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Abstract 
Converging evidence supports the "non-monotonic plasticity" hypothesis that 
although complete retrieval may strengthen memories, partial retrieval weakens 
them. Yet, the classic experimental paradigms used to study effects of partial 
retrieval are not ideally suited to doing so, because they lack the parametric 
control needed to ensure that the memory is activated to the appropriate degree 
(i.e., that there is some retrieval, but not enough to cause memory strengthening). 
Here we present a novel procedure designed to accommodate this need. After 
participants learned a list of word-scene associates, they completed a cued 
mental visualization task that was combined with a multiple-object tracking 
(MOT) procedure, which we selected for its ability to interfere with mental 
visualization in a parametrically adjustable way (by varying the number of MOT 
targets). We also used fMRI data to successfully train an "associative recall" 
classifier for use in this task: this classifier revealed greater memory reactivation 
during trials in which associative memories were cued while participants tracked 
one, rather than five MOT targets. However, the classifier was insensitive to task 
difficulty when recall was not taking place, suggesting it had indeed tracked 
memory reactivation rather than task difficulty per se. Consistent with the 
classifier findings, participants' introspective ratings of visualization vividness 
were modulated by MOT task difficulty. In addition, we observed reduced 
classifier output and slowing of responses in a post-reactivation memory test, 
consistent with the hypothesis that partial reactivation, induced by MOT, 
weakened memory. These results serve as a "proof of concept” that MOT can be 
used to parametrically modulate memory retrieval – a property that may prove 
useful in future investigation of partial retrieval effects, e.g., in closed-loop 
experiments. 
 
