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Abstract 

The availability of electronic health record (EHR)-based phenotypes allows for genome-wide 

association analyses in thousands of traits, and has great potential to identify novel genetic variants 

associated with clinical phenotypes. We can interpret the phenome-wide association study 

(PheWAS) result for a single genetic variant by observing its association across a landscape of 

phenotypes. Since PheWAS can test 1000s of binary phenotypes, and most of them have unbalanced 

(case:control = 1:10) or often extremely unbalanced (case:control = 1:600) case-control ratios, 

existing methods cannot provide an accurate and scalable way to test for associations. Here we 

propose a computationally fast score test-based method that estimates the distribution of the test 

statistic using the saddlepoint approximation. Our method is much faster than the state of the art 

Firth’s test ( ~ 100 times). It can also adjust for covariates and control type I error rates even when 

the case-control ratio is extremely unbalanced. Through application to PheWAS data from the 

Michigan Genomics Initiative, we show that the proposed method can control type I error rates 

while replicating previously known association signals even for traits with a very small number of 

cases and a large number of controls.  
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Introduction 

Over the last decade, genome wide association studies (GWASs) have proved instrumental to 

unravelling the genetic complexities of hundreds of diseases and traits and their associations with 

common genomic variations. To date, thousands of GWASs have identified more than 4000 

significant loci to be associated with human diseases and traits.1 However, since most GWASs 

investigate a single disease or trait, they cannot exploit the cross-phenotype associations or 

pleiotropy2 where a single genetic variant can be associated with multiple phenotypes. Phenome-

wide association study (PheWAS) has been proposed as an alternative approach to take advantage 

of the pleiotropy phenomenon by studying the impact of genetic variations across a broad spectrum 

of human phenotypes or ‘phenome’. It is a complementary approach to GWAS in the sense that 

while GWAS attempts to identify phenotype-to-genotype associations, PheWAS uses a genotype-to-

phenotype approach. The first PheWAS3 was published as a proof-of-principle study, which 

demonstrated that the PheWAS strategy could be applied to successfully identify the expected gene-

disease associations. Additional studies4-8 have shown that the PheWAS approach can further 

identify novel disease-SNP associations.9 

The PheWAS approach depends on the availability of detailed phenotypic information. Currently, 

most of the PheWASs are applied to clinical cohorts linked to electronic health records (EHR) and 

utilize the International Classification of Disease (ICD) billing codes to define clinical phenotypes. The 

ICD codes provide an intuitive ordering of the phenotypes based on clinical disease and trait 

classifications. Since the current genotyping and imputation technologies allow for genotyping tens 

of millions of variants at very low cost,10 an extensive PheWAS can attempt to investigate the 

genotype-phenotype associations by performing genome-wide association analyses in thousands of 

traits. We can interpret the PheWAS result of a single genetic variant by observing its associations 

across the phenome. Such a PheWAS is exhaustive in nature and has great potential to identify novel 

variants associated with clinical diseases. 
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One of the main challenges of the PheWAS analysis is that most of the phenotypes are binary 

phenotypes with unbalanced (1:5) or often extremely unbalanced (1:600) case-control ratios (See 

Figure S1), since the data is collected in cohorts. Although standard asymptotic tests, such as the 

Wald, score and likelihood ratio tests, are relatively well calibrated and asymptotically equivalent11 

for common variants (minor allele frequency (MAF) > 0.05) in balanced case-control studies, they 

can inflate type I error for low frequency (0.01 < MAF ≤ 0.05) and rare variants (MAF ≤ 0.01) in 

unbalanced case-control studies.12 Moreover, since the Wald and likelihood ratio tests need to 

calculate the likelihood or the maximum likelihood estimator under the full model, which is 

computationally expensive, they are not scalable for the amount of tests that PheWASs attempt. On 

the other hand, the score test is computationally efficient as it does not need to calculate the 

maximum likelihood under the full model. However, as mentioned before, it suffers from having 

highly inflated type I error rates in unbalanced studies. Ma et al. proposed Firth’s penalized 

likelihood ratio test13 as a solution to control the type I error rates in such situations. Firth’s test, 

despite being well calibrated and robust for testing low frequency and rare variants in unbalanced 

studies, lacks in computational efficiency as it also involves calculating the maximum likelihood 

under the full model. For instance, the projected computation time of the Firth’s test to test 1500 

phenotypes across 10 million SNPs is ~ 117 CPU-years (2000 cases, 18000 controls). Thus, it is 

impractical to apply the Firth’s test for analyzing large PheWAS datasets. 

