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Abstract

Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and
control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics.
Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of
the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and
control. Further complications arise from imperfect detection of disease, and from the computationally intractable
number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that
overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes
of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch
geometry, we demonstrate that disease dispersal distances can be estimated accurately in a fragmented landscape
when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed
for 15 years over 600 orchards, we obtain the first estimate of the distribution of the flight distances of infectious
aphids at the landscape scale. Most infectious aphids leaving a tree land beyond the bounds of a 1-ha orchard (50%
of flights terminate within about 90 m). Moreover, long-distance flights are not rare (10% of flights exceed 1 km).
By their impact on our quantitative understanding of winged aphids dispersal, these results can inform the design of
management strategies for plant viruses, which are mainly aphid-borne.

Author Summary

In spatial epidemiology, dispersal kernels quantify how the probability of pathogen dissemination varies with distance.
Spatial models of pathogen spread are sensitive to kernel parameters; yet these parameters have rarely been estimated
using field data gathered at relevant scales. Robust estimation is rendered difficult by practical constraints limiting the
number of surveyed individuals, and uncertainties concerning their disease status. Here, we present a framework that
overcomes these barriers and permits inference for a between-patch transmission model. Extensive simulations show
that dispersal kernels can be estimated from epidemiological surveillance data. When applied to such data collected
from more than 600 orchards during 15 years of a plant virus epidemic our approach enables the estimation of the
dispersal kernel of infectious winged aphids. This kernel is long-tailed, as 50% of the infectious aphids leaving a tree
terminate their infectious flight within 90 m and 10% beyond 1 km. This first estimate of flight distances at the
landscape scale for aphids–a group of vectors transmitting numerous viruses–is crucial for the science-based design of
control strategies targeting plant virus epidemics.

Introduction

Infectious diseases of humans, animals and plants severely impact the world’s health and economy. To gain knowledge
on disease dynamics, powerful mathematical models have been developed [1–3]. However, for predicting the relative
efficacies of competing control strategies across realistic heterogeneous landscapes, spatially-explicit in silico simulation
models provide the main avenue [2]. The dispersal parameters of such models critically affect the predicted spatio-
temporal dynamics of the disease, and thus the predicted outcome of potential control strategies [4]. Obtaining
reliable estimates for these parameters is therefore a fundamental issue in epidemiology [5–7]. Models frequently
employ dispersal kernels to represent how the probability of dispersal events diminishes as a function of distance [5].
Simulation studies have proven that dispersal parameters can be identified in idealised scenarios [5], which has been
successful for simple models or small-scale datasets [8–13]. Recent advances in Bayesian methods and computing
power have enabled fitting more realistic models to larger-scale surveillance data [6, 14–18]. However, most dispersal
kernels are still often unknown. Indeed, estimation gets more complex when graduating from idealised toy problems
to reconstructing the spatio-temporal dynamics of real epidemics. The first issue is the mismatch between the spatio-
temporal coordinates of the epidemic, sampling and model [19]. For example, the timing of key events (e.g. when
a susceptible individual becomes infected) is often censored (i.e. known only within certain bounds), and failure to
account for this can bias estimates. Moreover, the challenge of inference is increased by uncertainty arising from missing
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observations [20, 21] or imperfect sensitivity of disease detection [22, 23]. Further difficulties arise when surveillance
data are aggregated at the patch scale because a landscape comprising patches of various shapes or sizes often cannot be
summarized by patch centroids without biasing connectivity estimates. All these issues require appropriate correction
measures to avoid biased inference and prediction [24].

In the case of aerial vector- or wind-borne diseases, dispersal kernels critically depend on the flight properties of
the vectors or infectious propagules [25]. When the probability of dispersal decreases more slowly than an exponential
distribution, kernels are termed “long-tailed” and lead to non-negligible long-distance flights [26]. Such events are
an important component of disease epidemiological–and evolutionary–dynamics and call for kernel estimation at the
landscape scale [27]. However, among plant diseases, there are few available kernel estimates. The dispersal kernel
of black Sigatoka (a fungal disease of banana) has been estimated experimentally up to 1 km of a point source,
based on the direct observation of spore-induced lesions [28]. This is the only available direct estimate at this scale
for the dispersal kernel of a plant disease, which reflects the extreme practical difficulties of such field studies and
highlights the critical need for developing in silico solutions. A promising way forward is to infer dispersal parameters
indirectly, i.e. from spatio-temporal patterns observed in epidemiological data [5] whilst accounting for the added
complexity (outlined above) of observational studies. This approach has been used to infer the dispersal kernels of
the wind-dispersed plantain fungus Podosphaera plantaginis [15], the fungus Leptosphaeria maculans affecting oilseed
rape and dispersed both by wind and wind-driven rain [29], and two pathogens transmitted only by wind-driven rain:
the oomycete Phytophthora ramorum that is responsible for sudden oak death [16], and the bacterium Xanthomonas

