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Abstract

As cancer cell populations evolve, they accumulate a number of somatic mutations,
resulting in heterogeneous subclones in the final tumor. Understanding the mechanisms
that produce intratumor heterogeneity (ITH) is important for selecting the best treatment.
Although some studies have involved ITH simulations, their model settings differed
substantially. Thus, only limited conditions were explored in each. Herein, we developed a
general framework for simulating ITH patterns and a simulator (tumopp). Tumopp offers
many setting options so that simulations can be carried out under various settings. Setting
options include how the cell division rate is determined, how daughter cells are placed, and
how driver mutations are treated. Furthermore, to account for the cell cycle, we introduced
a gamma function for the waiting time involved in cell division. Tumopp also allows
simulations in a hexagonal lattice, in addition to a regular lattice that has been used in
previous simulation studies. A hexagonal lattice produces a more biologically reasonable
space than a regular lattice. Using tumopp, we investigated how model settings affect the
growth curve and ITH pattern. It was found that, even under neutrality (with no driver
mutations), tumopp produced dramatically variable patterns of ITH and tumor
morphology, from tumors in which cells with different genetic background are well
intermixed to irregular shapes of tumors with a cluster of closely related cells. This result
suggests a caveat in analyzing ITH data with simulations with limited settings, and tumopp
will be useful to explore ITH patterns in various conditions.

Author Summary

Understanding the mechanisms that produce intratumor heterogeneity (ITH) is
important for selecting the best treatment. Despite a growing body of data and tools for
analyzing ITH, the spatial structure and its evolution are poorly understood because of the
lack of well established theoretical framework. Herein, we provide a general framework for
simulating ITH patterns, under which a simulator (tumopp) is developed. Tumopp offers
many setting options so that simulations can be carried out under various settings.
Simulations using tumopp demonstrate that dramatically variable patterns of ITH and
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tumor morphology can be produced depending on the model setting. The present work
provides a guideline for future simulation studies of cancer cell populations.

Introduction 1

Tumors begin from single cells that rapidly grow and divide into multiple cell 2
lineages by accumulating various mutations. The resulting tumor consists of heterogeneous s
subclones rather than a single type of homogeneous clonal cells [1-4]. This phenomenon is 4
known as intratumor heterogeneity (ITH) and is a significant obstacle to cancer screening 5
and treatment. Thus, understanding how tumors proliferate and accumulate mutations is 6
essential for early detection and treatment decisions [5-8]. Multiregional and single-cell 7

sequencing are promising way for uncovering the nature of ITHs within tumors [9-11],and a s
large amount of high-throughput sequencing data have been accumulating [12, 13] together
with bioinformatic tools to interpret such data [14, 15]. However, the spatial structure and its 1o
evolution are still poorly understood [16] because of the lack of well established theoretical 11

framework. Although some studies have involved ITH simulations, their model settings 12
differed substantially [9, 17-21]. The purpose of the current study was to develop a general 13
framework for simulating ITH patterns in a cancer cell population to explore all possible 14
spatial patterns that could arise and under what conditions. To do so, we aimed to ensure 15

that simulations do not take a very long time so that it can be used within the framework of 1

simulation-based inference as outlined in Marjoram et al. [22] (see also refs therein). 17

Of the various types of cancer cell growth models, single-cell-based models are 18
more appropriate for our purposes than continuum models that treat tumors as diffusing 19
fluids. There are two major classes of single-cell-based models, on- and off-lattice. The 20
former assumes that each cell is placed in a space with discrete coordinates, while the latter
defines cells in more complicated ways. The current study highlights on-lattice models 2
because they do not involve as large amounts of computation as off-lattice models. Evenin 2
simple settings, off-lattice models represent cells as spheres in a continuous space, whose 24
position is affected by attractive and repulsive interactions with other cells [23]. Other 2
examples include immersed boundary model [24] and subcellular element model [25], 2%
which define cells by modeling a plasma membrane and network of particles, respectively. 27
On-lattice models define cells as either single or multiple nodes on a lattice. The cellular 28

Potts model [26-28] is a multiple node-based on-lattice model in which a cell is represented 2
by several consecutive nodes. This model is similar to the subcellular element model in that =0
complicated cell shapes can be defined. In contrast, single node-based on-lattice models 3t
assume that a cell is represented by a single node on the lattice and, thus, can be considered s
as a kind of cellular automaton model. The computational load can be minimized with this s
one-by-one relationship between cells and nodes. a4

Of the several cellular automaton models available for cancer cell growth [9, 17-21], s
most are quite simple and can be readily used for simulation-based inference of parameters
in cancer cell growth. These models generally consider simple patterns of cell behavior; cells

can produce new cells (cell division), die or migrate somewhere else, and each cell’s 38
behavior can be stochastically determined depending on its own state and that of its 39
neighbors. However, there are substantial differences in model settings among previous 40

studies, and how these differences affect the final outcome is poorly understood. Herein, we a1
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developed a general framework for simulating cellular automaton models of tumor growth 4
called tumopp. We made our framework as flexible and reasonable as possible for on-lattice

models in which each cell is located on a single node, and normal cells and extracellular 44
matrix surrounding the tumor cells are ignored. Moreover, the environment is independent 4
of the configuration and dynamics of the tumor cells. In other words, while tumor growth 46
does not change the surrounding environment, its growth is affected by the environment. a7
These conditions are commonly assumed in most previous studies [9, 17-21]. 48

Even with these conditions for minimizing computational load, our framework is 49

flexible enough to incorporate various factors that determine the rates of cell birth and death o
and how a new daughter cell is placed in the lattice. Therefore, most previous models can be s

described within our framework. Using our framework, we explored the effect of model 52
settings on various aspects of the final tumor. Because some settings can have rather large 53
effects, particularly on the spatial distribution of heterogeneous cells (i.e., ITH), it is 54
important to choose a model that best suits the specific properties of the focal cancer being 55
investigated. Overall, the present work provides a guideline for future simulation studies of s
cancer cell populations. 57
Model 58
General Framework of tumopp 59