Keywords: human memory, retrieval-induced forgetting, learning rule, 
multivoxel pattern analysis (MVPA), pattern classification 
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Introduction 
 Although retrieval from episodic memory is thought to be obligatory and 
complete (Moscovitch, Cabeza, Winocur, & Nadel, 2016), control processes may 
operate on the product of retrieval to induce states of partial memory 
reactivation. According to the non-monotonic plasticity hypothesis (Newman & 
Norman, 2010), such partial memory reactivations can weaken memory 
representations, even though full reactivations can strengthen them. Non-
monotonic learning is supported by various lines of evidence: for example, the 
large and growing cognitive literature on retrieval-induced forgetting 
(Murayama, Miyatsu, Buchli, & Storm, 2014); neurophysiological evidence of 
moderate, but not high, levels of depolarization leading to weakening (Artola, 
Brocher, & Singer, 1990; Hansel, Artola, & Singer, 1996); neural models of 
synaptic plasticity (Norman, Newman, Detre, & Polyn, 2006); and impaired 
subsequent memory for events shown to be partially activated by EEG and fMRI 
(e.g., Detre, Natarajan, Gershman, & Norman, 2013; Kim, Lewis-Peacock, 
Norman, & Turk-Browne, 2014; Lewis-Peacock & Norman, 2014; Newman & 
Norman, 2010; Poppenk & Norman, 2014; Wimber, Alink, Charest, Kriegeskorte, 
& Anderson, 2015). But as empirical evidence for non-monotonic learning 
accumulates, what tools are needed to further advance the field?  
 A key limitation of existing studies that have been used to characterize 
non-monotonic learning is that they rely on naturally-occurring variability within 
experimental conditions. For example, Detre et al. (2013) used a think / no-think 
paradigm (Anderson & Green, 2001), measured (on each trial) how much 
participants thought of “no think” memories that they were not supposed to be 
retrieving, and related this within-condition variance to subsequent memory. In 
that study, the naturally-occurring distribution of memory activation values was 
wide enough to characterize the full U-shaped curve (i.e., no memory change for 
very low activation, memory weakening for moderate activation, and memory 
strengthening for higher levels of activation). Crucially, there is no guarantee 
that any given study will obtain broad enough “coverage” of the range of 
memory activation values to trace out the full curve (indeed, in Detre et al., 2013, 
there were substantially more activation values towards the middle of the 
activation range than towards the high and low extremes; we were lucky that 
there were enough observations to run the analysis). Existing paradigms (e.g., 
think / no-think) tend to use binary manipulations of memory activation, which 
further limits the range of activation values sampled in the experiment. What if 
we needed to obtain partial memory reactivation occurring halfway between that 
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induced by "think" vs. "no-think" instructions? It would be a great benefit to have 
a finer-grained “dial” that we could adjust in experiments to increase the range 
of memory activation values that we sample. This capability could, for example, 
allow therapists treating patients with post-traumatic stress disorder to more 
effectively reactivate memories to levels known to induce memory weakening.  
 In a recent study (Poppenk & Norman, 2014), we set out to parametrically 
modulate memory activation using an adaptation of an rapid serial visual 
presentation (RSVP) design that we called "The Great Fruit Harvest”. 
Participants associated word memory cues with pictures of bedrooms; these 
word memory cues were then embedded in an RSVP stream that participants 
were monitoring for fruit words (note that none of the word memory cues were 
themselves fruit words). To manipulate the degree of memory reactivation, we 
varied how long the word cues were presented in the RSVP stream. Reactivation 
of associated scene memories in response to these cues was tracked using an 
fMRI pattern classifier trained to detect scene information. The cue-duration 
manipulation was successful in generating differential memory effects: 
Compared to longer (2000 ms) word-cue presentations, brief (600 ms) word-cue 
presentations led to lower levels of memory activation and more memory 
weakening. In light of these results, we think that the word-cue duration 
manipulation has promise. However, in this paradigm, recall elicited by a 
memory cue is always task-irrelevant, as it distracts from looking for fruit words. 
Thus, associated cues should always be suppressed, potentially making it 
difficult to trace out the full U-shaped curve. 
 Here, we present an alternative approach to generating parametrically 
scalable memory reactivation. This approach is based on the idea that it is critical 
to make memory retrieval an explicit part of the task, such that participants will not 
automatically suppress strong memory retrieval. Also, instead of varying the 
strength of the memory cue (as in our RSVP design), we varied the cognitive 
demands of a distractor task that competed with memory retrieval. The 
distractor task we selected was multiple object tracking (MOT; Pylyshyn & 
Storm, 1988). Briefly, participants were required to track a variable number of 
MOT targets within a moving dot field over an eighteen-second interval, with 
dots moving at a speed calibrated to each participant's visuospatial ability. 
Concurrently with this task, participants were asked to visualize the scene 
associate of a word cue presented in the centre of the screen, and to provide 
ongoing ratings concerning the integrity of their mental visualization. 
Throughout instruction and practice for this task, we emphasized that MOT dot-
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tracking should take precedence, and that visualization should only be 
"squeezed in" using available mental resources. To further emphasize this point, 
we provided feedback on dot-tracking accuracy after every trial. We selected this 
combination of tasks because, as a visuospatial task, we anticipated that MOT 
would compete for the visual resources required for visualization of mental 
imagery (Phillips & Christie, 1977). Furthermore, a key property of MOT is that 
participants need to continuously attend to the task – any lapse of attention will 
break the train of observations linking each dot to its targetness, making it 
impossible to solve the correspondence problem as required for successful 
responding (Pylyshyn, 2004). Accordingly, we reasoned that the MOT task 
would both a) impair visualization of any retrieved information; and b) make it 
difficult for participants to momentarily switch out of the MOT task to apply full 
concentration to visualization.  
 We predicted that, by varying the number of MOT targets participants 
were required to monitor, we would parametrically modulate resources available 
for mental visualization, and would observe corresponding variation in memory 
reactivation. We further predicted that partial memory activation induced by this 
procedure would lead to forgetting effects consistent with the non-monotonic 
plasticity hypothesis and its supporting literature. 
 
Methods 
Overview 
 The experiment contained several main phases (see Table 1 and Fig. 1): 
MOT difficulty calibration (Phase 1), paired-associate training (Phase 2), memory 
reactivation (Phase 5), and pre- and post-reactivation memory tests (Phases 4 and 
6). In addition, a functional localizer was collected to assist with pattern 
classification analysis (Phase 3).  This design was modeled after that used by 
Poppenk and Norman (2014), but it incorporated a novel method for reactivating 
memories (Phase 5), as well as a novel procedure for training a classifier sensitive 
to memory reactivation (Phase 3). We employed an MOT task in which 
participants tracked moving MOT target dots among a set of identically-colored 
moving lure dots (Pylyshyn & Storm, 1988) while centrally fixating on a verbal 
memory cue. We attempted to modulate memory reactivation by altering the 
number of MOT target dots that participants were required to track in the MOT 
task. We also attempted to train a classifier that could be used to provide 
additional insight into memory reactivation. Our hypotheses concerned the 
effectiveness of our protocol at modulating memory reactivation (Phase 5), the  
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Table 1. Schematic of main experimental phases. 
 