axonopodis that causes Citrus canker [17]. A dispersal kernel has been estimated for two other Citrus diseases: Bahia
bark scaling of Citrus, a disease with an elusive etiology [13], and Huanglongbing, which is caused by bacteria from
the ’Candidatus Liberibacter’ genus and transmitted by psyllids [18]. Up to now, this is the only vector-borne plant
disease for which the dispersal kernel is documented. Although aphids are responsible for transmitting almost 40%
of more than 700 plant viruses [30] and impose large economic burdens, their dispersal remains ill-characterized at
the landscape scale [31, 32]. For a vast number of aphid-borne diseases, this lack of basic knowledge compromises the
reliability of quantitative risk assessment and predictive epidemiological models–the key ingredients of science-based
control strategies.

Most aphid-borne viruses belong to the Potyvirus genus and are transmitted in a non-persistent manner, i.e. by
winged aphids that acquire and transmit the virus immediately while probing on various plants in search of a suitable
host species [30]. Potyviruses are transmitted by a wide range of aphid species, and aphid infectivity is lost after
the first probes. For these reasons, estimating the natural dispersal kernel of a potyvirus provides an indirect way
of estimating the dispersal kernel of infectious winged aphids. Plum pox virus (PPV) is a potyvirus that appears
in a list of the 10 most important plant viruses [33]. This virus is the causal agent of sharka, a quarantine disease
affecting trees of the Prunus genus (i.e. mainly peach, apricot and plum), reducing fruit yield, quality (modified sugar
content and texture) and visual appeal (due to deformations and discolouration) [32]. Sharka is a worldwide plague
that has infected over 50 countries in Europe, Asia, America and Africa [32], inflicting estimated economic losses of
10 billion Euros over 30 years [34]. The transfer of infected (possibly symptomless) plant material can disseminate
PPV over long distances [34], and the natural spread of the disease is ensured by more than 20 aphid species [35].
Virus-infected trees cannot be cured, and insecticides do not act fast enough to prevent the spread of the virus by
non-colonising aphids [30, 36]. In addition, resistant or tolerant peach and apricot varieties are too scarce to provide
a short-term alternative to the cultivated varieties. However, local aphid transmission can be reduced by removing
infected trees as soon as they are detected. As a result, various countries have implemented PPV eradication or control
strategies based on regular surveys and removal of trees or orchards when PPV is detected [32,34,37]. Given the cost of
surveillance, tree removal and compensation, these strategies should benefit from model-assisted optimisation, which
requires estimating the aphid dispersal kernel.

In this context, the aims of this study are: (i) to develop a Bayesian inference framework for estimating from
surveillance data the parameters of a spatially-explicit epidemiological model that accounts for patch geometry and
for interactions between disease spread, surveillance and control, (ii) to assess through simulations the accuracy and
precision of the dispersal parameters estimated under various epidemic scenarios, and (iii) to apply our method to
15 years of geo-referenced surveillance data collected during an epidemic of Plum pox virus in order to estimate the
dispersal kernel of the aphid vectors.

Materials and Methods

Surveillance database

In the early 1990’s, an outbreak of the M strain of PPV was detected in peach/nectarine patches (orchards) in southern
France [38]. The plant health services implemented a control strategy based on disease surveillance and removal of
symptomatic trees. This process involved the routine collection of patch-level data comprising the observed number of
new cases (trees with PPV-typical discolouration symptoms on flowers and leaves) and the corresponding inspection
dates, as well as patch attributes (location, plantation and removal years, planting density, etc.). We aggregated the
information for surveillance years 1992-2006 into a unique georeferenced database, with patch boundary coordinates
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obtained from digitised aerial photographs. With 4820 inspections over 15 years in 605 patches (52 of which were
replanted during that period), this database is a precious resource for inference on aphid-mediated viral dispersal in
fragmented landscapes. Moreover, to account for seasonal variations in the number of flying aphids, we used in our
model the average (over 17 years) weekly number of flying aphids collected from a 12-m-high Agraphid suction tower
located within the bio-geographical region of the study area.

