in Fig. 1C; see Eq. (1) in Meth-

ods for a formal definition of FC. As a comparison, we also show the BOLD

correlations in Fig. 1D: distinct matrix elements appear to be the most signifi-

cant, but the comparison of the corresponding p-value distributions in Fig. 1E

shows that variances (in cyan) discriminate between between rest and movie,250

followed by correlations (black), then FC0 (dark blue) and finally FC1 (green).

3.2. The noise-diffusion network model captures well the changes in spatiotem-

poral FC across conditions

In order to make sense of the collective changes observed in the spatiotem-

poral FC and move beyond a phenomenological description, the present studies255

draws upon our recent modeling study for resting-state fMRI data [19]. The

dynamic network model aims to reproduce the empirical BOLD covariances,

both with and without time shift. This generative model is schematically rep-

resented in Fig. 2 with only a few cortical regions in the diagrams, while the

matrices involve all N = 66 ROIs that cover the whole cortex. Fig. 2A shows260

the structural connectivity (SC), which is determined by DSI data, measuring

the density of white-matter fibers between the ROIs; gray pixels indicate ho-

motopic connections that are added post-hoc, as explained in Methods. The

model comprises two sets of parameters: local variability corresponding to the

input covariance matrix Σ (purple noisy inputs in Fig. 2B) and recurrent ef-265
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Figure 1: fMRI data recorded on subjects watching a black screen (rest) or a

movie. A: Comparison of BOLD means, variances and time constants τx between the two

conditions: rest and movie. Each symbol represents a subject and red symbols indicate the

three discarded subjects, leaving 19 valid subjects for the following analysis. The black lines

indicate identical values for rest and movie. B: Changes in BOLD mean and variance between

rest and movie conditions. Each cross represents one of the N = 66 cortical ROIs and the

variability corresponds to the distribution over all 22 subjects. For the variances, blue crosses

indicate significant changes between rest and movie (with p-value p < 0.01). C: Significant

changes in covariances matrices, FC0 with no time shift and FC1 with a time shift equal to 1

TR. The plotted score are − log10(p) as in C. D: Same as D for BOLD correlations instead

of covariances. E: Comparison of cumulative distribution of p-values for variances (diagonal

of FC0 in cyan), covariances (off-diagonal elements of FC0 in blue), correlations (black) and

FC1 values (green). The vertical dotted line indicates the significance threshold for p < 0.01

(uncorrected), while the Bonferroni family-zise error rate 0.05 is indicated by the dashed line

for N parameters (variances) and the dashed-dotted line for N(N + 1)/2 = 2211 parameters

(covariances).
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fective connectivity (EC) between ROIs (matrix C with directional connections

represented by the uneven red arrows). The skeleton of EC is determined by

SC, assuming the existence of connections in both directions; the weights for

absent connections are always zero. Here we include input cross-correlations for

homotopic regions (anti-diagonal of Σ) in the visual and auditory ROIs: CUN,270

PCAL, ST and TT (see Table 1). The rationale is to account for binocular

visual and binaural inputs related to the movie stimulus, whose corresponding

strengths are estimated as other parameters. The fluctuating activity of each

ROI due to the input covariance Σ is shaped by the recurrent EC to generate

the network pattern of correlated activity. The latter is measured by the pair275

of covariance matrices FC0 and FC1 (see Fig. 2C).

The parameters for existing connections in C and input (co)variances in Σ

are optimized iteratively such that the model FC0 and FC1 best fit their empir-

ical counterparts, as illustrated in Fig. 2C. In practice, the model is calibrated

by the estimated time constants τx in Fig. 1B, a single value for all ROIs per280