In this paper, we propose a score-based single variant test for binary phenotypes which is well 

calibrated for controlling the type I errors and can adjust for covariates even in extremely 

unbalanced case-control studies. Moreover, our test is computationally efficient and scalable to test 

thousands of phenotypes across millions of SNPs in large PheWAS datasets. Our proposed test (SPA) 

is based on the score statistics and estimates the null distribution using the saddlepoint 

approximation14-16 instead of the normal approximation17 traditionally used in score tests. We 

further develop an improvement of our test (fastSPA) which renders the most computationally 

challenging steps to be dependant only on the number of carriers (subjects with at least one minor 
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allele) rather than the sample size. This improved test can substantially reduce the computation 

time, especially for low frequency and rare variants where the number of carriers is very low 

compared to the sample size. The projected computation time of our method to test for 1500 

phenotypes across 10 million SNPs is ~ 400  CPU-days (2000 cases, 18000 controls) which is more 

than a 100 times improvement over Firth’s test. In addition, through the extensive simulation 

studies and analysis of the Michigan Genomics Initiative (MGI) data, we demonstrate that the 

proposed approach can control type I errors and is powerful enough to replicate known association 

signals.  

 

Material and Methods 

Logistic regression model and saddlepoint approximation method 

We consider a case-control study with sample size n . For the thi  subject, let 1iY  or 0  denote the 

case-control status, iX  the 1k   vector of non-genetic covariates including the intercept, and iG  

the number of minor alleles ( iG  = 0,1,2) of the variant to test. To relate genotypes to phenotypes, 

we use the following logistic regression model, 

  logit Pr 1| , for 1,2, ,T
i i i i iY X G X G i n          (1.1)  

where   is a 1k  vector of coefficients of the covariates, and   is the genotype log-odds ratio. 

Under this model, we are interested in testing for the genetic association by testing the null 

hypothesis 0 : 0H   . Let ˆi be the estimate of   i  Pr Yi  1| X i  , which is a probability to be a 

case under 0H . A score statistic for   from the model (1.1) is given by  
1

ˆ
n

i i i
i

S YG 


  . 

Suppose  1 , ,T T
nX X X  is the n k  matrix of covariates,  1, , T

nG G G  is the genotype 
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vector, W  is a diagonal matrix with the thi diagonal element being  ˆ ˆ1i i  ,  and 

  1T TG WX XX WGG X


   is a covariate adjusted genotype vector in which covariate effects 

are projected out from the genotypes (details given in the Appendix). Then S  can be written as 

  
1

ˆ
n

i i i
i

GS Y 


    (1.2)  

and the mean and variance of S  under 0H  are 
0
( ) 0HE S   and  

0

2

1

( ˆ) ˆ 1
n

H i i i
i

V GS  


  , 

respectively, where iG is the thi element of G .   

The traditional score test approximates the null distribution using a normal distribution which 

depends only on the mean and the variance of the score statistic. The p-value can be obtained by 

comparing the observed test statistic, s and   0
0, HN V S . Normal approximation works well near 

the mean of the distribution, but performs very poorly at the tails. The performance is especially 

poor when the underlying distribution is highly skewed, such as in unbalanced case-control 

outcomes12, since normal approximation cannot incorporate higher moments such as skewness. In 

addition, the convergence rate of normal approximation18-20 is  1/2O n ,
 
which is not fast enough 

for rare variants.  

Saddlepoint approximation was introduced by Daniels14 as an improvement over the normal 

approximation. Contrary to normal approximation, where only the first two cumulants (mean and 

variance) are used to approximate the underlying distribution, saddlepoint approximation uses the 

entire cumulant generating function. Jensen21 further showed that saddlepoint approximation has a 

relative error bound of  3/2O n  making it a considerable improvement over the normal 

approximation.  
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To use the saddlepoint approximation, we first derive the cumulant generating function of 

S  from the fact that  ~i iBernoulliY   under 0H . Let ̂ be an 1n  vector with the thi element 

being ˆi . From (1.2), the estimate of the cumulant generating function of the score statistic S is, 

    0
1 1

ˆ( ) ˆ ˆlog log ,1 i

n n
G ttS

H i i i i
i i

K t E e e t G  
 

        

and the estimate of the first and second order derivatives of K are  

 
 
 

2

2
1 1 1

ˆ ˆ1ˆ ˆ , ''( )
ˆ ˆ1

( )
ˆ ˆ1

'
i

i
i

G tn n n
i i ii i

i iG t G ti i ii i i i

GG G
e

K t K t
e e

  
   



   





 

    
  



 

    

respectively. We note that , 'K K  and ''K  are plug-in estimates in which we plug in ˆi  instead of 

i .  Then, according to the saddlepoint method (Barndorff-Nielson15; 16), the distribution of S at s

can be approximated by,  

  1 loPr( g) vF s
w w

S s w      
 


 

 
 

where  ˆ ˆ ˆ ˆ ˆsgn( ) ( , ( )')2 'w v Kt ts K t t t  , t̂ is the solution to the equation )'(ˆK t s , and 

 is the distribution function of a standard normal distribution.  