Modelling Framework

Our model has a compartmental Susceptible-Exposed-Infectious-Removed (SEIR) structure that aims to reduce bias
in parameter estimates by accounting for irregular patch geometry, detection-dependent removal, imperfect detection
sensitivity, interval censoring of between-compartment transition times, missing data and parameter uncertainty. We
address these challenges by: (i) integrating a mixture of exponential dispersal kernels over source and receiver patches
to compute between-patch connectivity; (ii) splitting the infectious state I into hidden (H) and detected (D) sub-states
(Figure 1); (iii) integrating over uncertainty in the times of transition between compartments; (iv) using Bayesian data
augmentation and inference. Two versions of our discrete-time spatio-temporal SEHDR model (one for stochastic
simulations and the other for Bayesian inference) are described below (for further details, see Texts S1 and S2).

Model Structure

Each patch i is planted with Ni individuals. At the plantation date, a proportion pi of the these individuals are
infectious (in state H) and 1-pi are susceptible (in state S). If patch i is an introduction patch, pi>0; otherwise,
pi=0. Up to four transition times (TE , TH , TD and TR) can be associated with any given individual (Figure 1), i.e.
individuals pass sequentially from state S to E to H to D to R, and all other transitions occur with zero probability.
The exposed state E accounts for the latent period, i.e. the time lag between the infection date TE and the date at
which the individual becomes infectious TH . In this discrete-time model (whose time steps are denoted by the index
r), the transitions (denoted by ‘→’) between the five compartments are modelled as:

~SEi,tr ∼ Binom(Si,tr−1
, 1− e−λi,tr ) (1)

lag( ~EH) ∼ GammaTr(θ1, θ2) (2)

~HDi,tr ∼ Binom(Hi,tr−1
, ρi,tr) (3)

lag( ~DR) ∼ GeomTr(1/δ) (4)

where: Si,tr−1
(resp. Hi,tr−1

) is the number of individuals in patch i that are in state S (resp. H) at the beginning of the

time interval (tr−1, tr], and ~SEi,tr (resp. ~HDi,tr ) represents how many of them make the transition from S to E (resp.
from H to D) in this time interval; the sojourn times in compartments E and D are determined per individual via

random variables lag( ~EH)=TH-TE and lag( ~DR)=TR-TD, respectively; ρi,tr is the probability of detecting symptoms on
an infectious (H) individual (ρi,tr=ρ when patch i is inspected in (tr−1, tr], and ρi,tr=0 otherwise); the left truncation
of GammaTr represents an absolute minimum latency for sharka [32]; the right truncation of GeomTr (with mean δ)
represents a legally-binding maximum delay between detection and removal. The force of infection (i.e. the expected
number of transmission events) incurred by each individual in patch i over (tr−1, tr] is defined as:

λi,tr =
αtrβ

Ni −Ri,tr−1

∑

i′∈Ni

(
mi′iIi′,tr−1

)
, (5)

where αtr is the normalized flight density, i.e. the proportion of annual flights occurring over (tr−1, tr]; β is the
transmission coefficient, i.e. the annual number of vector flights per source (infectious) host that would lead to
infection if the recipient host is susceptible; Ni–Ri,tr−1

is the number of remaining hosts in patch i and Ii′,tr−1
is the

number of infectious hosts in patch i′ in the neighbourhood Ni of patch i, over (tr−1, tr]. Note that Ni is constant (i.e.
Ni=Si,tr+Ei,tr+Ii,tr+Ri,tr ) for all tr between the plantation and removal dates of patch i. Finally, the connectivity
mi′i is the probability that a vector flight starting in patch i′ terminates in patch i.

The mean connectivity between source patch i′ of area Ai′ and receiver patch i [39] is obtained via :

mi′i =

∫
x∈i′

∫
y∈i f

2D(||x− y||)dydx

Ai′
(6)

where x and y are coordinate vectors in R2, and f2D is the 2-dimensional dispersal kernel. The computation time
required to calculate connectivity mi′i between several hundreds of patches prohibits the use of iterative algorithms
to directly estimate the parameters of flexible (e.g. exponential-powered) kernels. Thus, we developed an approach
that can approximate many long-range dispersal kernels. We defined f2D as a mixture of J components:

f2D(||x− y||) =
J∑

j=1

[
wjf

2D
j (||x− y||)

]
(7)
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where the wj are positive mixture weights summing to 1, and 2hj is the mean dispersal distance for exponential kernel
f2D
j defined as:

f2D
j (||x− y||) =

e−||x−y||/hj

2πh2
j

(8)

Under this mixture formulation, the connectivity becomes:

mi′i =

∫
x∈i′

∫
y∈i

∑J
j=1

[
wjf

2D
j (||x− y||)

]
dydx

Ai′
(9)

=
J∑

j=1

[
wj

∫
x∈i′

∫
y∈i

f2D
j (||x− y||)dydx

Ai′

]
. (10)

This permits the connectivity of each mixture component j to be computed just once, and only the weights wj need
to enter the iterative estimation procedure. We set hj=

3
2×1.08j−1 (with J=100), to obtain kernel components with

mean distances ranging from 3 to 6110 m, and higher resolution at smaller distances. To simplify parametrisation,
and to avoid identifiability issues with the mixture of exponentials, we restrain weights using:

wj = P
( j
J
|s1, s2

)
− P

(j − 1

J
|s1, s2

)
(11)

where P is the cumulative density function of a beta distribution with parameters s1 and s2. We call any kernel of
the form (eq. 7) weighted by (eq. 11) a beta-weighted mixture of exponentials (BWME) kernel.