Tumopp was developed to enable fast simulation of tumor growth by assuming (i) e
a cell occupies a single node in the lattice, (ii) normal (noncancer) cells are not simulated, 61
(iii) extracellular matrix surrounding the tumor is ignored, and (iv) the environment is not 62
affected by changes in the configuration of the tumor. The initial state could be either one or
multiple tumor cells distributed in a two-dimensional (2D) or 3D lattice. The entire process &

can be handled step by step. Suppose there are N; number of tumor cells at time ¢, and 65
Eglobal,+ denotes the global environment at time ¢. The system waits for the next event (birth, s
death, or migration) of one of the N; cells or any kind of environmental change. Potential 67
events that cause environmental changes include medical treatments and angiogenesis. The s
time to the next environmental change, wg, can be determined either randomly or 69
arbitrarily. The waiting times for birth (wy, ;), death (w, ;), and migration (w, ;) events for 70
the ith cell are random variables that depend on the status of each cell. 7

The system proceeds from time t by an increment of At. If wg is smaller than any 72
other waiting time, then At = wr is given, and the environmental change is implemented at s
time t + At. Then, wy ;, wy ;, and w,, ; will all be re-evaluated under the new environment. 74
Otherwise, no environmental change occurs during 75
At =min(wyp,1,..., WpN,, Wi, -, Wi N, Wm,1,- - -, Wm,N,), SO that the next event is cell 76

division, death, or migration (Fig. 1). If wy, ; is the smallest, the next event is division of the 77

ith cell. While one of the two daughter cells stays as it is, the other is placed at an adjacent 78
node. The cell division event might involve genetic changes or differentiation of the daughter 7
cells that could result in an increase or decrease in the ability of cell division. In the N; = 3 80
example shown in Fig. 1A, because the minimum waiting time is wj, > (in blue), the second 81

cell undergoes cell division. In a case where wy ; is the smallest, the next event is the death ¢
of the ith cell, and the cell is removed from the lattice. If w,, ; is the smallest, the next event 83
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is migration of the ith cell. The ith cell may simply move to an empty neighbor site or result &4
in a position swap with an adjacent cell. Thus, this procedure allows simulation of a tumor &
growth pattern once wy, ;, w4 i, and w,, ; are determined for all cells (see Fig. 1 for details). 86
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Fig 1. Illustration of the simulation algorithm for determining the next event. (A) An
example with three cells, 1, 2, and 3 (N; = 3). The three waiting times are randomly
generated for each cell as elaborated in the main text. Because wy  is the smallest (blue), the
next event is cell division of the second cell, which gives birth to the fourth cell. (B) Again,
the waiting times are computed for all four cells. Note that the waiting times have to be
newly generated for second and fourth cells that just experienced a cell division, whereas we
can reuse the waiting times for the first and third cells with At subtracted. Because wy 3 is
the smallest (blue), the next event is cell division of the third cell, creating the fifth cell.

Wp,i, W4,i, and w,, ; may be random variables from certain probability density &7
functions (PDFs), which should be flexible enough to incorporate a number of factors. These s
PDFs should reflect both internal cell status (C; ;) and external environment (E; ;) for the ith s

cell at time t. C;; includes various genetic and nongenetic factors: 9%
C1 Cell types with different proliferation potential (e.g., cancer stem cells ot

[CSCs], transient amplifying cells [TACs], or terminally differentiated cells o

[TDCS]). 93

C2 Genetic basis of malignancy, including the potential of cell division and o
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death (e.g., driver mutations that have accumulated in the cell). This 95

should also be related to the rate of migration (invasion) into nearby %

tissues. 97

E; ; represents environmental factors that may be classified into two categories: %
E1 The global environment that affects the entire tumor. %

E2 The local environment within the tumor, mainly due to surrounding cancer 100
CeHS. 101

E; ; should be determined by the joint effects of various factors including E1 and E2, which 102

may not be mutually exclusive to one another. In addition to C; ; and E; ¢, the cell statusin 103
the cell cycle may play an important role (see below for cell cycle treatment). 104
Modeling with simplifying assumptions 105

The above framework is designed to be flexible enough to incorporate various 106

factors, but making the model too complex would involve a substantial amount of simulation 1o
time. Here we provide several assumptions to simplify the process while keeping the model 10
in tumopp as biologically reasonable as possible. First, we defined the simulation space, 109
which is either regular (square) or hexagonal in 2D or 3D space (Fig. 2). The neighborhood, 110
or adjacent sites, must also be defined because it is involved in the algorithms that determine 11
how new cells are placed. In a regular lattice (Fig. 2), there are at least two methods to define 12
the neighborhood. The Moore neighborhood assumes that each cell has 8 and 28 neighbors 113
in 2D and 3D lattices, respectively, whereas the von Neumann neighborhood assumes only 4 114

and 6 neighbors, respectively. In the current work, we use the Moore neighborhood as in 115
previous studies, unless otherwise mentioned. The von Neumann neighborhood assumes 116
unrealistic behavior, thereby creating a strange tumor shape (see Discussion). The situation 117
is simpler in a hexagonal lattice, where each cell has 6 and 12 neighbors in 2D and 3D 118
lattices, respectively. It should be noted that there are two versions of a 3D hexagonal lattice, 119
hexagonal close-packed and face-centered cubic. Because the difference is very small, we 120
used the latter in the present study, which is computationally a little more tractable. 121

The simulation process consists of a large number of steps, at which one of the cells 122
undergoes birth, death, or migration in the simulation space. As described above (Fig. 1), the 12s
event is determined by generating random variables for waiting times (wy ;, w4, and w, ;) 124

from certain PDFs. In this section, we describe how to model the process and determine 125
these PDFs denoted by f;, i(wp,i | Cit, Eit), fa,i(wa,i | Cit, Eit), and fu,i(wm,i | Cit, Eit)- 126
Modeling waiting times 127

A gamma function is useful for handling the three waiting times (wy ;, wq ;, and 128

wy,;) for the ith cell. First, consider the waiting time for cell division (wy ;). Suppose that the 12
ith cell is a newborn cell that has just undergone cell division at time ¢. We assume that the 10
time to the next environmental shift (wg) is very long (i.e., the environment is constant on 131
the cell division time scale). Thus, the waiting time for the next cell division can be assumed 1z
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A

Moore von Neumann Hexagonal

von Neumann Hexagonal

Fig 2. Definitions of neighborhood, or adjacent sites, in 2D (A) and 3D space (B). The focal
site (ith cell) is shown in blue, and its adjacent sites are in black. Note that there are not

multiple definitions of neighborhood in a hexagonal lattice.