 

Implementation details and approaches to reduce the computation time 

The saddlepoint approximation method involves finding the root of the saddlepoint equation 

)'(K t s . It is easy to verify that 'K is strictly increasing as ''( ) 0K t  for all t    , and 

 
1

ˆi

n

i
i

iGs Y 


  lies between
: 0 1

ˆlim '( )
i

n

i i it i G i

G GK t 


 

  


    and 
: 0 1

' ˆlim ( )
i

n

i i it i G i

K G Gt 




  


  . 

Therefore a unique root exists, and we can use popular root-finding algorithms (Newton-Raphson,22; 
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23 bisection,23 secant,23 Brent’s method24) to efficiently solve this equation. For our simulation studies 

and real-data applications we applied a combination of the Newton-Raphson and bisection method 

to solve the saddlepoint equations.  

The most computationally demanding step in this saddlepoint approximation method is calculating 

the cumulant generating function and its derivatives. Here we propose several approaches to reduce 

the computational complexities associated with these calculations. 

Faster calculation of the CGF using a partially normal approximation approach: The most 

computationally intensive step in the saddlepoint method is the calculation of the cumulant 

generating function K and its derivatives. In each step of the root-finding algorithm we need to 

calculate , 'K K  and ''K , each of which needs ( )O n  computations. Using the fact that many 

elements of G are zeroes (i.e, homozygous major genotypes), we propose a fast computation 

method that speeds up the computation to ( )O m , where m  is the number of non-zero elements in 

G . Without loss of generality we assume that the first m  subjects have at least one minor allele 

each and rests have homozygous major genotypes. We can then express S as 1 2S SS  where 

 11 ˆi ii i
mS YG 


    and  2 1
ˆi i i

n

i m
S YG 

 
   . Let   1T TWX WZ X X G


 and lZ be the thl

element of Z . Then we can further express 2S  as, 

 

     

   

2

2
1 1

1 1 1 1

1

0ˆ ˆ

ˆ ˆ

i i i i i i

il i i il i

n n

i m i m
n k k n

l l
i m l l i m

k

l

i

l
l

S Y X Y

X Y

G Z

Z Z

Z

X Y

S

 

 

   

     



 

 

  



 



 

   





  

where  
1

2 ˆ
n

i
l l i i

m
iS X Y 

 

  . Now, if we assume that the non-genetic covariates are relatively 

balanced in the sample, then the normal distribution should be a good approximation for the null 

distribution of each 2lS . Since 2S is a weighted sum of the 2lS s, we can also approximate the null 
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distribution of 2S using a normal distribution with mean and the variance under 0H  given by 

 
0 2 0HE S   and  

0

2
2

1

ˆ( ) ˆ1
n

H i i i
i m

GV S  
 

   . Then, the CGF of 2S can be approximated by, 

  
0

2
2 2

1( ) ,
2 Ht t VK S   

and the CGF of 1 2S SS  can be approximated by,

    
0

2

1 1

( ) 1 1ˆ ˆ ˆlog .
2

i

m
G t

i i i i

m

H
i i

e t Gt St VK   
 

        (1.3) 

In order to calculate the first two terms at the right hand side of (1.3), we will need iG s for 

, ,1i m  , which can be calculated in ( )O m computations since G only has m many non-zero 

elements and the quantity   1T TWXX WX X


can be pre-calculated. Then, the first two terms will 

require only ( )O m  computations as both of them sums over m many elements. Next, the variance 

 
0HV S  can be further broken down into, 

 

       

       

     

0

22

1 1

2 2

1 1

2

1

ˆ ˆ ˆ ˆ1 1

ˆ ˆ ˆ ˆ1 1

ˆ ˆ1 .

n n

H i i i i i i
i m i m

n

i i i i i i
i i

i

m

i
i

m
T T

i

V G X Z

X Z X Z

WX Z X

S

Z ZX

   

   

 

   

 



  

 

  



 

 

 





  

Since TX WX can be pre-calculated and Z is a 1k  vector, the first term requires ( )O k

computations, and the second term requires ( )O m computations, which implies that the calculation 

of  
0 2HV S  requires ( )O m calculations assuming k m , i.e, the number of non-genetic covariates 

is smaller than the number of subjects with at least one minor allele each. Hence, the cumulant 

generating function ( )K t  can be calculated in ( )O m computations. Using similar arguments, we can 

further show that the derivatives '( )K t  and ''( )K t  can also be calculated in ( )O m computations. 
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Therefore, this partially normal approximation reduces the computational complexity of our test 

from ( )O n  to ( )O m , which is especially useful for rare variants, where m is much smaller than n . 