Estimation Model

We now focus on the model used for parameter estimation. Among the four transition times, only TD (i.e. the
time when an infectious individual is detected) is known precisely. Let (ti,1, · · · , ti,k, · · · , ti,Ki

) denote the set of Ki

inspection dates in patch i (which may be partly censored by omissions in the surveillance records). Let p(TD,i = ti,k)
denote the probability for an individuals in patch i to be detected as infected at inspection date ti,k. Data provide
the associated number D+

i,k of newly detected individuals, which is modelled as:

D+
i,k ∼ Binom

((
Ni −

k−1∑

k′=0

D+
i,k′

)
, p(TD,i = ti,k)

)
(12)

with D+
i,0 = 0. To account for censoring and imperfect detection sensitivity, a survival model was used to derive

p(TD,i = ti,k) (Text S1). Using eq. (12) we obtained the likelihood of the observed data given a set of parameters Θ
(Text S1). Based on this likelihood, Bayesian inference of parameter distributions was performed via a Gibbs sampler
with embedded adaptive Metropolis-Hastings steps (Text S3).

Estimation for Simulated Epidemics

To assess the accuracy (i.e. lack of bias) and precision (i.e. lack of variance) of the estimation of the dispersal
parameters, 10 epidemics were simulated under each combination of 7 disease introduction scenarios × 3 dispersal
kernels × 4 parameter estimation scenarios. All simulations were performed under the same virtual landscape derived
from the surveillance database: we retained the spatial coordinates (and thus the area) of the patches, but the other
potential spatio-temporal dependencies were suppressed through the random permutation of planting densities and
of patch plantation/removal/replantation dates. When density or plantation date were missing in the database, their
values were drawn from the corresponding empirical distribution. Simulations were performed with 1 time step per
day, and 1 survey per patch per year, with inspection days drawn from the corresponding empirical distribution. The
transmission coefficient β was fixed at 1.5 (which leads to realistic epidemic dynamics) and all other parameters were
fixed at the expected values of their prior distributions (Text S2).

The three simulated kernels correspond to short-, medium- and long-range dispersal. They were parametrised
using low-dimension mixtures of exponential kernels (eq. 7) with fixed mean distances and weights (Table 1, mixture
parameters). These were subsequently approximated by the BWME kernel minimizing the Kullback-Leibler (KL)
distance between the two probability density functions (Table 1, simulation parameters).

The seven introduction scenarios were defined by the following number of introduction patches (and the initial
prevalence pi in these patches): 1 (0.25), 5 (0.10), 10 (0.05), 15 (0.02), 20 (0.01), 25 (0.01) or 30 (0.01). For a
given introduction scenario, all simulations were performed with the same introduction patches, which were chosen at
random with the constraint that the first introduction occurred at year 1 and all other introductions occurred before
year 6 (Figure S7).
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In order to identify whether our Bayesian Markov chain Monte Carlo (MCMC) estimation procedure (Text S3)
encountered identifiability issues with some parameters, we tested 4 estimation scenarios targeting parameter sets of
increasing size (Table 2), with all other parameters fixed at the values used for simulation.

Both simulation and estimation algorithms started at the beginning of year 1 and stopped at the end of year
22. Running 10 MCMC chains under each estimation scenario applied to each simulated epidemic produced 8400
MCMC chains in total. Within each epidemic replicate × kernel × introduction × estimation scenario combination,
we retained the MCMC chain with the highest mean posterior log-likelihood. Then, for each of these 840 best chains,
indices of accuracy (resp. precision) were defined as the mean (resp. span of the 95% credibility interval) of the
posterior KL distances between the probability density functions f2D (eq. 7) of simulated and estimated kernels.
Simulated and estimated kernels were plotted using the distribution function of the distance travelled:

F 1D(||x− y||) =
J∑

j=1

(
wj

[
1−

(
1 +

||x− y||

hj

)
e
− ||x−y||

hj

])
. (13)

This function is the cumulative version of the 1-dimensional f1D (i.e. the probability density function of the distance
travelled), which was obtained by integrating (marginalising) f2D (eq. 7) over all directions.