to follow a gamma function: 133

fo,i(wy,i | Cit, Ei¢) = gamma(wy ; | ky, i),

1
E[wb,i] - Ei/ (1)
Var[wy ;] kblﬁg ’

w

where f}, i(wy,; | Cit, Ei+) can be specified by only two parameters: (1) birth rate (§;), which 14
is the reciprocal of the mean waiting time of cell division since the last cell division and 135
referred to as the potential birth rate because it applies only to a newborn cell (see below for 13

details); and (2) the shape of the distribution (kp). If k; = oo is assumed, Equation 1 is given a7

by a delta function (w; ; = %); as kj, decreases, the distribution spreads around the mean %, 138
and is identical to an exponential distribution with parameter % when k;, =1 (Fig. 3). 139
A relatively large k, might provide a reasonable PDF considering the cell cycle 140

illustrated in Fig. 4. A cell has to go through interphase to get to metaphase, during which a1
cell division occurs. This is why Equation 1 can only be applied to a newborn cell. For a cell 14
that experienced the last cell division ¢ = T before, Equation 1 should be modified as follows: 13
gamma(wy,i — T | kp, pi)

S gamma(wy,; | ky, i)

fo,itwp,i, T | Ciy, Eir) = 2)

It should be noted that most previous studies [9, 17-21] ignored this effect of the cell cycle 144

and used an exponential distribution (k, = 1) instead, where extremely short cell division 145
after the previous one is allowed. As demonstrated in Results, this simplification has a 146
non-negligible effect on many features in simulated tumors. 147

Similarly, the waiting times for death (w, ;) and migration (w,, ;) of the ith cell may s
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Fig 3. Effect of shape parameter (k) on gamma distribution with mean ¢ = % When k is
very large, the variance of ¢ is very small; when k is small, t has a wide distribution. In the
extreme condition where k = 1, the distribution is identical to the exponential distribution

with mean t = %
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Fig 4. Illustrating the biological background behind using a gamma distribution with a
reasonably large k. When a cell undergoes division, its daughter cells should enter
interphase, during which they prepare for the next cell division, and it should be difficult to

predict a cell division in early interphase (see text for details).

be described with gamma distributions: 149
fa,i(wa,i | Ciz, Eit) = gamma(wy,i | ka, 6i), 3
Jm,i@m,i | Ciy, Eit) = gamma(wi,i | ki, pi),
where 6; and p; are the expected w, ; and w,, ;, respectively. In contrast to cell division, cell 150
death and migration may not have a clear correlation with the cell cycle. If so, an 151
exponential distribution may be used (by assuming k; = 1 and k;, = 1 in the equations 152
above). An exponential distribution does not require adjustment in the cell cycle (i.e., 7) 153
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because the following equation holds, which reduces the computational load: 154

exponential(wy,; — 7 | ;)

— = exponential(wy ; | Bi). 4)
fT exponential(wy, ; | Bi)

There is also an alternative treatment for cell division and death [17, 19]. Cell death 1ss

might occur when the cell gets into metaphase and tries to undergo cell division but fails 156
[29]. This can be modeled such that wj, ; and w, ; follow a single PDF (i.e., a gamma 157
distribution), and the outcome could be randomly assigned to cell division and death with s
probabilities 1 — «; and a;, respectively. Tumopp implements these two alternative 159
treatments. Thus, the PDFs for the three waiting times can be given once the potential rates e
(Bi, 6i, and p;) are determined (see below). 161
Potential birth rate 162

Bi should be determined by genetic and environmental factors. To incorporate the 13

effects of the two genetic (C1 and C2) and two environmental (E1 and E2) factors, we define e

ﬁi as: 165
Bi = BoBci1Pc2PE1PE2, ®)

where f is a constant value shared by all cells. fc1, fc2, fE1, and BE» are the coefficients 166

determined by the above-mentioned factors that constitute C1, C2, E1, and E2, respectively. 1

C1 The proliferation potential of a cell largely depends on the cell types, including CSCs, 168

TACs, and TDCs. This can be implemented through subsequent asymmetric cell 169
divisions [19, 30]. In a simple setting, CSC can be assumed to produce another CSC 170
with probability ps, and divides asymmetrically to produce a TAC with probability 171
1 - ps. A TAC has limited proliferation capacity. With w as the number of cell 172

divisions allowed for a TAC and wmay as the maximum number of cell divisions for an 17
initial TAC, an initial TAC has @ = wmax, and w decreases by one when it undergoes 174
cell division. Then, the TAC becomes a TDC when w reaches zero. Under this setting, s
it may be reasonable to assume fc1 = 1 for a CSC and TAC with w > 0, and fc1 =0 for 7
a TDC. Previous models with a single-cell type with unlimited proliferation potential 177

[17, 18] can be considered a special case with ps =1 for all cells. 178
C2 The rate of cell division should be largely affected by driver mutations, which may be 179
incorporated as follows. Driver mutations are assumed to occur at rate p per cell 180

division. Suppose the ith cell has accumulated M driver mutations. Here, we definea 1
driver mutation such that it affects the birth, death, and/or migration rates, either 182
positively or negatively, and the relative effects on the three rates are denoted by sg, 55, 18
and s, (ss and s, are relevant to death and migration rates as explained below). Then, s

assuming the effects of driver mutations are additive, fc, may be written as follows: 185

M

Bea =] [@+sp,), ©)

]
where s; ; is the relative effect of the jth driver mutation. sg . may be given by a 186
random variable from a certain distribution. Herein, we use a Gaussian distribution 187
[N (35, 05)] where 55 and o4 are the mean and standard deviation of the distribution, 188
respectively. 189
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E1 The behavior of cancer cells should depend on their surrounding environment. For 190
example, cells close to a nutrient source may have higher cell division rates. This might 1e1
apply to cells that are close to the outer layer of the tumor or blood vessels. If so, the 192
proliferation potential may be given by a decreasing function of the distance from 193
these surfaces and/or blood vessels. In contrast, cell divisions will be suppressed 194
when an anticancer drug is given. Thus, the birth rate of a cell may be given by a 195
function of its position in the lattice: 19