Using normal approximation near the mean for faster computation: Since the normal 

approximation behaves well near the mean of the distribution, we can use it to obtain the p-value 

when the observed score statistic ( s ) lies close to the mean (zero). Moreover, saddlepoint 

approximation can be numerically unstable very close to the mean of the distribution. Such 

situations can also be avoided by using normal approximation near the mean. One possible 

approach is to use a fixed threshold in which we apply normal approximation to obtain the p-value if 

the absolute value of the observed score statistic, s r  where 
  
  VH0

(S)  and r  is a pre-

specified value. For example, we used 2r  in our simulation studies and real data analyses. For a 

given level  , this approach does not inflate type I error rates if  1 1 / 2r   , where 1 is 

the inverse function of the standard normal distribution function, ( )x . 

Alternatively, we can adaptively select the threshold using the error bound of the normal 

approximation given by the Berry-Esseen theorem. Suppose we are interested in controlling the type 

I error rate at level  . Let ( )nF x  be the true distribution function of the standardized score test 

statistic 
0
(/ )HS V S . Then, according to Berry-Esseen theorem18-20, the maximum error bound in 

approximating ( )nF x  by   (x)  is 

   3/2

1

2sup ( ) ( )
n

i
n n i

x
x x B CF  







 
    

 



  (1.4)  

where       
0

3 3 2 2ˆ ˆ ˆ ˆ1 ˆ1i H i i i i i i i iE YG G             
 


 , C is a constant. As of now, the 

best known estimate for C is 0.56 , given by Shevtsova.25 Suppose Fp  and Np  are ( )nF x  and 

  (x)  based p-values. From the Berry-Esseen theorem, we can show pN  pF  Bn . Suppose 
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/ 2nq B     and 1(1 )qr
  . Then  pN ³ q  indicates   pF ³ / 2 . Therefore, we use  r  

as a threshold at level   in which we will apply normal approximation if s r . 

Numerical Simulations 

To evaluate the computation times, type I error rates and power of the proposed method, we 

carried out extensive simulation studies. We considered three different case-control ratios: balanced 

with 10000 cases and 10000 controls, moderately unbalanced with 2000 cases and 18000 controls, 

and extremely unbalanced with 40 cases and 19960 controls. For each choice of case-control ratios, 

the phenotypes were simulated based on the following logistic model, 

   0 1 2logit Pr 1i i i iY X GX         

where the two non-genetic covariates 1iX  and 2iX  were simulated from 1 ~ (0.5)i BernoulliX  and

2 ~ (0,1)i NX . The intercept 0  is chosen to correspond to prevalence 0.01. The genotype iG s 

were generated from a (2, )Binomial p distribution where p was the minor allele frequency (MAF). 

The parameter   represents the genotype log odds-ratio. 

To estimate computation times and type I error rates in realistic scenarios, the MAF (p) was 

randomly sampled from the MAF distribution in the MGI data. For the computation time 

comparisons, we simulated 410 variants with 0  . For the type I error comparisons, we simulated 

910 variants with 0   and recorded the number of rejections at 5105    and 85 10 . We 

also used fixed MAFs to evaluate the effect of MAFs to computation time and type I error rates. For 

the power calculations, we considered two different choices for MAF, p = 0.01 and 0.05, and wide 

ranges of  (Figure 1). For each choice of p and   we generated 5000 variants, and recorded the 

number of rejections at 85 10 level. 
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We compared the computation times of seven different tests: traditional score test using normal 

approximation (Score); the saddlepoint approximation based test with the standard deviation 

threshold at 0.1 and 2 (SPA-0.1 and SPA-2); the fast saddlepoint approximation based test with the 

partially normal approximation improvement and the standard deviation threshold at 0.1 and 2 

(fastSPA-0.1 and fastSPA-2); the fastSPA test with the Berry-Esseen bound threshold at level 85 10

(fastSPA-BE); and the Firth’s penalized likelihood test (Firth). To reduce the computation burden to 

evaluate type I error rates at the genome-wide significant level, we compared the empirical type I 

errors of two methods, fastSPA-2 and Score. For power comparisons, we compared the empirical 

power curves of fastSPA-2 and Firth. In order to compare the p-values resulted from different tests, 

we also simulated 65 10 variants with MAFs randomly sampled from the MAF distribution of the 

MGI data. We further compared the inflation factors of the genomic controls at different p-value 

quantiles for fastSPA-2 and fastSPA-0.1 in order to explore the effect of the standard deviation 

threshold on the inflation factor. 