Estimation for a Real Epidemic

Using PPV surveillance data, we applied our estimation algorithm to infer parameters of the spatial SEHDR model
from the MCMC chain (among 10) with the highest mean posterior log-likelihood (Text S3). The number of introduc-
tion patches κ was fixed at integer values in the range 1-25, and 30 chains were run per fixed κ. Each unit increase in
κ adds two parameters (additional introduction patch identity and initial prevalence) to Θ, which always increases the
posterior log-likelihood (calculated assuming a uniform prior on κ). Identification of κ was thus treated as a model
selection problem for which we maximised the Fisher information criterion I(κ) (Text S4). Convergence diagnostics
were performed on the output of the 30 chains using the R package coda.

Results

Impact of Parameter Values on Simulated Epidemics

The parameter combinations chosen to test the inference procedure cover a wide range of epidemic behaviour, from local
to widespread epidemics and from low to high incidence (Figure 2). The general trends are that more introduction
patches unsurprisingly lead to more widespread epidemics, and that higher disease prevalence in the introduction
patches does not increase much the final local prevalence. As expected, increasing kernel ranges generally causes more
widespread epidemics but with decreasing prevalence in the infected patches (in particular, close to the introduction
patches).

Evaluation of the Estimation Procedure

The distribution of KL distances between simulated and estimated kernels demonstrates that estimation accuracy is
not affected by the inclusion of sensitivity and latency parameters in the estimation scheme (Figure 3A). The median
accuracy of the estimated kernels is not much affected either by the range of the dispersal kernel (Figure 3B). However,
for longer-range dispersal kernels, KL distances can become more extreme (Figure 3B), and the span and variance of
their 95% credibility intervals increase (Figure S10B). This shows that the precision of the estimated kernel decreases
with increasing dispersal range. The most influential factor on accuracy and precision of estimated dispersal kernels
is the introduction scenario (panel C in Figures 3 and S10). However, the effect of the introduction scenario is not
strongly related to the number of introduction patches or the associated initial prevalence, but rather to the presence
of an introduction patch in the dense central cluster of patches (Figures S7 and 3).

For each of the 3 simulated kernels, the distribution of KL distances was summarised by its minimum, quartile and
maximum values across all 7 introduction scenarios × 10 epidemics per scenario. The comparison between simulated
kernels and their estimates within the richest scheme (Θ4) shows that the 3 kernels are very accurately estimated
for some simulated epidemics (Figure 4, left column). However, dispersal distances are often overestimated, with the
median KL distance increasing from 5.2×10−2 to 6.1×10−2 with increasing kernel range. A closer look at the median
estimation curves reveals that the estimated distances never exceed the simulated distances by more than 0.25 on the
logarithmic scale. Dispersal distances are thus overestimated by a factor below 1.8. Even for the most challenging
of the 70 epidemics simulated with the long-range dispersal kernel (bottom-right panel), the difference between the
two curves remains below 0.6 on the logarithmic scale. This value translates into less than 4-fold estimation errors,
which is high but still within one order of magnitude. By contrast, precision is very high for all kernel ranges, as
indicated by a median span below 0.04 for the 95% posterior credibility interval of KL distances (Figure S10) and the
corresponding overlapping red lines in each plot of Figure 4. The results are similar for the other estimation scenarios
(not shown).
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Estimation for a Real Epidemic

Once validated on simulated epidemics, we used the developed inference framework to estimate the dispersal kernel
of Plum pox virus (and thus of the flight distances of the infectious aphid vectors) based on survey data. As a first
step, we inferred the number of introduction patches. For κ<10, no combination of introduction patches returned a
finite posterior log-likelihood. The Fisher information criterion was maximised at κ=11 (Figure 5), indicating that
improvement in model fit saturates beyond this point. This suggests that the most robust inference is obtained with
κ=11. These 11 introduction events among 547-579 orchards planted over 22 years (plantation date is unknown for 32
orchards) correspond to disease introduction probabilities of 0.5 per year and 1.90-2.01×10−2 per orchard plantation.

Summary statistics of the posterior distributions of key parameters and percentiles of the dispersal kernel were
tabulated for κ=11 (Table 3). From the estimated values of s1 and s2, we derived the weights of the kernel components
(Figure S8), the dispersal kernel and the cumulative distribution function of aphid flight distances (Figure 6). This
figure, and the estimated quantiles shown in the second part of Table 3, demonstrate the substantial contribution of
long-range dispersal to aphid-borne virus epidemics. Indeed, almost 50% of the infectious aphids leaving a tree land
beyond 100 m (median distance = 92.8 m; CI95%=[82.6-104 m]), and nearly 10% land beyond 1 km (last decile = 998
m; CI95%=[913-1084 m]).