Be1 = E1(pi), @)
where p; is the position [i.e., pi = (xi, yi, z;)] if we set a 3D lattice. Here, we assume E1 o7
accounts for the environment without considering the interaction between nearby 198
cells, and the local resource competition among nearby cells is included in E2 (see 199
below). For simplicity, tumopp assumes a uniform environment across the whole 200

tumor. The environment might change over time, especially when a medical treatment 2o
is introduced. In our model, such an environmental change is incorporated arbitrarily, 2
and the effect of an environmental change on each cell might depend on its genotype 20

(i.e., configuration of driver mutations). 204
E2 Growing cells are in resource competition because cell proliferation should depend on 205
resources, such as space, oxygen, and other nutrients. It should be noted that this 206
factor is not mutually exclusive with E1. Because competition may correlate with local 2o
density, B2 can be given by 208
Be2 = Ex(¢i), 8)
where ¢; is the proportion of empty nodes in the adjacent sites of the ith cell. 200
In practice, tumopp employs three models to incorporate this factor: 210

Constant-rate model where the birth rate is constant regardless of the availability of 211
empty sites (¢;). 212
B2 = 1. )

Step-function model where birth rate is given by a Heaviside function of ¢; such that 23
cell division can occur only when there is at least one empty site available around 214

the lth CeH. 215
0 (p;i<0)
Be2 = b (10)
1 (qbl > 0)
Linear-function model where birth rate is proportional to the number of empty 216
neighbors [18]. 217
Be2 = ¢i. (11)
Death rate 218
Similar to the birth rate case, we can define the potential death rate as: 219
0i = 000c10c20E10E2. (12)

The situation may not be as complicated for the death rate as with the birth rate. C1 and E2 220
may not be very relevant if we consider that cell death occurs simply by chance regardless of 22
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cell type or local environment (6c1 = 62 = 1 is assumed in tumopp). C2 should play a 222
crucial role because some driver mutations significantly reduce the death rate (e.g., by 223
avoiding apoptosis). By assuming all mutation effects are additive, this effect can be 224
incorporated using Equation 6 with sg replaced by ss. Environmental changes (E1) are 225
incorporated arbitrarily following the birth rate. 226
Migration rate 227

The potential migration rate is given by 228

Pi = POPC1PC2PEIPE2- (13)

Similar to the death rate, C2 should be most relevant to the migration rate because some 229
mutations may provide higher mobility to the host cell (e.g., by changing adhesion 230
molecules on membranes). Again, Equation 6 can be used here with sg replaced by s,,. C1 231
and E2 are ignored, and E1 is incorporated arbitrarily (see above). 232
Treatment of cell division, death, and migration in a lattice 233

Cell division produces two daughter cells. When placing these two cells in a lattice, 2u
we assume that one of them stays at the original site. There are several methods for placing 23
the other cell. Tumopp employs four push methods following previous studies, which are 236
explained by assuming that cell division occurs at (x, v, z) in a 3D lattice. We first describe =~ 27
the four methods assuming the constant-rate model, followed by their behavior in the step- 23

and linear-function models. 239
Push method 1 One new daughter cell is placed randomly on one of the adjacent 240
neighboring sites (Fig. 2 defines adjacent sites). The direction to the adjacent site in 241

which the cell is placed is randomly determined; for example, if the direction increases s
the value of x, then the daughter cell is placed at (x + 1, y, z). If (x + 1, y,z) is already 24

occupied, the pre-existing cell is moved in the same direction to (x + 2, y, z). If a cell 244
has already occupied (x + 2, y, z), then it is further shifted to (x + 3, y, z). Thus, the 245
succeeding movement is repeated along in the same direction until no more push is 246
needed. This model is used by Sottoriva et al. [17]. 247

Push methods 2—4 are different from 1 in that if there are any empty adjacent 248

neighboring sites available, a new daughter cell is placed to fill one of them. When no empty 24
sites are available, methods 2—4 differ in the way they determine which neighboring cell to 250
push out. All of the push methods use statistic Imin, the minimum distance (the number of 251
consecutive occupied sites) to the nearest empty site for a specific direction. If we assume 252
the Moore neighborhood (Fig. 2), it is computed in all of 26 possible directions. 253

Push method 2 The push direction is randomly determined, and the probability for each 254
direction is weighted by ﬁ Once the direction is determined such that the direction 25

increases the value of x, for example, the daughter cell is placed at (x + 1, y, z). If 256
(x +1,y,z) is already occupied, the pre-existing cell is moved in the same direction to 2=
(x +2,y,z). If a cell has already occupied (x + 2, y, z), then it is further shifted to 258
(x + 3, y, z). Thus, the succeeding movement is repeated in the same direction, such 259

10
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that [iin cells are automatically pushed toward the surface. This method was adopted 260
by Uchi et al. [9]. 261

Push method 3 The new cell is placed at the adjacent site in the direction with the smallest 2
Imin. At that site, Imin for the pre-existing cell is again computed in all directions, and 263
the pre-existing cell is moved one step in the direction with the smallest /;yin. This 264
process is continued until an empty site is found so that no more push is needed. This s
method is according to model C of Waclaw et al. [18]. 266

Push method 4 Simplified version of push methods 2 and 3, wherein the push directionis e
determined only once with the smallest [iyin. Then, Iy cells in a row are all pushed 268
toward the surface as described for push method 2. 269

Thus, tumopp implements four push methods in combination with the constant-rate model, 27

whereas the situation is much simpler in the step- or linear-function models that assume 271
only cells with empty sites available in the neighborhood can undergo cell division. Thus, 272
there are virtually only two distinct methods; push method 1 also works in the step- or 273
linear-function models, while the behavior of push methods 2—4 are identical. This is 274
because one of the empty sites in the neighborhood is automatically filled by a new cell, 275
otherwise no cell division occurs (with no empty sites available), and how a pre-existing cell 27
is pushed is irrelevant. 277

For cell death, the cell simply disappears, and the node becomes empty, while 278
migration is defined as a single-step move of a cell in the lattice. Suppose that the cell at 279

(x, y, z) is migrant and moves to (x, v,z + 1). If (x, y, z + 1) is empty, the cell simply moves  2s0
and (x, y, z) becomes empty. If there is a pre-existing cell at (x, y,z + 1), the cells at (x, y,z) 28
and (x, y,z + 1) are replaced by each other. 282