Michigan Genomics Initiative (MGI) data application 

To illustrate the performance of the proposed methods in real data application, we analyzed four 

selected phenotypes in the MGI data. The main goal of MGI is to create an institutional repository of 

genetic data together with rich clinical phenotypes for a broad portfolio of future medical research. 

DNA from blood samples of > 20,000 surgical patients at the University of Michigan Health System 

was genotyped (with their informed consent) on the Illumina HumanCoreExome v12.1 array, which 

is a combination GWAS plus exome array comprised of > 500,000 single nucleotide polymorphisms. 

Genotypes of the Haplotype Reference Consortium26 (chromosome 1-22: HRC release 1; 

chromosome X: HRC release 1.1) were imputed into the phased MGI genotypes (SHAPEIT227 on 

autosomal chromosomes and Eagle228 on chromosome X) using Minimac3.29 Excluding variants with 

low imputation quality (R2 < 0.3) resulted in dense mapping at over 39 million quality-imputed 

genetic markers. 
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Phenotypes derived from 8,940 ICD-9 billing codes were classified into 1,815 PheWAS disease states 

of shared disease etiology, of which 1,448 had at least 20 cases. Standard code translations were 

used to convert the taxonomy of diagnostic ICD-9 codes into PheWAS code groups (PheWAS code 

translation table version 1.230). Cases were derived from electronic health records for patients with 

at least 2 encounters with an ICD-9 billing code. We performed genome-wide association analyses 

for 4 selected traits, Skin Cancer (PheWAS code: 172), Type-2 diabetes (PheWAS code: 250.2, [MIM: 

125853]), Primary Hypercoagulable state (PheWAS code: 286.81, [MIM: 188055]) and Cystic Fibrosis 

(PheWAS code: 499, [MIM: 219700]), in 18,267 unrelated individuals of European ancestry, with 

adjustment for age, sex, and four principal components. Genotyped samples with any missing 

covariate information were excluded from analysis. Since imputation quality is low for very rare 

variants26, we excluded variants with MAF < 0.001 in our main analysis, which resulted in 13 million 

variants. 

 

Results 

Comparison of computation times: Table 1 shows empirical and projected computation time of the 

proposed and competing methods. To obtain computation time under realistic scenarios of the MAF 

distribution, the MAFs of the simulated SNPs were randomly sampled from the MAF spectrum of the 

MGI data (Figure S2). The fastSPA-2 test performs 100-300 times faster than the Firth’s test. In the 

unbalanced case-control setup of 2000 cases and 18000 controls, for example, the Firth’s test takes 

117 CPU-years whereas fastSPA-2 only takes 1.09 CPU-years to analyze 10 million SNPs across 1500 

phenotypes. This indicates that on a cluster with 100 CPU cores, the proposed test would require 4 

days (without data reading) but the Firth’ test would need more than a year. When we compare 

fastSPA and SPA, fastSPA-0.1 performs 4-6 times faster than SPA-0.1 (e.g. 2.90 vs 12.32 CPU years 

when case:control = 2000:18000), and fastSPA-2 performs 1.5-2 times faster than SPA-2 (e.g. 1.09 vs 

1.62 CPU years when case:control = 2000:18000). fastSPA-BE also performs reasonably fast. 
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We also recorded the computation times for variants with three different fixed MAFs 0.1, 0.01 and 

0.001 in order to assess the effect of MAF on the performance of the tests. Similar to Table 1, Table 

2 also shows the superior performance of fastSPA-2 compared to all other tests. Moreover, while 

the computation time of SPA increases with decreasing MAFs, which may be due to the slow 

convergence caused by the discrete nature of the underlying distribution, fastSPA requires less 

computation time for rarer variants (smaller MAFs) compared to more common variants (larger 

MAFs). This demonstrates the potential of the partially normal approximation improvement in terms 

of faster computation of the p-values, especially for low-frequency and rare variants. 

Type I error comparison:  The type I error rates from 109 simulated datasets are presented in Table 

3. Due to the heavy computation burden for testing these extremely large numbers of datasets, in 

this comparison, we only considered the traditional score test and fastSPA-2. The traditional score 

test had greatly inflated type I error rates for moderately unbalanced and extremely unbalanced 

case-control ratios, whereas fastSPA-2 can control the type I error in such situations. At the genome-

wide significance level of 85 10   , for example, the empirical type I error rates of the score test 

were 32 ( 61.63 10 , when case:control = 2000:18000) and 26600 ( 31.33 10 , when case:control 

= 40:19960) times higher than the nominal 85 10   . In contrast, the fastSPA-2 had empirical 

type I error rates nearly identical ( 84.9 10 , when case:control = 2000:18000) or slightly lower (

83.5 10 , when case:control = 40:19960) than the nominal 85 10   . We also estimated 

empirical type I error rates at six different MAFs (Figure S3). The score test had deflated type I error 

rates for low-frequency and rare variants for the balanced case-control ratio and inflated and 

extremely inflated type I error rates for moderately and severely unbalanced case-control ratios. The 

fastSPA-2 method had overall well controlled type I error rates regardless of MAFs and case-control 

ratios.  