Discussion

In this work, we have developed a spatially-explicit Bayesian inference framework for the estimation of disease dispersal
parameters when surveillance data are gathered at the patch level. The simulation and inference procedures take into
account that disease status assessment is incomplete because surveillance has an imperfect detection sensitivity and a
finite spatio-temporal coverage. We assessed the quality of the inference procedure through the comparison between
parameter values used for simulation and the corresponding estimates. Then, we applied this approach to Plum pox

virus surveillance data, to obtain the first estimate of an aphid dispersal kernel at the landscape scale. We discuss
below the interest and limitations of the proposed approach and results.

Sources of Uncertainty and Model Validation

We have focused attention on the estimation of the dispersal kernel since this is the key component of spatial epidemi-
ological models. Recent methodological advances have permitted to extract from surveillance data crucial information
on the dispersal kernel of four plant diseases [13, 16–18]. These estimation procedures all account for unobserved
infection times, with additional methodological challenges related to large heterogeneous landscapes [16], introduction
from external sources [17, 18], or active disease control [18]. The present work handles these various processes and,
contrary to the abovementioned studies which all assume a known detection sensitivity, also accounts for this unknown
variable which adds a layer of uncertainty into the surveillance process. Inclusion of parameters for detection sensi-
tivity and the latent period in the estimation procedure (Table 2) barely affects the KL distance between simulated
and estimated kernels (Figures 3 and S10). Hence the inclusion of these extra parameters during parameter inference
based on PPV surveillance data.

A unique feature of the present work is the validation of the estimation of the dispersal kernel through comparing
known functions used in simulations and the corresponding functions estimated from these simulated epidemic data.
Although this is an intuitive and standard practice, previous studies instead used goodness-of-fit statistics between
actual and simulated spatiotemporal patterns as a way to validate their models [16–18]. One reason for this discrepancy
is that we specifically focus on the estimation of the dispersal kernel rather than on model predictions (as in [16,17]).
Another likely reason is the high computational burden associated with simulation-based validation procedures which
require testing estimation algorithms under several simulation scenarios, with several independent estimations per
scenario, to assess robustness, accuracy and precision. Here, this procedure proved useful to demonstrate that dispersal
kernel estimation is generally more accurate for shorter-range kernels and depends on the epidemic dynamics, leading
either to very precise estimation, or to overestimation, of dispersal distances (Figures 3 and 4).

Dispersal Estimation at the Landscape Scale

Our inference procedure explicitly accounts for patch geometry and patch-level aggregation of surveillance data. Al-
though this choice was data-driven (infected tree numbers–not locations–were included in the database), for landscape-
scale studies this approach appears to strike an interesting compromise between computational feasibility and spatial
realism. Indeed, although disease dynamics over the full landscape is informative on long-range dispersal, considering
disease status of over 300,000 individuals simultaneously would cause major computational issues. Conversely, sum-
marizing patch layout by patch centroid coordinates (as often done in spatial models) can bias connectivity estimates,
especially when patch shapes are disparate, and when distances between patches are of the same order of magnitude
as patch dimensions. The proposed approach can thus be useful to estimate the lanscape-scale dispersal kernels of
many wind- and vector-borne diseases.
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A rigourous assessment of connectivity between patches is also necessary because of its influence on parameter
estimation. Indeed, our study shows that the KL distance between simulated and estimated dispersal kernels is
affected by kernel range (Figures 3 and S10). This pattern reflects how parameter identifiability depends on statistical
power, which depends on cumulative disease incidence, which in turn depends on landscape connectivity. Short-range
kernels imply greater local connectivity than long-range kernels, leading to relatively intense local transmission but
reduced transmission at greater distances. Whether or not shorter-range kernels generate larger epidemics depends on
the proportion of potential transmission events falling outside host patches, and thus on landscape configuration. Here,
larger cumulative incidences were obtained using smaller kernels because we worked with a fragmented agricultural
landscape.

Impact of Disease Introductions on Inference

Disease introduction scenarios had a substantial effect on the accuracy and precision of the inferred dispersal kernel
(Figures 3 and S10). Surprisingly, this effect does not seem related to either the number of introduction patches or the
associated initial prevalence. However, we note that lower KL distances between simulated and estimated dispersal
kernels (in introduction scenarios 1, 6 and 7) are associated with introductions occurring in the highly connected
central patches (Figure S7). The resulting higher cumulative incidence probably improves estimation for the reasons
given above.