each subject and condition. This choice is motivated by our previous results

for resting-state fMRI where no difference across ROI time constants was ob-

served. An improvement would consist in estimating individual values for each

ROI/subject/condition, but this is left for later work. From an initial homo-

geneous diagonal matrix Σ and effective connectivity C = 0, each optimization285

step aims to reduce the model error, defined as the matrix distance between the

model and empirical FC0, plus the same matrix distance for FC1. The best fit

corresponds to the minimum of the model error, which gives the estimated C

and Σ for each subject and condition. In summary, the model inversion explains

the observed spatiotemporal FC by means of Σ and C.290

The precision of the estimated parameters is limited by the number of time

points in the BOLD signals, but this procedure unambiguously retrieves the

model parameters for accurate empirical FC0 and FC1 observables. The iter-

ative approach provides an advantage compared to multivariate autoregressive

models applied directly to the data: it enhances the robustness of the estima-295

tion by reducing the number of estimated parameters (absent connections are
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kept equal to 0) and imposing constraints (non-negativity for C and Σ). Impor-

tantly, the model optimization takes network effects into account: EC weights

are tuned together such that their joint update best drives the model toward

the empirical FC matrices. It is also worth noting that we only retain informa-300

tion about the existence of connections from DSI; individual DSI values do not

influence the corresponding values in C. In practice, EC directionality depends

mainly on the time-shifted covariance FC1. Further details about the model

and the optimization procedure are given in Methods.

The qualitative fit of the model is displayed in Fig. 3A (left panel) for FC0305

and a single subject at rest. Quantified by the Pearson correlation coefficients

between the model and empirical FC matrix elements, the model goodness of

fit is summarized in the right panel of Fig. 3A for all subjects and the two

conditions, which is very good for almost all cases with plotted values larger

than 0.7 [29]. Importantly, we verify that the model captures the change in FC310

between the two conditions, as illustrated in Fig. 3B: the left panel provides

the example for a subject and the right panel the summary for all subjects, as

in Fig. 3A. Once again, the Pearson correlation between the model and empir-

ical ∆FC (movie minus rest) is larger than 0.6 for most subjects. Moreover,

the parametric p-values for the changes in FC0 matrix elements are in good315

agreement with their empirical counterparts in Fig. 3C, with an overall Pear-

son correlation coefficient of 0.8 with p < 10−10. Only elements corresponding

to absent EC connections (in black) are not in good agreement; correcting SC

with the addition of missing edges could improve this aspect, but this requires

individual DSI data instead of the generic SC used here. To further verify the320

robustness of estimated parameters, we repeat the same estimation procedure

using FC0 and FC2 with a time shift of 2 TR instead of FC0 and FC1 (with a

1 TR) as done so far. We found nearly identical Σ estimates and very similar

C estimates (Fig. 3D), which agrees with our previous results for resting-state

fMRI data [19].325

To finally characterize how the model parameters respectively capture the

FC statistics, we compare in Fig. 3E the model error for the four models com-
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Figure 2: Noise-diffusion dynamic cortical model. A: DSI measurements provide the

skeleton of the intracortical connectivity matrix. We add inter-hemispheric connections (gray

pixels on the anti-diagonal) as they are known to be missed by DSI. B: The parameters of

the model are the recurrent effective connectivity C and the input covariances Σ. Contrary to

SC, EC has directional connections, as represented by the red arrows with various thicknesses

for reciprocal connections. Some existing connections may have zero weights (dashed arrow),

equivalent to an absence of connections for the network dynamics. Σ comprises variances

on the diagonal (one for each ROI) plus 4 pairs of symmetric elements on the anti-diagonal

for cross-correlated inputs for CUN, PCAL, ST and TT (cf. Table 1). As a convention, the

formatting of all matrices in this paper shows the source and target ROIs on the x-axis and

y-axis, respectively. C: From known input covariance Σ and effective connectivity C, the

model FC0 and FCτ matrices are calculated and compared to their empirical counterparts,

which in turn gives the updates ∆C and ∆Σ for the model. The optimization is performed

until the minimal matrix distance is reached between the model and empirical FC matrices