Power comparison: Next, we compared the power of fastSPA-2 to that of the Firth’s test at 

85 10   . Note that the Firth’s test is a current gold standard method.13 Since the traditional 
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score test had greatly inflated type I error rates, we did not include it in the power comparison. 

Figure 1 shows power by odds ratios when the MAF of the variant was 0.05 (top panel) and 0.01 

(bottom panel). As expected, the power is higher when the case-control ratio is balanced. The 

empirical powers of fastSPA-2 and the Firth’s test were nearly identical for all case-control ratios and 

MAFs, which suggests that our proposed test does not suffer from any loss in power compared to 

the Firth’s test. 

P-value and inflation factor (λ) comparison: To compare p-value distributions of various tests, we 

generated QQ plots and calculated the inflation factor (λ) of the genomic control. Figure S4 suggests 

strong deflation (smaller than expected) in the p-values based on the traditional score test in the 

moderately unbalanced and extremely unbalanced case-control setups, whereas fastSPA-2, SPA-2 

and Firth tests resulted in well calibrated QQ plots, which suggest that these methods can control for 

type I errors. Both fastSPA-2 and fastSPA-0.1 showed no inflation or deflation in genomic controls (λ) 

in the balanced and moderately unbalanced case-control setups (Table S1). In the extremely 

unbalanced case-control setup, fastSPA-2 resulted in greatly deflated inflation factor (λ = 0.48) at the 

median of p-value (q = 0.5). Interestingly fastSPA-0.1 resulted in inflated λ (λ = 1.83) at q = 0.5, which 

may be due to the discrete nature of p-values. When λ was measured at p-value quantiles q = 0.01 

and 0.001, however, both tests provided λ very close to unity. 

 

MGI Data Analysis 

We applied the traditional score test and the fastSPA-2 method to the MGI data with four 

phenotypes, Skin Cancer, Type-2 diabetes, Primary Hypercoagulable state, and Cystic Fibrosis, which 

were selected based on case-control ratios. Skin Cancer (2359 cases, 15265 controls) and Type-2 

diabetes (1987 cases, 14906 controls) were moderately unbalanced, whereas Primary 

Hypercoagulable state (168 cases, 16401 controls) and Cystic Fibrosis (28 cases, 18212 controls) 

were extremely unbalanced phenotypes.  
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The Manhattan plots (Figure 2) show that the traditional score test produced a large number of 

spurious associations for all of these phenotypes, whereas all of the significant variants from our 

proposed test at the genome-wide significant level of 85 10    can be verified as truly 

associated with the phenotypes based on previous findings (Table 4).  In the analysis of Skin Cancer, 

variants in or near IRF4 (MIM: 601900), MC1R (MIM: 155555), RALY (MIM: 614663) and SLC45A2 

(MIM: 606202) were significant at 85 10    and all of these four genes were previously 

identified as associated with pigmentation traits and skin cancers.34-39 In the other traits, variants in 

TCF7L2 (MIM: 602228), F5 (MIM: 612309) and CFTR (MIM: 602421) were significantly associated 

with Type2 diabetes,40 Primary Hypercoagulable State41 and Cystic Fibrosis,42 respectively, and all of 

these genes are well known to be associated with the risk of each disease.  

The QQ plots (Figure S6) also suggest that the p-values based on the traditional score test are much 

smaller than expected, especially for low-frequency and rare variants, whereas the p-values based 

on fastSPA-2 closely follow the uniform distribution. We also observed the Manhattan plots (Figure 

S5) including the variants with MAF < 0.001 in the analysis. The inclusion of the rarer variants 

resulted in extreme inflation in the number of spurious associations for the traditional score test. 

However, our proposed test still produced none to very few new associations. 