 
Phase and purpose Day Location Stimuli used Participant tasks 

 
 
Phase 1 
MOT difficulty calibration 

 
1 

 
Testing room 

 
Calibration set 

 
• Study block (Fig. 1A) without RSVP 
• MOT block (Fig. 1b) with adaptive 

staircasing 
 
Phase 2 
Learning of stimulus materials and 
word-scene associates 

 
2 

 
Testing room 

 
Recall 
manipulation 
set 

 
• Study block (Fig. 1A) 
 

 3 Testing room Recall 
manipulation 
set 

• Study block (Fig. 1A) without initial 
pairing 

 
 3 Scanner 

(anatomical) 
Localizer set • Study block (Fig. 1A) 

 
Phase 3 
Functional localizer 
 

3 Scanner (fMRI) Localizer set • MOT block (Fig. 1b) crossing 1/5 MOT 
targets with cues/lures 

 
Phase 4 
Pre-reactivation memory test  
 
 

3 Scanner (fMRI) Recall 
manipulation 
set 

• Memory block (Fig. 1c) 
 

Phase 5 
Memory reactivation 
 

3 Scanner (fMRI) Recall 
manipulation 
set 
 

• MOT block (Fig. 1b) with associative 
cues (1/5 MOT targets) targets and 
familiar lures (5 MOT targets) 

 
Phase 6 
Post-reactivation memory test 

3 Scanner (fMRI) Recall 
manipulation 
set 

• Memory block (Fig. 1c) 
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Fig. 1. Trial types for Phases described in Table 1. In study blocks (a), participants first studied word-scene
associate pairs by viewing them once. Then, they learned the pairs to criterion: upon being presented with
a cue word, they rated the amount of detail in their mental visualization of the word, completed a 4AFC
decision for its scene associate, and were presented with feedback (incorrect items were repeated). Finally,
participants were familiarized with words that had no associates. Participants monitored a stream of words
for embedded fruit items, and pushed a button when a fruit item appeared. Filler words were used as lures
in later memory tests. In later memory test blocks, words from the word-scene associations were used to
cue mental visualization. Filler words from the RSVP task were used during familiarization as familiar lures.
In MOT blocks (b), participants completed cued visualization while simultaneously tracking target dots in an
MOT task. Each time a central fixation dot turned red, participants reported current levels of visualization.
After the trial, participants were given feedback and completed a series of odd-even judgments. In memory
test blocks (c), participants completed cued visualization of studied words’ associates as well as multiple
choice for their associates.
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ability of our classifier to measure this modulation (Phase 3), and whether partial 
reactivation as measured by our instruments would successfully induce 
forgetting as observed in a post-reactivation memory test (Phase 6), as partial 
reactivation in other paradigms has been shown to do. 
 
Participants 

24 right-handed volunteers participated in the experiment (16 female, age 
M = 20.5 years, SD = 1.6 years). Six additional participants were unable to retain 
the positions of five nearly immobile MOT targets during Phase 1, and were not 
invited to complete the experiment (details below). One participant was 
excluded because of excessive in-scanner motion, leaving a total of 23 
participants. All were native English-speakers between 18 and 25 years of age 
with normal or corrected-to-normal vision and hearing. Participants were 
screened for neurological and psychological conditions, and received financial 
remuneration. The protocol was approved by the Institutional Review Board for 
Human Subjects at Princeton University. 
 
Stimuli 

Participants learned three sets of word-scene pairings. A calibration set of 
eight pairs was used during the MOT difficulty calibration phase (Phase 1); a 
localizer set of sixteen pairs was used in the functional localizer (Phase 3); and a 
recall manipulation set of 30 pairs was used for testing experimental hypotheses 
(Phases 2, 4, 5 and 6; see Table 1). Words were concrete, imageable nouns 
randomly sampled from a pool of 7000 nouns drawn from the MRC 
Psycholinguistic Database (Coltheart, 1981; mean length = 6.3 letters; mean 
concreteness = 571.5; mean imageability = 561.3; mean Thorndike-Lorge verbal 
frequency = 241.68). Words were filtered to exclude nouns semantically related 
to rooms. Paired scenes were grayscale bedroom interiors drawn from Detre et 
al. (2013). Each participant received a different random pairing of words and 
images. 

There were also two sets of words used as lures: a set of 16 used during 
the functional localizer phase (Phase 3), and a set of five used during the MOT 
phase (Phase 5). These words were randomly sampled from the same pool as 
above. 