(average of both sets).
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bining the model estimates for the two conditions, rest and movie. The model

error corresponding to the movie FC is decomposed into three components: the

FC0 variances (on the matrix diagonal) and covariances (off-diagonal elements),330

as well as FC1 elements. The horizontal dotted line indicates the error for the

M/M model, with the two estimates from the movie data. When the EC is

changed for rest (M/R model), the fit for FC0 variances and covariances be-

come worse, but only dramatically for a few subjects. However, the FC1 fit is

worsen for many subjects. In contrast, changing Σ from movie to rest (M/R335

model) is particularly dramatic for FC0 variances; it also increases the error -

compared to M/M - for FC0 covariances and FC1 for all subjects. Last, the

R/R model with both rest estimates appears worse for FC1 and equally bad

for FC0 elements. This illustrates that C and Σ are combined in shaping FC,

so observed changes in FC requires a proper model inversion to interpret its340

“causes”, here local variability and network connectivity. In particular, a phe-

nomenological analysis of empirical FC0 is not sufficient to estimate the change

in cortical interactions, in the limit of the proposed dynamic model.

3.3. Movie viewing induces greater changes in local variability than network

effective connectivity345

From Fig. 3, we conclude that the tuned model satisfactorily captures the

changes in empirical FC between rest and movie. Now we examine how the

estimated parameters discriminate between the two conditions, to verify whether

C and Σ are useful fingerprints for the cortical dynamics. Fig. 4A displays the

global distributions for C and Σ over all subjects: the Kolmogorov-Smirnov350

distance between the rest and movie distributions is 0.20 for Σ, to be compared

with only 0.04 for C. At the level of individual parameters, Fig. 4B display

the significance (same parametric t-test as in Fig. 1) for the changes in C (in

bright red) and Σ (purple) across conditions: local variability is more affected

by movie viewing than EC. The significance for changes in the sum of incoming355

and outgoing weights is also plotted: it shows that outgoing connections (thin

solid dark red curves) exhibit more significant changes than incoming ones (thin
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Figure 3: Goodness of fit of the model. A: The left panel represents the model and

empirical FC0 at rest for a single subject; each dot represent a matrix element (variances =

diagonal elements in cyan, off-diagonal elements in dark blue). The right panel summarizes the

goodness of fit as measured by the Pearson correlation over all subjects for the two conditions.

B: Same as A for ∆FC0 and ∆FC1 (movie minus rest). C: Comparison of empirical and

model p-values (uncorrected Welch’s t-test) for the each matrix element of ∆FC0. Cyan

crosses indicate variances, blue indicate covariances corresponding to an existing connection

in EC and black covariances for absent connections. D: Consistency between the ∆C and ∆Σ

matrices obtained for each subject using two distinct optimizations, FC0/FC1 with τ = 1 TR

versus FC0/FC2 with τ = 2 TR. The left and middle panels show the correspondence of

matrix elements, with the black diagonal indicating a perfect match. Mean values over all

subjects are plotted in colors. The right panel displays the Pearson correlation coefficients -

one per subject - between the model estimates. E: Comparison of the four models combining

the estimated C and Σ for the two conditions where X/Y corresponds to CX and ΣY with X

and Y being either rest (R) or movie (M). The plotted value is the difference in model error

- with respect to the movie empirical FC - between the model indicated on the x-axis and

M/M. Here the model error is decomposed according to the three components of FC: diagonal

of FC0 (left), off-diagonal elements of FC0 (middle) and whole FC1 matrix (right). The violin

plots correspond to the variability over the 19 subjects.
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dotted line), as well as connections taken individually. From Fig. 4C, changes

in Σ are mainly increases, whereas those for C are distributed around 0.

We now examine in Fig. 4D which connections and ROIs experience the360

most significant changes in parameters. For Σ (middle panel), the significance

limit with p < 0.01 (uncorrected) is displayed in dotted line, while the dashed

line corresponds to a Bonferroni correction with family-wise error rate equal to

0.05 (that is, p < 0.05/m with total number of parameters m = N + 4 = 70

for Σ). We identify 5 parameters that pass the Bonferroni thershold, which all365

concern the bilateral ST and LOCC ROIs (7% of all parameters, in bright red);

4 more ROIs (in darker red) pass the uncorrected threshold (13% in total).