Further, based on the p-values from our proposed test, we obtained the inflation factor λ of the 

genomic control at different p-value quantiles (q) and different MAF cut-offs (Table S2). To evaluate 

whether using a smaller standard deviation threshold (r) improves the estimation of λ, we also 

applied fastSPA with r = 0.1 (i.e fastSPA-0.1) on these four phenotypes. When all the variants were 

included in the analysis, there was slight inflation (λ = 1.11, type 2 diabetes) or great deflation (λ = 

0.12, Cystic fibrosis) at the median level for fastSPA-2. However, the genomic controls are very close 

to unity at q = 0.01 and q = 0.001. If we only consider the variants with MAF > 0.001, then fastSPA-2 

does not show any significant inflation in λ at the median for Skin Cancer, Type-2 Diabetes, and 

Primary Hypercoagulable State. Although it shows a deflated genomic control for Cystic Fibrosis (λ = 
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0.63) due to the discrete nature of the underlying distribution. However, if we exclude the rare 

variants and consider only the variants with MAF > 0.01, then all four of the phenotypes show λ very 

close to unity. fastSPA-0.1 shows no significant inflation or deflation in λ at all quantiles and MAF 

cut-offs, except for Cystic Fibrosis (λ = 1.27) when all the variants are considered and genomic 

control is measured at the median level. 

 

Discussion 

In this paper, we proposed a fast and scalable test to analyze large PheWAS datasets which is well 

calibrated even in extremely unbalanced case-control settings. The method uses computationally 

efficient saddle point approximation to accurately calculate p-values of score test statistics. We 

further proposed an improved version of our test which substantially reduces the computation time, 

especially for low-frequency and rare variants. Our proposed test can also adjust for additional 

covariates.  Through extensive numerical studies we demonstrated that our test can perform 100-

300 times faster than the currently used Firth’s test while retaining similar power and well controlled 

type I error rates. MGI data analysis illustrates that by applying the proposed method to PheWAS, 

we can identify true association signals while controlling for type I error, even for traits with a very 

small number of cases and a large number of controls.  

Our test calculates p-values based on the traditional score test if the score statistics lie sufficiently 

close to the mean. Even though normal approximation is accurate near the mean, those p-values 

may not be well calibrated. In such cases, since the median p-values might come from the traditional 

score test, we can encounter slightly inflated or deflated inflation factor at median. When the case 

control ratio is extremely unbalanced, this phenomenon is more pronounced. One way to 

circumvent this issue is to measure the inflation factor at more extreme quantiles (0.01, 0.001 etc.), 

or to exclude rare variants when estimating the inflation factor. Another approach is to decrease the 

standard deviation threshold so that the median p-values come from the saddlepoint approximation. 
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In the MGI data analysis, fastSPA-0.1 produced substantially improved inflation factor estimates than 

fastSPA-2. However, the use of threshold 0.1 instead of 2 would increase computation time ~ 3-4x . 

The choice of the threshold should be based on the careful assessment of the available 

computational resources.  

As sequencing cost continue to drop, whole-exome or whole-genome sequencing will be used for 

PheWAS to identify rare variants associated with clinical phenotypes.31 In rare variant association 

analysis, gene or region based multiple variant tests are commonly used to improve power.32 When 

case-control ratios are unbalanced, popular rare variant tests, including burden tests, SKAT and 

SKAT-O, can also have substantially inflated type I error rates. Although resampling based 

approaches have been developed to address this problem,33 the existing methods are not fast 

enough to be used in PheWAS. One possible approach is first to adjust single variant score statistics 

using SPA and then to use the adjusted score statistics to control for the type I error. We left it for 

future research. 

In summary, we have proposed an accurate and scalable method for PheWAS data analysis. With the 

growing effort to build large research cohorts for precision medicine31, future PheWAS would have 

hundreds of thousands of samples and hundreds of millions of variants. Our method will provide a 

scalable solution for this large-scale problem and contribute to finding genetic component of 

complex traits. All our tests are implemented in the R package SPAtest. 

 

Supplemental Data 

Six additional figures and two additional tables that were referred to in this paper, are provided in 

the supplemental data. 
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Web resources 

SPAtest R-package: https://sites.google.com/a/umich.edu/leeshawn/software 

Michigan Genomics Initiative: https://www.michigangenomics.org/ 

Online Mendelian Inheritance in Man (OMIM): http://www.omim.org 
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Appendix 

Explanation behind using G instead of G : We first note that  ˆ ˆ( )T TG YS Y G      

since ̂ is the maximum likelihood estimator of  under the null model and   0ˆTX Y   . Now, 

the score function and the observed information matrix under the null model are given by, 

 
 
 0 0, .