Simulation 283

Tumopp was developed as a simulator for generating patterns of cancer cell growth 2
under the setting described in the previous section. Table 1 summarizes the options and 285
parameters involved in tumopp. It is first necessary to set either a regular (square) or 286
hexagonal lattice in 2D or 3D space. Then, an initial cell is placed at position p(0,0,0) in 3D ze7
space or 5(0,0) in 2D space. The initial cell has to be a stem cell (CSC) with @ = Wmax. This s
initial cell and its descendants undergo cell division, death, and migration. Their rates are 289

determined by Equations 5, 12, and 13, respectively; all parameters involved are 200
summarized in Table 1. 291

Our model is flexible so that most previous models can be described in our 202
framework; Table 1 compares our model with four representative simulation studies on ITH.  2e
For example, while all previous studies used a regular lattice for the simulation space, we 204
added a hexagonal lattice. We believe a hexagonal lattice is biologically more reasonable 295
because the distance to all neighbor cells is identical. Following Poleszczuk et al. [19], our 296
model has a flexible setting for different cell types, from CSC to TDC with intermediate 207

states, although the other three studies assumed that all cells are CSCs (i.e., ps = 1 is fixed). 208
In our model, the rates of cell division, death, and migration are defined such that a number 20
of factors are taken into account, while the four previous studies only incorporated part of a0
them. Moreover, our model includes all of the methods for placing a new daughter cell that  so1
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were used in the four previous studies. Tumopp is unique because it employs a gamma 302
function for wy ;, while all four previous studies used an exponential or geometric function. o
Both are essentially identical, simple decreasing functions, except that an exponential 304
function is continuous while a geometric function is discrete. Note that an exponential 305

function is a special case of a gamma function with the shape parameter k = 1. Importantly, s
considering the cell cycle, a gamma function (with a large k) should make more sense 307
biologically, and using an exponential (or geometric) function might create quite a different s
pattern of ITH from those simulated with a gamma function (see below). In summary;, 309

tumopp is flexible enough to simulate a tumor under various conditions. It not only allows 10

simulations under near identical settings as most previous simulation studies but also att
exploration of the robustness of any findings by comparison of simulation results with a12
various settings. 313
Results 214

As shown in Table 1, tumopp is much more flexible compared with the four 315
previous models, which arbitrarily explored only limited conditions. Our simulator has a 316
number of options listed in Table 1, which cover almost all settings used in the previous 317

studies. Here, we demonstrate how the different options in tumopp affect the final outcome. s
In the current work, we used a 3D regular lattice and Moore’s definition of neighborhood to =1
be comparable with previous studies. Essentially identical results can be obtained in a 3D 320
hexagonal lattice, whereas some unrealistic outcomes may be obtained if the von Neumann sz

neighborhood is assumed (see Discussion). First, we give an overview of the results under 322

neutrality (assuming no driver mutations), followed by a discussion of the results with a23
driver mutations. 324
Tumor growth patterns and cell genealogy under neutrality 325

Because the cell division rate should be much larger than the death and migration s
rates in a tumor, we first ignored the latter two rates. Push method 2 was used because the sz
effect of push methods is negligible on the pattern of tumor growth (but quite large on ITH, sz
as shown in the next section). We first assume that all cells are CSCs (i.e., ps = 1) having the a2
same cell division rate regardless of local density (i.e., constant-rate model). Under this 330
condition, the major factor used to determine the growth curve of a tumor is the shape 33
parameter of the gamma distribution, k. We performed simulations with various values of k, s
and typical patterns are shown in Fig. 5. Each simulation run was terminated when the total s
number of cells reached N = 2!* ~ 16,000. When k = oo and all cells undergo cell division at s
the same time, the tumor grows stepwise (right panel, Fig. 5), and the number of cell 335
divisions experienced (denoted by v) is identical for all cells in the final tumor, resultingina sz
symmetric genealogy with v = 14 for all cells (top left genealogy, Fig. 5). As k decreases, the s
variance in wy ; increases along with the variance of v. The other extreme case is k = 1 where s
cell division occurs regardless of the cell cycle, which is the assumption used in most 339
previous studies [9, 17-19]. The growth curve is near exponential, and we observe a 340
substantial variation of v in the final tumor (bottom genealogy, Fig. 5). This means that some a1
cells may undergo a large number of cell divisions and some may not. a2
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# of tumor cells
5

Fig 5. Effect of the shape parameter of the gamma distribution (k) on the tumor growth
curve and cell genealogy. Three values of k = {1, 8, oo} are used. The cells from the final
tumor are represented by blue circles on the genealogies. The constant-rate model is
assumed to demonstrate the point.

It should be noted that the growth rate in the right panel of Fig. 5 is negatively 343
correlated with k, even when we set an identical birth rate, like § =1 and w;, = 1 for all cells a4
at birth (or cell division). The growth rate is smallest when k = co, where the growth curve s
is deterministically given by N; = 2! because At = 1 at any cell division event. When k is 346
finite, the growth curve is not deterministic because it involves a random process; the system 4
proceeds by choosing the smallest waiting time, which presumes E(At) < 1. The growth rate s
is largest when k = 1, where the expected number of tumor cells at time ¢ is given by Ny = e’. 1

Fig. 6A shows typical growth curves and genealogies under the constant-rate 350
(blue), step-function (yellow), and linear-function (red) models for E2 that determines how s
local density affects the cell division rate. The constant-rate model assumes a fixed cell 352
division rate, while the latter two assume the rate as a function of local density. k = co is 353
fixed to demonstrate the point because essentially identical results were obtained for other s
values. The tree on the top with blue nodes for the constant-rate model is the same as the a5
top genealogy in Fig. 5. This figure shows that if the step- and linear-function models are as6
used, competition with neighboring cells is incorporated such that the cell division rate 37

decreases (E2, Eq. 8). This causes a substantial variance in the number of cell divisions per 358
cell (v). Consequently, growth under these models (yellow and red, inner panel, Fig. 6A)is a5
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slower than that under the constant-rate model (blue, inner panel, Fig. 6A). 360
A migration rate py =0, death rate 6, =0 B migration rate pg =2, death rate 8 =0
Constant-rate » 10 ] Constant-rate w10 T
< / S ¥
o o
€ 1077 § € 107
- 2 ] const - 2 const
-~ 5 10'4 F step £ s 10' A step
= 1+ I linear = T+ I linear
Step-function 0 10 20 30 40 Step-function 0 10 20 30 40
e Time (t) _— : Time (t)
= 1
=] |
- 1
— !
C migration rate pg =0, death rate 8, =0.2 D migration rate py =2, death rate §y=0.2
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— 8 107 J = : 2101 f
] ] J
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<— g 4 I linear 7 g l' B linear
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— Time (t) Time (t)

Fig 6. The effect of local density on the tumor growth curve and cell genealogy under the
constant-rate, step-function, and linear-function models for E2. Simulation results with
(A) no cell death or migration, (B) migration (po = 2) but no death, (C) death (69 = 0.2) but
no migration, (D) both migration and death (69 = 0.2 and pg = 2).