In contrast, 4 EC connections pass the Bonferroni threshold (0.3%) and 82

more the uncorrected threshold (7%). These changes concern 55 ROIs among

the 66; moreover, 31 are EC increases (including the 4 passing the Bonferroni370

threshold) versus 55 decreases. For outgoing weights, only the right LOCC

shows a significant increases passing the Bonferroni threshold (2%) and 8 more

ROIs are above the uncorrected threshold (12%). This also raises the issue of

comparing the significance of EC changes (Bonferroni correction with m = 1180

EC parameters) versus that for Σ (m = 70 parameters, more than one order375

of magnitude lower). Non-parametric permutation testing points to the same

ROIs - with slightly higher significance - but this does not solve the problem

of family-wise error control. This motivates a complementary analysis based

on network dynamics and graph theory (now with non-parametric significance

testing) to interpret the changes in EC.380

3.4. Dynamical balance in the integration of visual and auditory inputs

The power of our model-based approach lies in disentangling local from

network contributions to the observed changes in FC. LOCC belongs to the

visual cortex - albeit not the primary visual cortex - and ST hosts the primary

auditory cortex. Therefore we interpret the increase of local variability for385

those sensory ROIs as an extrinsic increase of the stimulus load in the movie

viewing condition. Interestingly, changes in BOLD variances that also pass the
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Figure 4: Changes in the estimated model parameters between rest and movie. A:

Histograms of C and Σ values in the two conditions. The median for each distribution of the

rest condition is indicated by the vertical dashed-dotted line. B: Significance of the changes in

C and Σ, as well as the sum of incoming weights in C (Cin) and of outgoing weights (Cout) for

each ROI. The curves correspond to the cumulative distribution of − log10(p) for the p-value p

obtained from Welch’s t-test for unequal variances for the corresponding connection or ROI, as

done in Fig. 1 for FC. On the right, the mean input variances Σ over all subjects are mapped

on the cortical surface (left and right side views) for the two conditions; hot colors indicate

large values. C: Histogram of the magnitudes of the changes - movie minus rest - ∆C and

∆Σ for all connections and ROI. The right panel displays the mean Σ over all subjects in each

condition mapped on the cortical surface. D: Connections with most significant changes in C

and ROIs with significant changes in outgoing weights Cout, local variability Σ and empirical

BOLD variances. Two significance thresholds are plotted: the vertical dotted line corresponds

to p < 0.01 (uncorrected) and the dashed line p < 0.05/m with Bonferroni correction (m = N

except for Σ where m = N + 4 for the cross-correlated inputs and m = 1180 for C). The

corresponding ROIs are plotted in dar red and red, respectively. For Σ, the 4 cross-correlated

inputs for visual and auditory ROIs are in the right column indicated by ‘x’.
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Bonferroni thershold - namely rIP, rFUS and lBSTS - are not straightforwardly

explained by a corresponding change in the local variability Σ in Fig. 4D. This

suggests that their increase could arise instead from the propagation of activity390

from other ROIs, as a network effect. In other words, even though changes in

local activity between rest and movie are stronger both in magnitude and in

significance, they do not explain all changes for FC.

To address this question, we examine the propagation of sensory information

from the visual and auditory bilateral ROIs in our parcellation: CUN, PCAL,395

LOCC and LING on the one hand; ST, TT and MT on the other hand. We also

focus on the above-mentioned FUS and BSTS that are known to be involved

downstream visual and auditory processing [38, 39]. Fig. 5A shows the SC

density between those visual (located in the lower left side and indicated by

the red bars), auditory (upper right side in blue) and so-called ‘integration’400