ˆ 0
ˆ

T T T

T T T

WX WG
WX WG

X Y X X
U I

SG Y G G



    
           

  

Therefore, the variance of S under 0H is given by, 

    
0

1
.T T T T T T

H WG G WX X WX X WG G WGS GG GV W


        

So, even though the two expressions of S are algebraically the same, the variance can be expressed 

as a weighted sum of  ˆ ˆ1i i  s where the weights are given by iG s. Therefore, we used G

instead of G to express the score statistic. 
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Figures 

 

 

Figure 1: Empirical power curves for fastSPA-2 and Firth test. Top panel considers MAF = 0.05 and 

bottom panel considers MAF = 0.01. From left to right, the plots consider case:control = 

10000:10000, 2000:18000 and 40:19960, respectively. In each plot x-axis represents genotype odds 

ratios and y-axis represents the empirical power. Empirical power was estimated from 1000 

simulated datasets at 8105   .  
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Figure 2: Manhattan plots for four different phenotypes from the MGI data. Only variants with MAF 

> 0.001 were included in this analysis. The left panel shows associations based on the fastSPA-2 test, 

and the right panel shows associations based on the traditional score test. The red line represents 

the genome-wide significance level 85 10   . 
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Tables 

Table 1: The estimated computation times for various tests with MAFs sampled from the MAF 

distribution of the MGI data. The first column shows empirical computation times on an Intel i7 

2.70GHz processor for testing 10000 simulated variants, and second and third columns are projected 

computation times for testing 10 million variants for one and 1500 phenotypes respectively. 

 

Case : Control 

 

Test 

104 SNP x 1 Ph. 

(CPU-seconds) 

107 SNPs x 1 Ph.a 

(CPU-hours) 

107 SNPs x 1500 Ph.a 

(CPU-years) 

10000 : 10000 Score 20 5.6 0.95 

 SPA-0.1 254 71 12.08 

 fastSPA-0.1 62 17 2.95 

 fastSPA-BE 36 10 1.71 

 SPA-2 29 8 1.38 

 fastSPA-2 22 6 1.04 

 Firth 6366 1768 302.8 

2000 : 18000 Score 20 5.6 0.95 

 SPA-0.1 259 72 12.32 

 fastSPA-0.1 61 17 2.90 

 fastSPA-BE 39 11 1.86 

 SPA-2 34 9 1.62 

 fastSPA-2 23 6 1.09 

 Firth 2460 683 117.01 

40 : 19960 Score 20 5.6 0.95 

 SPA-0.1 472 131 22.45 

 fastSPA-0.1 84 23 4.00 

 fastSPA-BE 66 18 3.14 

 SPA-2 51 14 2.42 

 fastSPA-2 24 7 1.14 

 Firth 3587 996 170.6 
a Projected computation time 
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Table 2: Computation times for various tests when testing 10000 simulated variants with different 

MAFs. All computation times are in CPU-seconds on an Intel i7 2.70GHz processor. 

Case: Control MAF Score SPA-0.1 fastSPA-0.1 fastSPA-BE SPA-2 fastSPA-2 Firth 

10000:10000 0.1 20 214 75 37 28 23 7251 

 0.01 19 225 38 35 27 20 6918 

 0.001 19 242 33 36 30 20 5304 

2000:18000 0.1 21 256 84 37 36 24 3940 

 0.01 20 284 39 36 35 21 4312 

 0.001 19 326 34 41 40 20 3804 

40:19960 0.1 21 376 98 70 38 24 3615 

 0.01 20 477 42 58 44 21 3598 

 0.001 20 647 38 51 79 21 3525 
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Table 3: Type I error comparison between the traditional score test and fastSPA-2 for variants 

simulated with MAFs sampled from the MAF distribution of the MGI data. Type I error rates were 

estimated based on 109 simulated datasets.  

 

Case: Control 

 

Level 

Empirical Type-I Error 

Score fastSPA-2 

10000:10000 55 10   54.42 10   55 10  

 85 10   83.8 10  84.7 10   

2000:18000 55 10  41.32 10   54.93 10   

 85 10  61.63 10   84.9 10   

40:19960 55 10  35.75 10   53.76 10  

 85 10  31.33 10  83.5 10  

 

 

Table 4: Significant SNP-phenotype associations based on fastSPA-2 test on MGI data and previous 

findings confirming such associations.  

 

Phenotype 

 

Location 

 

dbSNP ID 

Nearest 

Gene 

 

Alleles 

 

MAF 

 

p-value 

Previous 

Findings 

Skin Cancer 6:396321 rs12203592 IRF4 C>T 0.16 1816. 1 07    
34-37 

 16:89986117 rs1805007 MC1R C>T 0.077 1411. 6 08    
34-37 

 20:32538391 rs62211989 RALY G>C 0.075 1315. 9 05    
34-37 

 5:33951693 rs16891982 SLC45A2 C>G 0.038 97 10   
37-39 

Type -2 Diabetes 10:114754071 rs34872471 TCF7L2 T>C 0.29 1113. 04    
40 

Primary 

Hypercoagulable 

State 

1:169519049 rs6025 F5 T>C 0.029 3914. 09    
41 

Cystic Fibrosis 7:117299434 rs113827944 CFTR G>A 0.018 1513. 1 01    
42 
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