All text in the experiment was presented in black Geneva font (height = 
0.8° visual angle) on a white background. All images in the experiment were the 
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same size (9.0° x 9.0° visual angle) and normalized with respect to their 
luminance using the procedure described in Detre et al. (2013). 
 
Procedure 
Phase 1. MOT difficulty calibration 

Because visuospatial ability varies considerably across individuals, yet we 
desired to modulate MOT in a way that would be comparably distracting for 
each participant, it was necessary to calibrate the difficulty of MOT to the 
saturation point of each participant's abilities. We did so by beginning the 
experiment with a phase in which we used a staircasing procedure to adjust the 
speed at which the MOT task ran. In this phase, which took place in a behavioral 
testing room at least one day prior to the rest of the experiment, participants first 
studied the calibration set of eight word-scene associates (Table 1; Fig. 1a). After 
studying these pairs to criterion, they began the MOT staircasing task. 

To study the word-scene associates, the eight pairs were presented once. 
Then, the order was randomized, and the eight pairs were presented again (Fig. 
1a). Participants were told that a memory test would follow and that, to make 
stronger memories, they should treat the cue word paired with each bedroom 
image as the name of that “hotel room”. They were told they should imagine the 
most creative, distinctive possible explanation for how each “hotel room” got its 
name. Cue words were presented for 5.5 s; 1.5 s after each cue word onset, the 
scene image also appeared below the word. A fixation period 0.75 s in duration 
separated trials. 

Next, participants completed a train-to-criterion memory test (Fig. 1a). 
Each trial incorporated three parts. First, a cue word was presented for four 
seconds, during which time participants were instructed to visualize the 
associated scene in as much detail as possible. Next, they were asked to rate their 
visualization on the following scale: 1: no room-related imagery or a generic 
room with no distinguishing features; 2: room with a specific distinguishing 
feature; 3: room with multiple specific distinguishing features; 4: complete 
image. After a subjective response was registered, the associated scene image 
plus scenes randomly selected from three other studied pairings were presented 
in random order from left to right. Participants had three seconds to select the 
scene associated with the cue word via a button press. If a correct response was 
entered before the deadline, green exclamation points were presented for 0.75 s. 
Otherwise, a red “X” was presented for 0.75 s, followed by presentation of the 
cue word with the correct scene image for four seconds. A five second fixation 
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cross separated each trial. Each item remained in the list until it received a 
correct multiple-choice response, at which point it was dropped from the study 
set. The order of the (remaining) pairs in the list was randomly shuffled after 
each pass through the list. 

In the final section of the calibration session, participants completed eight 
practice MOT trials to become familiar with the task, then 72 additional MOT 
trials in which we adjusted the speed of the task based on their ability (Fig. 1b). 
MOT trials consisted of a black central square (20° x 20° visual angle) containing 
ten dots (each 1.5° diameter). In each trial, each of the dots was assigned a 
random, non-overlapping starting position in the square, and five of the dots 
were shown in red (“targets”), while the remaining dots were shown in green 
(“non-targets”). In addition, a fixation cross was shown in white. After a two-
second exposure duration, all dots were presented in green and began moving 
(their movement pattern was complex and is described in detail below). 
Participants were asked to mentally track which dots were originally the red 
target dots for eighteen seconds. In addition, the central fixation cross was 
replaced by a cue word from the calibration set in a white font. Participants were 
asked to visualize the associated room in as much detail as possible. Every four 
seconds, the cue word was switched to a red-colored font to signal that 
participants should make a visualization rating (of the same type performed in 
the memory test). After a response was detected or two seconds – whichever 
came first – the cue word was switched back to a white-colored font. At the end 
of the trial, all dots froze and one dot was presented in white. Participants were 
asked to indicate with a button-press whether this “probe” dot was originally a 
target or a non-target. After three seconds elapsed, participants were given 
feedback for one second indicating whether they were correct or incorrect (using 
the same format as in the memory test). Participants were also asked to always 
prioritize the MOT task over the visualization task, "squeezing in" visualization 
only when it would not compromise dot-tracking. We explained that while we 
were interested in their visualization, it came second to dot-tracking, as incorrect 
dot-tracking trials would have to be discarded. Finally, to disrupt any post-trial 
visualization of the cued scene imagery, participants completed two trials of an 
odd-even task: two digits were presented together with an addition symbol 
between them for 1.9 s, and participants were to indicate with a button-press 
whether the sum of the numbers was odd or even. This text was presented in 
white, but when a correct response was detected, the font was switched to green; 
when an incorrect response was detected, the font was switched to red. A total of 
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0.1 s of central fixation followed each odd-even question, and after both odd-
even trials, four seconds of central fixation preceded the next MOT trial. 
Together, these elements comprised a total duration of 32 s per MOT trial. 