ROIs (center in purple). The dark pixels along the diagonal of the SC matrix

hints at the hierarchy from visual ROIs (‘VIS’) and auditory ROIs (‘AUD’) to

integration ROIs (‘INT’), corresponding to the solid arrows in the diagram on

the top. In addition, fewer direct connections between VIS and AUD those on

the matrix sides (dotted arrow in the diagram).405

The estimated EC weights in Fig. 5B suggest that - for both rest and movie -

direct anatomical connections between VIS and AUD are not “used” in practice,

but fluctuating activity propagates between VIS and AUD via INT, back and

forth. Note that plotted values in Fig. 5B corresponds to z-scores averaged over

the subjects and normalized over the distribution for all connections, see Eq. 3410

in Methods and Fig. 4A with the median value indicated by the dashed-dotted

line. To further quantify this hierarchical propagation, we use the effective

drive (ED) that is a canonical measure for the noise-diffusion network used

here. As illustrated in the left diagram, it measures the amount of fluctuating

activity at ROI j (standard deviation of BOLD signal
√
Q0
jj , where Q0

jj is the415

model variance on the diagonal of FC0) that is sent to ROI i (multiplied by

the EC weight Cij) and contributes to its activity. Although Fig. 5B shows

a picture globally similar for rest and movie, the difference of ED z-scores in
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Fig. 5C indicates an increase to FUS from all VIS ROIs, as well as an increase

from PCAL and LOCC to LING and LOCC. In addition, LOCC sends stronger420

activity to PCAL and CUN. In the auditory side, ST increases its effect on TT,

MT, BSTS and FUS. Together, most increases are along the diagonal of the

hierarchical integration mentioned above and the bridge between VIS and AUD

is mainly ensured by LOCC, FUS, BSTS and MT.

Thanks to our model-based approach, we can decompose the change in ED425

into two components related to the changes in C and Σ between rest and movie.

If we retain only the increase in local variability Σ for the movie condition, ED

increases almost everywhere, and in a particularly large amount for direct con-

nections from ST to visual ROIs (left panel); note that visual ROIs also increase

their direct effect on ST. However, negative changes in C nullifies this increase,430

as shown in the right panel. In addition, increased C values boost EC along

the diagonal. This means that the mixed positive and negative changes in C

select pathways to preserve the hierarchical integration of sensory influx. To

check whether this yin-yang effect is significant, we calculate the asymmetry

between the left and right matrices in Fig. 5C; in practice, this is given by435

the scalar product of the vector obtained by stacking the matrix columns, nor-

malized by the total ED changes in absolute value (matrix in center). The

asymmetry corresponding to the 18 bilateral ROIs in Fig. 5C is represented by

a diamond in Fig. 5D and compared to a surrogate distribution for the same

number of randomly chosen ROIs, while preserving the hemispheric symmetry.440

The significance for the observed asymmetry in the VIS-INT-AUD subnetwork

is p = 0.04 and the 104 surrogate values are distributed around zero, confirming

that this yin-yang effect does not come artificially from particular properties of

the model, but from the estimated parameters instead.

3.5. Path selection in the whole cortical network445

Now we analyze the ED changes in a more global manner to measure the

effect of integration path selection at the whole-cortex level. Using the Louvain

method from graph theory [36, 37], we estimate communities with higher-than-
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Figure 5: Changes in activity in the early visual and auditory pathways. A:

Structural connectivity between 14 ROIs in the early visual and auditory pathways, as well

as 4 integration ROIs. Connections from the left and right hemispheres are grouped together.

B: Statistical z-scores for the C, Σ and effective drive (ED) in each condition for the ROIs

and connections displayed in A. The score measures the proportions of large values over the

subjects for each matrix element in the global distribution; see Eq. 3 for a formal definition.

On the bottom left, the schematic representation describes the effective drive that quantifies

the propagation of fluctuating activity from ROI j to ROI i, which contributes to the variance

of the ROI activity Q0
ii in addition to the input variance Σii; see Eq. (4). C: Changes in

effective drive for ROIs between rest and movie (middle panel), as well as contributions from

∆C (right) and ∆Σ (left). D: Comparison of the asymmetry of the contributions from ∆Σ

and ∆C for the subnetwork in C (diamond marker) with the asymmetry distribution of similar

subnetworks of randomly chosen ROIs in the network (violin plot).23
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chance exchange of fluctuating activity between them, as measured by ED. We

perform community analysis for each subject in each condition and pool the450

results over the subjects to obtain a participation index of ROI pairs, which

measures the probability for them to be in the same community. To test the

significance of these, we repeat the same procedure 103 times while mixing the

labels (rest and movie) among the subjects to generate surrogate participation

indices. This gives an individual null distribution of 103 values per ROI pair;455

details are provided in Methods.