This slowing of growth is somewhat diminished when we introduce migration 361
(Fig. 6B). Migration could transfer cells to less crowded sites, thereby resulting in an increase e
in growth rate (Fig. 6B). This applies to the step- and linear-function models, while the result ses
for the constant-rate model is identical to that in Fig. 6A because it assumes a constant cell ~ se
division rate regardless of local density. If cell death is incorporated (Fig. 6C), we observe an  ses
obvious reduction in growth rate in all three models for E2. Fig. 6D shows the joint work of  ses

migration and cell death. 367
Next, we considered the effect of cell differentiation by additional simulations with s
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the same parameter sets as Fig. 6, except that the assumption of all CSCs is relaxed. Fig. 7 369
shows the result for the step-function model because we obtained essentially the same result a7
for the linear-function model (the constant-rate model was not relevant here because it a7t
allows cell division regardless of the availability of space in the neighborhood). The case 372
wherein no CSCs migrated or died (yellow curve, Fig. 7) is shown as a standard for a73
comparison, which is identical to Fig. 6A; the growth curve with p; = 0.2 (purple line) a74
illustrates that a CSC undergoes an asymmetric cell division and produces a TAC at a7s
probability 1 — ps = 0.8, and a TAC eventually becomes a TDC after wmax = 5 cell divisions. s
This figure also shows the tumor stopped growing at ¢ = 25 because it was completely a77
surrounded by immortal TDCs, thereby creating a barrier that prohibits inside cells from a7s
undergoing further divisions. The inner panel of Fig. 7 illustrates this type of situation, a79
where a 2D hexagonal lattice is assumed to demonstrate the point. The dark purple cells 380

with w = 0 are TDCs that completely surround the entire tumor, prohibiting further division s
of inner cells. This applies only when there is no migration or death so that the barrier will e
work “forever” once established. If migration or cell death is introduced, the barrier isnot e

permanent or may not even be established (dark and light green lines, Fig. 7). This a4
phenomenon was pointed out in a previous study [19] and is well confirmed in our a5
simulation. 386

ps=1.0 mm p;=0.2 ps=0.2,8,=0.1 ps=02,po=2.0

10”1

=

o
w
1

# of tumor cells
_.‘-|_‘._‘_

=

o
~
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Fig 7. Typical tumor growth behavior when the assumption of all CSCs is relaxed.

ps = 0.2 and wmax = 5 are assumed, except for the case of involving all CSCs (ps = 1) for
comparison (yellow line). With no cell death or migration (purple line), growth likely stops
when the tumor is surrounded by immortal TDCs (inner panel). This effect can be
moderated by cell death and/or migration (light and dark green lines).
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ITH and tumor shape under neutrality 387

The choice of setting in our simulator markedly affects the ITH pattern and shape s
of the final tumor. Again, we first assumed that no migration or cell death occurs and that ~ se

all cells are CSCs (ps = 1 fixed). After performing a large number of simulations under 3%
various settings, Fig. 8 shows the observed patterns in eight pairs of E2 models and push 391
methods: 4 push methods under the constant-rate model; 2 push methods under each step-  se
and linear-function model (the behaviors of push methods 2—4 under the step- and 393
linear-function models are identical). For each pair, Fig. 8 presents the results of three 304

independent replicates for two values of k (k = 1 and o). All simulation runs started witha s
single-cell, and division was allowed until the number of cells hit 10,000; descendants of the s

first four cells are shown in blue, green, yellow, and red in 3D space (Fig. 8). 397

One major difference is seen between k = 1 and oo (left and right halves, Fig. 8): all s
cells undergo cell division simultaneously when k = oo (Fig. 5), so the proportion of cell 308
colors is always 25%:25%:25%:25%, and the proportion deviates from this ratio as k 400

decreases. This effect is theoretically true, although not visually obvious in Fig. 8. Another 4o
difference is how the four colors of cells distribute in 3D space. In the top four rows of the 402
constant-rate model, the four colors of cells are generally intermixed, particularly when push 40
method 1 is employed. This is because cell divisions occur independently of local density in 404
the constant-rate model, and new cells are placed by randomly pushing other cells toward 40
the surface. In contrast, in the step- and linear-function model rows, cells of the same color 40
are more likely located close to one another, making clusters of cells with the same color. 407
This is particularly notable with push methods 2—4, in which a new daughter cell is always 40
placed at an adjacent site if space is available so that closely related cells tend to be located 400

close together. 410

This pattern is better documented by looking at the relationship between Fsr and 411
physical distance. Fst is a measure of relative population differentiation at the DNA level. 412
We computed Fst for a number of pairs of random subregions with size 20 cells from a 413
single tumor. Note that Fs was computed based on the branch lengths on the genealogy 414
rather than making genetic data by distributing passenger (neutral) genetic markers (e.g., 415
single nucleotide polymorphisms) across the genome; therefore, this Fsr is the expected 416
value when there are an infinite number of markers. The physical distance was computed as 417
the Euclidean distance between the central cells of two subregions. Fig. 9 shows the 418
relationship between Fst and physical distance for all simulated tumors in Fig. 8. As 419
expected, Fst and physical distance are more positively correlated when the step- and 420
linear-function models are used. 421

