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Sanborn and Chater [1] propose an interesting theory of cognitive and brain
function based on Bayesian sampling instead of asymptotic Bayesian inference.
Their proposal unifies many current observations and models and, in spite of
focusing primarily on cognitive phenomena, their work provides a springboard
for unifying several proposed theories of brain function. It has the potential
to serve as a bridge between three influential overarching current theories of
cognitive and brain function: Bayesian models, Friston’s [2–4] theory of cortical
responses based on the free-energy principle, and attractor-basin dynamics [5,6].
Specifically, their proposal suggests a high-level perspective on Friston’s theory,
which in turn proposes a sampling procedure including appropriate handling
of autocorrelation as well as a plausible neurobiological implementation. In
turn, these two theories together link into attractor-basin dynamics at the level
of networks (via Friston) as well at the level of behavior (via the relationship
between the modes of prior and posterior distributions, as discussed by Sanborn
and Chater). We will argue here that, by linking Sanborn and Chater’s approach
to neurobiological models based on the free-energy principle on the one hand
and attractor-basin dynamics on the other, the scope of their proposal can
be broadened considerably. Moreover, a unified perspective along these lines
provides an elegant solution to several of Sanborn and Chater’s Outstanding
Questions relating to the neural implementation of sampling.

Sanborn and Chater briefly touch upon the connection of their work to Friston’s
hierarchical model proposal, but only link it rather generally to the broad com-
putational approach he has proposed for the representation and computation of
these models in neural wetware [7]. Friston’s other work, however, also describes
and models the relationship between behavior and the sampling procedure nec-
essary for active Bayesian inference [8]. This is compatible with the phenomena
that Sanborn and Chater describe as ‘warm-up’ tuning. Although Sanborn and
Chater perhaps intentionally formulated their proposal in an implementation
agnostic way, Friston’s approach fills in the gaps regarding the neural implemen-
tation of sampling in an illuminating way that has been used to model a wide
range of phenomena [3,4,8,9]. In particular, Friston’s model provides large-scale
suggestions – at the level of groups and networks of neurons – of how sampling
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is implemented (i.e. hierarchical structure [2,7] and active sampling [2]), and
suggests that a simplified or indirect probability distribution is used, i.e. free
energy as a proxy for model evidence [8]. In this framework, autocorrelation is
minimized via the active sampling procedure, but is also effectively handled by
the iterative model updates – autocorrelated samples provide little additional
information and thus small error signals. They therefore contribute in decreasing
amounts to overall model convergence (see Figure 1). This is related to the
performance of particle (i.e. Kalman) filters, which Sanborn and Chater also
mention.

While Friston’s model has been proposed as an overarching theory describing the
brain as a whole, attractor basins have been proposed as an explanation of emer-
gent classifier behavior in dynamical systems such as neural networks (e.g. [5,6]).
Attractor basins are steady states in a dynamical system that are associated with
stable, high-firing rates in neural networks, whether computational or biological.
In many ways, this approach complements Friston’s principles-first approach with
an emergent, empirical observation, yet attempts to connect these two theories
thus far have been restricted to observations in passing such as attractors as local
optima (and hence stable states) in the free energy landscape, without regard to
their concrete implementation or emergence during the sampling procedure in
Friston’s model. Sanborn and Chater’s approach provides exactly this connection
because the posterior modes in their sampling procedure are essentially attractor
basins – areas of high probability density where a posterior belief tends to be
drawn and to which estimates (beliefs) tend to converge (see Figure 1). This
observation goes beyond Sanborn and Chater’s connection to the mechanisms
of neural networks such as the Boltzmann machine and deep belief networks
and underscores the deep relationship between these two theories. The Bayesian
combination of prior beliefs (including modes / pre-existing attractor basins) and
the likelihood (model based on current evidence) leading to a new set of modes
when the evidence is strong enough but subject to bias from finite sampling also
provides a convenient explanation for the emergence of new attractor basins,
i.e. perceptual categories and decisions, over time. As attractor networks provide
a neurobiologically plausible way of modelling neural processes related to decision
making and classification across a range of scales from perception [10,11] to more
complex cognitive domains such as language processing [12], this isomorphism –
both in sampling behavior (as noted by Sanborn and Chater) and in large scale
behavior via sampling modes and attractor basins – is particularly interesting.

Sanborn and Chater’s proposal thus provides deep connections to leading theories
of neural organization and their emergent dynamical and behavioral properties.
Given its direction application to cognitive phenomena, their proposal thus
provides a potential missing link in a “trinity” of models of the brain and
behavior from the lowest levels of organisation (small-scale networks) all the way
to its highest levels (cognition and behavior).
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Figure 1: Posterior density of predictions in an auditory oddball paradigm.
In Friston’s mismatch negativity (MMN) example [2,9], the MMN reflects the
prediction error; in other words, it correlates negatively with the posterior
distribution resulting from the previous tone. Autocorrelation of samples is
not a large contributor in this iterative framework, because each additional
standard tone contributes little new information and the rate of convergence
drops off as the previous model state approaches the actual input, seen here in
the changing width of the modal peak, despite continued rapid strengthening of
an individual point prediction (the height of the modal peak). In Bayesian terms,
the posterior does not differ much from the prior when the model evidence does
not differ much from the prior. For example, the difference between a 90-10
match-mismatch and a 99-1 ratio is much smaller than that between a 70-30 and
a 61-39 ratio, even though the prediction has become stronger (seen here in the
height of the modal peak). Attractor basins arise when posterior beliefs from one
model iteration are used as prior beliefs for new model (and can be visualized
by inverting the density plot). Values here are schematic and calculated from a
normal distribution with precision (τ = 1

σ ) equal to number of tones divided by
10.
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