Fig. 6A displays increases and decreases (dark pixels) of participation indices

for all ROI pairs in movie compared to rest. For illustration purpose, the ROIs

grouped into 6 groups: somatosensory-motor (SMT), frontal (FRNT) and so-

called ‘central’ ROIs (CTRL) in addition to the visual, auditory and integration460

regions examined in Fig. 5; note that the integration group includes more ROIs

than before, see the Table 1. Most decreases concern ROIs in the same hemi-

sphere (bottom left and top right in the right panel), whereas increases involve

interhemispheric ROI pairs (top left and bottom right in the left panel). These

increases especially concern AUD, INT and FRNT. Last, interactions between465

VIS and INT strongly increase both within and between hemispheres.

To understand the changes in ED from a feedforward-feedback perspective,

Fig. 6B summarizes the percentage of increase and decrease compared to rest

between the groups, where the two hemispheres are taken together. The largest

increases concern VIS and AUD internally, as well as feedforward projections470

from VIS to INT. Globally, all contributions from VIS, AUD and INT increase,

at the noticeable exception of direct interactions between AUD and VIS. Once

again, the feedback to VIS and AUD comes from INT. Fig. 6C summarizes the

changes: At rest, AUD is strongly tied to the INT, SMT and part of FRNT. This

cluster is decoupled in the movie condition such that part of INT binds to VIS.475

Meanwhile, INT remains linked to FRNT, whose interhemispheric interactions

are strongly boosted. This underlines a selective coordination of cortical paths

to implement a distributed and hierarchical processing of sensory information.
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Figure 6: Path selection and inter-hemispheric integration in the cortex. A:

Changes in index participation in ED-based communities estimated by the Louvain method:

increases (left) and decreases (right) in movie as compared to rest. The plotted values cor-

respond to averages over the 19 subjects, for each of which the Louvain method was applied

10 times on the ED matrix. ROIs are ordered separately for the two hemispheres according

to the groups in Table 1: red for visual, blue for auditory, purple for integration, yellow for

somatosensory-motor cyan for frontal and green for “central”; the pixels for ROIs belonging to

the the same group are displayed in color. B: Changes in effective drive between ROIs pooled

in 6 groups: visual in red, auditory in dark blue, integration in purple, somatosensory-motor

in yellow, frontal in cyan and “central” in green. The change is calculated in % of the value

for rest. The lists of the group concern ROIs from both hemispheres. C: Schematic diagram

of increased interactions between ROI groups for movie compared to rest summarizing results

in A and B. Arrows in solid line indicate an increase, a dotted line a mixture of decreases and

increases.
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4. Discussion

Our results shed light on a fundamental question in neuroscience: how do480

inputs and connectivity locally interact to generate large-scale integration of

information in the brain? To address this question, we use a recently developed

model-based approach to provide an interpretation of task-evoked BOLD activ-

ity in terms of cortical communication, by decomposing it into local variability

and network effective connectivity. The main finding of this study concerns485

the reorganization of the cortical connectivity during movie viewing: although

changes in EC appear at first sight smaller than those in local variability, they

induce strong changes in communication across the cortex.

First, they are involved in a down-regulation of forward connections in a

compensatory manner, such that regional inputs do not saturate the network;490

meanwhile, some specific backward connections are boosted to enable the effi-

cient transmission, such as top-down signals from integration to sensory areas,

despite the activity increase of the latter (Fig. 5C). The dynamic balance is

expected to be task dependent - in regard of extrinsic stimulus inputs - and

result in complex patterns of changes in functional synchronization at the net-495

work level (Fig. 1C). Our results are in line with previous studies and suggest a

continuum of the balanced-activity principle from the neuronal level [40] to the

cortical level [41].