The shape (morphology) of the final tumor also varies depending on the models 422

for E2 and push methods. Tumors in most cases are more like spheres. Exceptions include 42
cases with push methods 3 and 4 under the constant-rate model, where the final tumors are 44
angular with quite flat surfaces. In these specific cases, there could be a systematic pressure 4z

to keep flat surfaces because hollows are quickly flattened by filling new cells from the 426
inside. Other than these exceptional cases, there is some quantitative variation in the a27
deviation from a sphere. It should be noted that irregular morphologies with dramatic 428

deviation from a sphere may correlate with tumor invasiveness [20, 21, 31-33]. It seems the 42
tumor shape is most distorted in the linear-function model. This is because the 430
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Fig 8. 3D structures of simulated tumors for push methods 1-4 under constant-rate,
step-function, and linear-function models under neutrality. Results for k = 1 and oo are
shown. Descendants from the first four cells in each simulation run are shown in blue,
green, yellow, and red. The results of three independent runs are shown for each setting.

linear-function model assumes high rates of division for cells with many empty sites in the a1
neighborhood, which largely applies to cells that form outshoots on the surface. As a 432
consequence, such an outshoot likely grows to be a lump, thereby resulting in a marked 433
deviation from a spherical shape. This also explains the observation that Fst and physical =~ 4a
distance are most strongly correlated in the linear-function model. 435
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Fig. 10 explores the effect of cell death and migration. We show only results for 436
k = co because essentially the same results were obtained for other values of k, including a37
k = 1. The plots in the left quarter were obtained with the same parameter sets as those in 438

the right half of Fig. 8. It appears that the effect of adding cell death alone (p = 0.2) may be 43
small, while migration tends to create more distorted tumors, with more intermixing of the 0
four cell colors (right half, Fig. 10). It is also notable that we observe a number of outshoots 4
on the surface when migration is included. a42

In Fig. 11, we further relaxed the assumption of all CSCs. We used two values for 443
the cell differentiation parameter p; = (0.6,0.2), with wmax = 5 and 10. We show the results 4
when the step-function model and push method 2 are assumed because essentially the same  44s
results were obtained for other settings. The top row of Fig. 11 shows the result for the case 4
involving all CSCs, which was obtained by simulations with the same parameter sets as the 47
sixth row of Fig. 10. The most marked effect of p; is that tumor growth could stop when it 448
was surrounded by TDCs, as demonstrated in Fig. 7. This effect is well observed particularly 4o

when p; is small (i.e., ps = 0.2), wmax is large, and migration is not allowed (p = 0.0) (see 450
Poleszczuk et al. [19]). 451
Effect of driver mutations 452

Three kinds of driver mutations are implemented in tumopp, those that increase 453

the cell division rate, decrease the cell death rate, and increase the migration rate. Here, we 4
focused on the first type of driver mutations that increase the cell division rate because the s
effects of the other two kinds of driver mutations are relatively simple (data not shown). If 456

driver mutations are assumed to decrease the death rate, the major effect is slowed tumor 457
growth, and driver mutations that increase the migration rate would create a more 458
intermixed spatial distribution of cells of different genotypes. 459

There would be two extreme cases for driver mutations that increase the cell 460
division rate: (i) driver mutations with small effects arising frequently (Fig. 12) and (ii) a a61
driver mutation with a large effect occurs only once (Fig. 13). We show some simulation a2
results for these two cases with relatively simple settings to demonstrate this point. Cell 463
death and migration are ignored (69 = 0, pg = 0), and all cells are CSCs (ps = 1), which is the 4
same setting used in Fig. 6A, with a slight modification: k = 100 is assumed instead of 465
k = co. This modification was made because k = oo predicts all cells undergo cell division 466
simultaneously and that the cell number grows stepwise (ladder line, Fig. 5), which is not a87

suitable if we want to introduce a driver mutation at an arbitrary time point specified by the 4
size of tumor (N,). This applies to the simulation for (ii). 469

The effect is quite different between the cases (i) [Fig. 12] and (ii) [Fig. 13]. In the 470
simulation for case (i), weak driver mutations were assumed to occur quite frequently with 4
parameters pg = 0.005, 55 = {0.2,0.5,1.0}, and o = 0. Fig. 12 shows the results for push 472

methods 1 and 2 under the constant-rate, step-function, and linear-function models. The 473
results for push methods 3 and 4 with the constant-rate model are not shown because they 7
are quite similar to those of push method 2 (push methods 2—4 assume the same behavior 475
under the step- and linear-function models). In Fig. 12, cells are shown such that the cell 476

division rate is scaled in color, from blue (§ = 1, default rate) to red. Under all settings, itis 47
clearly demonstrated that as average intensity of driver mutations (5g) increases, the growth 7

19


https://doi.org/10.1101/109801

bioRxiv preprint doi: https://doi.org/10.1101/109801; this version posted February 19, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

rate increases due to the cells that have acquired driver mutations. Cells with driver 479
mutations likely undergo more cell divisions and make a cluster on the surface. 480

With 55 = 1.0, the cell division rate increases to § > 200 (orange to red), creating agt
quite skewed tumor shapes with accelerated growth rates. Particularly for push methods 482
2—4 with the step- and linear-function models, the 3D structure of the tumors is complicated s
because the step- and linear-function models assume the cell division rate is on average 484
higher on the surface. 485

Fig. 13 considers the other extreme case (ii), where a single, very strong driver 486
mutation is introduced arbitrarily. During each simulation run, rather than setting the 487

driver mutation rate, we arbitrarily introduced a strong driver mutation with sy = 99 when = 4ss
the number of tumor cells reached N, = {2000, 5000, 10000}. An sg = 99 means that a single o

mutation caused an increase in cell division rate 100 times as high as the original value. 490
Fig. 13 shows the results for push methods 1 and 2 with constant-rate, step-function, and 491
linear-function models. Even with very low initial frequencies (i.e., 402
{1/2000,1/5000,1/10000} for N, = {2000, 5000, 10000}, respectively), the cells with the 493
driver mutation (red, Fig. 13) grow dramatically, resulting in an immediate increase of the 494
total number of cells. It seems that the red cells with the driver mutation likely result in a 495
distinct cluster particularly for push method 2 with the step- and linear-function models, 496
whereas red and blue cells are to some extent intermixed in the constant-rate model. a07
Discussion 400