In the MOT task, each dot began with independent x- and y-dimension 
starting velocities consisting of values sampled from a continuous random 
distribution (x, y = [-.5 to .5]) and multiplied by a velocity v, measured in visual 
degrees per second. After each frame, dot motion was recomputed. In particular, 
random x and y values were again sampled from a continuous random 
distribution (-.5 to .5), scaled by v, and added to each dot’s velocity. An 
additional vector was added to each dot’s velocity based on its position relative 
to that of other dots and the center of the square: all dots generated a “repulsion 
field” to reduce collisions with other dots. The repulsion effect of a dot on all 
other dots was calculated as 0.1v over the squared distance between them 
(yielding exponentially larger repulsion values as dots grew closer). A speed 
limit was enforced by capping dot velocity at an absolute velocity of 2v on each 
dimension. Finally, when a dot collided with another dot or the perimeter of the 
square (with collisions defined as occurring 1.25 diameters away from the center 
of a dot), v on the dimension in which the collision occurred was multiplied by -1 
(yielding a “reflection” on that dimension). 

We adjusted the parameter v throughout Phase 1 while presenting new 
frames at a rate of 30 per second. After participants completed eight practice 
trials at an initialization speed (1.0°/s), we adjusted v depending on whether 
participants succeeded in that trial, using the Quest adapted staircasing 
algorithm (Watson & Pelli, 1983) to calculate the optimal adjustments to identify 
the speed threshold at which participants would succeed 85% of the time 
(beta=3.0, delta=0.1, gamma=0.5, grain=0.2°/s, range=5.0°/s). This speed was 
used for all subsequent MOT-based tasks completed by the participant for the 
remainder of the experiment. As is typical in MOT experiments, only 
participants whose threshold fell above a given minimum (in our case, 0.5°/s) 
were invited to continue.  

After completing the MOT task but before going home, participants 
completed a short study session and memory test for 40 proverbs. This memory 
test was conducted to test hypotheses that were unrelated to the current study, 
and because the test came after all other tasks on the difficulty calibration day, 
corresponding methodological details are not reported here. 

 
Phase 2. Learning of stimulus materials and word-scene associates 
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 The MOT difficulty calibration session was conducted well ahead of the 
rest of the experiment to ensure, prior to scanner scheduling, that participants 
would qualify for further experimentation (Phase 1 to 2 latency M = 8.41 days; 
SD = 9.65 days; range = 1-27 days). Participants studied the recall manipulation set 
of 30 paired-associates, then performed a train-to-criterion memory task with 
those pairs. Initial study and the train-to-criterion test were conducted in the 
same manner as in Phase 1 (except that the 30-item recall manipulation set was 
employed; Table 1). Participants quickly learned the 30 paired associates to 
criterion levels (M = 37.0 trials, SD = 7.5 trials). By later reactivating scene 
associates of the word cues within this set by differing amounts (in Phase 5, 
during an MOT task), we would attempt to weaken these memories. All of Phase 
2 took place in a behavioral testing room, away from the scanner. 
 After the train-to-criterion task, participants were given a 60 s RSVP task 
in which they viewed fruit words and non-fruit words while responding to fruit 
words with a button press. Seven non-fruit words were presented repeatedly in 
random order, with the duration of each presentation sampled from a uniform 
distribution with limits of 0.30-0.75 s. Three fruit words were also presented for 
one second during the task, appearing at random intervals but no sooner than 
eight seconds after a previous fruit target. Participants were given feedback on 
their performance at the end of the task. The purpose of exposing participants to 
the non-fruit words in the RSVP task was to familiarize these words (without 
linking them to a scene associate) so that five of them could be used as familiar 
lures in Phase 5 of the experiment (and two as practice items). Although each of 
the word presentations during RSVP was brief, the cumulative presentation time 
of each familiar lure across all RSVP presentations (M=6.9 s) was matched to the 
total presentation time of cue words during study trials (7.0 s). 
 