Second, specific pathways are actually selected almost everywhere in the

cortex to shape the integration of sensory information. Our results suggest a500

reorganization of the functional communities in terms of propagation of BOLD

activity (Fig. 6A): during the movie condition, homotopic areas increase their

information exchange via inter-hemispheric connections - especially parietal and

temporal areas related to multimodal integration [42, 39], as well as frontal

areas. This illustrates how the cortex becomes specialized when engaging a task,505

while specific high-level ROIs remains rather more stable and keep listening

the whole cortex. Because of the movie-viewing task considered here and its

stark difference compared to the rest condition, we observe increases of BOLD
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variances, presumably related to the increase in stimulus load and similar to

previous MEG measurements for the same experiment [11]. Carefully designed510

experiments that controlled for the change in stimuli showed instead a decrease

of variance when a subject engages a visual recognition task, as opposed to

passive viewing [16]. In line with other studies that point to decreased brain

interactions during task [43, 44], the reconfiguration compared to the resting

state may consist in shutting down more pathways than opening new ones (cf.515

balanced EC changes in Fig. 4C). This could explain the reduction of global

cortical activity, once the stimulus-related changes are taken into account.

Beyond the task analyzed here, our study demonstrates that spatiotemporal

BOLD (co)variances convey important information about the cognitive state

of subjects, as was previously reported [16, 17]. Our spatiotemporal FC corre-520

sponds to transitions of fMRI activity between successive TRs; this statistics is

averaged over the whole recording period, in contrast to other time-dependent

measures such as inter-subject correlations [45], metastability [46] or measures

of dynamic FC averaged over 1-2 minutes, corresponding to periods of more

than 30 TRs [15]. This was already suggested by our previous analysis of rest-525

ing state [19] and is in line with recent results that focused on the temporal

component of BOLD signals [47, 18]. Moving beyond the analysis of spatial FC,

namely covariances without time shift (FC0) or BOLD correlations, is thus a

crucial step toward a better interpretation of fMRI measurements. The proposed

model uses an exponential approximation of BOLD autocovariance (locally over530

a few TRs) and discards slow-frequency variations. In contrast, previous studies

highlighted that, when considering a broader spectrum with slow frequencies,

BOLD time series have long-range temporal interactions [48, 16, 49]. This mul-

tifractal property of BOLD signals has been analyzed to describe undirected

interactions between ROIs [17]; it would be interesting to compare them to the535

directed effective connectivity estimated here, which is left for future work.

Following resting-state studies [6, 7, 8, 9], the focus on second-order BOLD

statistics allows for stepping from a structure-centric [50] to a network-oriented

analysis. The input noise in Σ play a functional role in our model, which we
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interpret as spontaneous activity. The comparison of Σ across conditions allows540

for a quantification of intrinsic and extrinsic local activity for each ROI [13, 14].

Taking the intrinsic noisy nature of brain circuits [51, 52, 53] properly into

account in models is a challenge. Therefore, it has been done for models with

complex local dynamics such as dynamic causal model (DCM) only for small

number of ROIs itinially [54], even though recent efforts aim to extend it to the545

whole brain. Here the proposed modeling makes use of the putative diffusion

of this noisy activity in the cortical network via the long-range projections to

tune the model and interpret the model estimates. In a way, it extends analyses

based on partial correlations that measure undirected interactions [44]. Unlike

dynamic causal modeling (DCM), we do not model self connectivity within550

ROIs, but directly estimate the amplitude of random fluctuations within each

region and how it is transferred via the effective drive (Fig. 5).

Although it does not focus on the mechanisms underlying the dynamic reg-

ulation of EC [55, 54], our model provides a fingerprint of the brain dynamics

that we expect to be discriminative between tasks and behavioral conditions, as555

shown here for passive vision and audition. We stress the importance of con-

sidering the whole cortex - or better the whole brain with subcortical regions

- to generate the estimated fingerprint: changes across conditions reported in

Fig. 6 concerns many areas distributed all over the brain. At this level, C and

Σ lie in a high dimensional space (one per connection and about one per node,560

respectively), so statistical analysis of the estimated parameters across condi-

tions may suffer from an approach based on family-wise error correction (e.g.,

Bonferroni). Graph theory is then a useful complement, as was done here using

community analysis.
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