Herein, we developed a simulator named tumopp that generates ITH patterns. 499
Thus far, ITH simulations have been conducted in several previous studies; however, the 500

model settings used varied (Table 1). This means that only limited conditions were explored  soi
in each study. Motivated by this issue, we developed tumopp to be as flexible as possible so s

that all four previous models could be included and making it extremely useful for 503
exploring the effects of model and parameter settings. Variations in the model settings 504
include how the cell division rate is determined, how daughter cells are placed, and how 505
driver mutations are treated. Moreover, to account for the cell cycle, we introduced a gamma  sos
function for the waiting time involved in cell division, while all previous studies adopted 507
simple decreasing (e.g., exponential) functions (Fig. 3). In our model, the shape of the 508
gamma distribution can be specified by parameter k, and a k = 0 gives an exponential 508
distribution whereas k = co assumes that all cells undergo division simultaneously. 510

Moreover, tumopp uniquely implements a hexagonal lattice, which we believe is 511
biologically more reasonable because the distance to all neighbor cells is identical so that 512
there is only one definition of the neighborhood (Fig. 2). S1 Fig briefly shows simulated 513
tumors in a 3D hexagonal lattice with the same setting as those used in Fig. 8. We suggest 514
using a hexagonal lattice for future work although we here used a regular lattice to be 515

comparable with the previous studies. Although tumopp implements two definitions of the s
neighborhood in a regular lattice, we used the Moore neighborhood as in previous studies. sz

The von Neumann neighborhood has not been used often and can create diamond-like 518
tumors, which is obviously an unrealistic morphology (S2 Fig). 519
Using tumopp, we investigated how model and parameter settings affect tumor 520

growth curves and ITH. We found that k (shape) for the waiting time mainly specifies the 521
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growth curve (Fig. 5). Moreover, the combined effect of local density on the cell division rate =22

(constant-rate, step-function, and linear-function models), the method to place new cells 523
(push methods 1-4), and cell differentiation plays a role in tumor growth (Fig. 6). 524

Various patterns in the shape of tumor and ITH arose depending on the model 525
setting. The methods used to determine the cell division rate (i.e., constant-rate, 526
step-function, and linear-function models) and those to place new cells (i.e, push methods 527

1-4) had a major effect. Under the constant-rate model with push method 1, all cells undergo sz
cell division at a constant rate regardless of local density, and new cells are placed randomly sz
pushing out pre-existing neighbor cells. This behavior makes shuffled patterns of ITH with  sx
weak isolation by distance (Figs. 8 and 9). By contrast, under the linear-function model with  ss
push methods 2—4, the cell division rate is higher when more space (empty sites) is available sz
in the neighborhood, which generally applies to cells near the surface (particularly to cells 533

that constitute outshoots from the surface); new cells are placed to fill the empty space 534
without pushing existing cells. This setting likely creates a biased complex shape of tumor sz
with clusters of genetically closely related cells, resulting in strong isolation by distance. 536

The effects of driver mutations were implemented by increasing the cell division 587
rate, decreasing the death rate, and increasing the migration rate. Our simulation 538
demonstrated that the effect of driver mutations on ITH would be remarkable when 539
introduced to increase the cell division rate, especially when driver mutations with large 540

effects are involved. Although this mode of driver mutation was implemented in Waclaw et s
al. [18] and Uchi et al. [9], the effects on ITH and tumor morphology were not fully explored. s«

Tumor growth dynamics with various kinds of driver mutations would be an intriguing 543
subject for future study. It would also be interesting to involve environmental changes, 544
which can be easily incorporated in tumopp. For example, chemical agents would cause a 545
dramatic reduction in the size of the cancer cell population, and a regrowth of remaining 546
resistant cells might occur. Simulations with such environmental changes would give 547
insights into the behavior of tumors after medical treatments. 548

Although tumopp may take a considerable amount of time to simulate very large s
tumors, this problem may be solved to some extent if the tumor is assumed to consist of 550
compartments; for example, glands in a colorectal tumor, as pointed out by Sottoriva et 551

al. [17, 34]. Glands proliferate through gland fission [35], and each gland is almost a clonal 552
population of the cells originated from a few CSCs [36-38]. If so, when simulating a tumor, a  sss
compartment can be treated as a single unit (cell). A compartment-based simulation would s
involve much less computational load than a cell-based simulation. 555

Our work demonstrates that extremely variable patterns of ITH can be created even  sss
under neutrality, depending on the model setting. This suggests a caveat in analyzing ITH = ss7
data with simulations with limited settings because another setting might predict a different ss

ITH pattern, which could result in a different conclusion. For example, Sottoriva et al. [17] 559
investigated ITH in colorectal tumors by sequencing a number of glands from single tumors. se
They found that cancer cells with similar genetic backgrounds were observed on both the 561
left and right sides of the tumors. This observation led the authors to conclude that 562
mutations that arose in early stages spread during growth, and they confirmed that such 563
intermixed tumors can be generated by simple simulations assuming push method 1 with 564

the constant-rate model in our framework. Our simulations agree that this setting produces  ses
intermixed tumors but not with other settings, such as push methods 2—4 with the 566
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linear-function model. Thus, we suggest that simulation setting be carefully chosen, and 567
deep understanding of the typical behavior of cancer cells is important. Otherwise, it is 568
important to carry out simulations under various conditions to confirm or verify the results. seo
For this purpose, tumopp will be very useful, and the source code is available on GitHub 570
(https:/ / github.com /heavywatal/tumopp). 571
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lattice /neighborhood are the same as those in Fig. 8. 576
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Fig 9. Correlation between Fsr and physical distance measured by Euclidean distance.
The simulated tumors shown in Fig. 8 are used.
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green, yellow, and red. The results of three independent runs are shown for each setting.
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Fig 11. Effect of nonstem cells on the 3D structures of simulated tumors. Results for push
method 2 under the step-function model are shown. k = oo is assumed. Descendants from
the first four cells in each simulation run are presented in blue, green, yellow, and red. The

results of three independent runs are shown for each setting.
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Fig 12. 3D structures of simulated tumors with frequent weak driver mutations. Results
for push methods 1 and 2 under constant-rate, step-function, and linear-function models are
shown; k = 100 is assumed. The colors of cells represent their cell division rates, scaled from
blue to red. The results for one simulation run are shown for each setting.
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Fig 13. 3D structures of simulated tumors with a single strong driver mutation. Results
for push methods 1 and 2 under constant-rate, step-function, and linear-function models are

shown; k = 100 is assumed. The cells with the driver mutation are in red, while the others
are in blue. The results for one simulation run are shown for each setting. The time point
when the driver mutation was introduced is shown by a pink circle on the growth curve.
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