During parameter estimation, we did encounter multi-modality in the posterior likelihoods, which often happens
when observed patterns are only indirectly related to the modelled processes. For epidemic scenarios with both a short-
range kernel and a high number of introduction events, misidentifying some of the introduction patches had a large
negative effect on the likelihood. For this reason, we ran the MCMC algorithms many times and carefully compared
the posterior likelihoods and parameter estimates of all chains before making inference. We also considered alternative
algorithms such as parallel tempering [40] or equi-energy sampling [41], but the extra computational burden of these
approaches was considered superfluous given that the observed differences in the posterior likelihoods of various modes
were typically relatively large. Thus, launching a large number of chains clearly increased the likelihood of identifying
the global mode. We have extensively tested this approach, reporting here the results of 8880 chains, and have found
that in practice results are consistent.

Overall, inference of epidemiological parameters is easier for epidemics where disease introductions are well char-
acterized, or at least infrequent. Unfortunately, this was not the case with the PPV-M dataset, and estimating the
number of introduction patches κ was challenging. Such difficulty is by no means unique to the current study (see
e.g. [17]). Reversible-jump MCMC (RJMCMC) [42] is a popular solution to a similar problem arising in mixture mod-
els. We initially attempted various implementations of RJMCMC, but found it impossible to construct priors that
could both prevent over-fitting and provide robust posterior probabilities for κ under a wide variety of epidemiological
scenarios. To circumvent this issue we inferred κ based on the Fisher information. This gives a minimum-variance
estimator that provides robust inference with a good balance between under- and over-fitting –although it does not
permit the estimation of posterior probabilities associated with the various κ. This approach has been used successfully
in similar situations [43].

Insights into Aphid Biology

Like most plant viruses, PPV is transmitted in a non-persistent manner by winged non-colonising aphids [32]. The
distance travelled by an aphid within a single flight is thus crucial to plant virus epidemiology. However, this dispersal
kernel has long remained elusive. Traditional ecological methods such as capture-mark-recapture provide little infor-
mation regarding aphid dispersal at the landscape scale [31]. This has been a major obstacle to the parametrisation
of models simulating the dispersal of these vectors and the pathogens they spread, as exemplified by the scarcity of
landscape-scale models on cereal aphids [44] and by the informed guesses of flight-distance parameters in such mod-
els [45]. Here we estimated, for the first time, the dispersal of aphid vectors at the landscape scale. This estimation
indicates that 50% of the infectious aphids leaving a tree land within about 90 meters, while about 10% of flights
terminate beyond 1 km. Although dispersal estimation from simulated epidemics suggests that these distances may
be overestimated, this large number of flights terminating within some tens of meters of the source tree is consistent
with previous studies of within-patch clustering of trees infected by PPV-M [32, 46, 47] or PPV-D [37, 48]. Indeed,
in the latter study [37] 50% of the new PPV cases are shown to occur within 35-70 m of the nearest previous case;
in addition, 10% of the new PPV cases were found beyond 200-460 m from the nearest previous case. Although the
proportion of new PPV cases captured within a given radius is not equivalent to a dispersal kernel (e.g. because
the trees are not always infected by the nearest previously detected neighbour), the figures are of the same order of
magnitude. In particular, both studies highlight the long range of the dispersal kernel. Our estimation of the dispersal
kernel at the landscape scale has important consequences. For example, the current French regulations enforce at
least one visual inspection per year within 2.5 km of a detected sharka case (followed by the removal of all trees
with sharka symptoms). Less than 3% of flights should thus go beyond this radius (Figure 6). In a patchy French
landscape, most of these aphids would land outside a peach orchard and thus lead to no infection. Such procedures
are thus likely to efficiently detect most of aphid-mediated secondary spread; actually, given the cost of surveillance
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and the speed of disease spread, this radius may even be oversized. Future work based on this study could aim at the
definition of new management strategies against PPV. More generally, our results provide a unique reference point on
the epidemiology, simulation and control of the principal group of plant viruses (i.e. those caused by nonpersistant
aphid-borne viruses), which have a major epidemiological and economical impact. Finally, by focusing on incidence
data the presented estimation approach is adaptable to many epidemiological situations, including other vector-borne
and airborne fungal diseases.
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Tables

Table 1. Parameters for 3 simulated dispersal kernels. Epidemics were simulated using shape parameters s1
and s2 for the BWME kernel (left) approximating simpler exponential mixture kernels with just J mixture
components (right).

Simulation parameters Mixture parameters
Kernel range s1 s2 J Mean distances in m (weights)

short 12727.3 29264.2 1 25 (1)
medium 9.3 18.1 2 25 (2/3), 100 (1/3)
long 5.5 8.4 3 25 (3/6), 100 (2/6), 300 (1/6)

Table 2. Parameter sets for the 4 estimation scenarios. For each estimation scenario, the parameter set Θ
comprises the parameters indicated with a ✓.

Parameter Definition Θ1 Θ2 Θ3 Θ4

β transmission coefficient ✓ ✓ ✓ ✓

µ =s1/(s1+s2); mean of kernel weight distribution ✓ ✓ ✓ ✓
σ =s1+s2; shape of kernel weight distribution ✓ ✓ ✓ ✓

ρ detection sensitivity - ✓ - ✓

θ1 latency shape - - ✓ ✓
θ2 latency scale - - ✓ ✓

Table 3. Summary statistics of marginal posterior distributions for the real epidemic. Summary
statistics including the mean, standard deviation (SD), time-series standard error of the mean (TSSEM) and 95%
credibility intervals (CI95%) are reported for the transmission coefficient β, the kernel parameters s1 and s2, the
detection sensitivity ρ, the expected duration θexp of the latent period and associated variance θvar. Posterior
distributions of the 5th, 10th, 50th, 90th and 95th percentiles of aphid flight distances d are also summarised.

Mean SD TSSEM CI95%
β 1.32 2.80× 10−2 7.1× 10−4 1.27-1.38
s1 2.32 1.11× 10−1 2.4× 10−3 2.11-2.55
s2 2.45 8.66× 10−2 1.5× 10−3 2.29-2.62
ρ 0.659 7.73× 10−3 1.9× 10−4 0.643-0.674

θexp 1.92 8.74× 10−2 2.2× 10−3 1.75-2.09
θvar 0.442 8.69× 10−2 2.0× 10−3 0.291-0.631
d5% 5.0 3.23× 10−1 7.2× 10−3 4.4-5.7
d10% 8.9 5.98× 10−1 1.3× 10−2 7.8-10.1
d50% 92.8 5.47 1.2× 10−1 82.6-104
d90% 998 4.35× 101 7.7× 10−1 913-1084
d95% 1742 7.20× 101 1.2 1604-1887
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Figure 1. Susceptible-Exposed-Hidden-Detected-Removed (SEHDR) model of an individual’s
epidemiological status. At patch i plantation (the i subscript is omitted in the figure), the individuals are
infectious or susceptible with probabilities p and 1-p, respectively. An individual passes between
compartments at event times TE , TH , TD and TR. Only the detection time TD is known; all other event times
are censored. Infectious individuals from both within and outside the patch contribute to the force of infection
λtr , which is the expected number of infectious events affecting an individual over time interval (tr−1, tr]. The
probability that a given susceptible (S) individual becomes exposed (E) in this time interval is 1-exp(-λtr ),
assuming independent infection events. A latent period of duration TH -TE follows, after which the individual
becomes infectious (H). Infectious individuals are removed (R) only after detection (D) or when the entire
patch is removed.

Figure 2. Cumulative incidence at the end of year 22 for nine typical simulated epidemics. From
left to right, the number of introduction patches (and initial disease prevalence) are: 1 (0.25), 15 (0.02) and 30
(0.01). From top to bottom: simulations generated under short-, medium- and long-range kernel scenarios.
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Figure 3. Boxplot of the distances between simulated and estimated dispersal kernels. Impact of
(A) estimation scenario, (B) kernel range, and (C) disease introduction on the accuracy of estimated dispersal
kernels, as measured by the Kullback-Leibler distance between simulated and estimated dispersal kernels. The
points outside of the whiskers correspond to outliers.

Figure 4. Comparison of simulated and estimated dispersal kernels. From left to right: kernels with
the minimum, lower quartile, median, upper quartile and maximum Kullback-Leibler (KL) distances
(posterior mean), as estimated (red) under the richest parameterisation scheme (Θ4), based on simulated
epidemics with short-, medium- and long-range kernels (from top to bottom; black). Kernels are represented
by their marginal cumulative distribution function F 1D (with distance from the source represented on the
log10 scale). The mean KL distance is indicated for each estimation.
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Figure 5. Impact of the number of introduction patches (κ) on the expected Fisher information
for the real epidemic. For each κ, the estimation with the highest mean posterior log-likelihood was
retained. For κ<10 no introduction patch combination returned a finite posterior log-likelihood. The empirical
approximation of the Fisher information was maximal at κ=11.

Figure 6. Estimated dispersal kernel for the real epidemic. Posterior distributions of dispersal kernels
are represented by their marginal cumulative distribution function F 1D obtained for κ=11 (i.e. the number of
introduction patches maximising the Fisher information). The plotted posteriors were obtained from 4000
samples of the MCMC chain with the highest mean posterior log-likelihood.
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