Phase 3: Functional localizer 
 The goal of this phase was to obtain a clean neural signal associated with 
cued retrieval of scenes that was insensitive to changes in MOT task difficulty. 
Approximately one day after learning the materials comprising the recall 
manipulation set (Phase 2 to 3 latency M = 23.2 hours; SD = 3.6 hours; range = 
16.1-30.2 hours), participants returned for a third session. This entire session took 
place inside an fMRI scanner and began with a practice version of the localizer 
scan (see procedure description below), using paired associates from the difficulty 
calibration set learned in Phase 1. Then, while a high-resolution anatomical scan 
was collected, participants studied the 16-item localizer set of paired-associates 
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(Table 1), completed a train-to-criterion memory task for those materials, and 
completed an RSVP task (Fig. 1a). This served to provide participants with a 
newly-acquired set of paired-associate memories and familiar lure words for use 
with a functional localizer. Tasks were presented in the same manner as in Phase 
2. Here, the RSVP task involved showing sixteen (non-fruit) words plus eight 
fruit targets; the sixteen non-fruit words later served as familiar lures in the 
localizer. The RSVP task lasted 136 s and required participants to make button-
presses on an MR-compatible keyboard.  

The localizer consisted of a 32-item MOT task similar to that in Phase 1 
(Fig. 1b). However, the centrally presented cues in the task consisted of the 16 
localizer-set paired-associate cues (“cues”) and the 16 localizer-set familiar words 
without scene associates from the RSVP task (“familiar lures”). Each of these 
stimuli was presented once and their order was randomized. Half of the cue 
trials and half of the lure trials involved tracking only one MOT target, whereas 
the remaining trials involved tracking of five MOT targets. In this way, we 
crossed the presence of memory signal (cues vs. familiar lures) with task 
difficulty (1 vs. 5 MOT targets). This allowed us to use the associated fMRI data 
for training a classifier to identify memory signal (associative recall) in a manner 
that generalized across task difficulty level (number or MOT targets). This task 
took 17.2 minutes (517 fMRI volumes) to complete. 
 
Phases 4 and 6: Pre- and post-MOT memory tests 
 In Phases 4 and 6, test items were all 30 cues from the recall modulation 
set (Table 1). No familiar lure words were required in these phases, as a four-
alternative forced choice (4AFC) task (in which foils were the associates of other 
cues) was used to obtain an objective measure of memory performance (Fig. 1c). 
On each test trial, participants were first presented with a memory cue for eight 
seconds, during which they were instructed to visualize the associated scene in 
as much detail as possible.  Next, the multiple-choice prompt was presented, 
along with four scenes (as in Phase 1). Participants had 3 s to choose, using a 
button press, which scene went with the cue word. This period was followed by 
three odd-even questions; as in Phase 1, these lasted 1.9 s each with a preceding 
fixation interval of 0.1 s. Questions were followed by five seconds of central 
fixation. No feedback was presented, and the pace of the experiment did not vary 
based on participant responses. The full group of 30 trials took 11.2 minutes (335 
fMRI volumes) to complete. We analyzed accuracy and reaction time for all trials 
of each memory test. 
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Phase 5: Controlled memory reactivation in an MOT task 
 The goal of Phase 5 was to repeatedly elicit controlled levels of memory 
reactivation by placing word cues in MOT trials that featured different levels of 
difficulty. As in the Phase 3 localizer, difficulty was manipulated by requiring 
participants to track either 1 or 5 MOT targets. Of the 30 word-scene pairs in the 
recall manipulation set, ten pairs were assigned to the associative cue (1 MOT 
target) condition, which was intended to elicit the strongest reactivation; ten pairs 
were assigned associative cue (5 MOT targets) condition, which was designed to 
elicit weaker reactivation due to increased distraction from the MOT task; and 
ten pairs were omitted from this phase, so that they would not undergo any 
reactivation. Each fMRI run included one MOT trial for each of: 1) the ten cues 
from the associative cue (1 MOT target) condition; 2) the ten cues from the 
associative cue (5 MOT targets) condition; and 3) five familiar words from the 
Phase 2 RSVP task (familiar lure condition). The sequence of these trials was 
randomized for each fMRI run. Three runs were completed, each lasting 13.5 min 
(405 fMRI volumes).  
 
fMRI data collection 
 Scanning was performed using a 3 Tesla whole-body Skyra MRI system 
(Siemens, Erlangen, Germany) at Princeton University in Princeton, New Jersey. 
T1-weighted high-resolution MRI volumes were collected using a 3D MPRAGE 
pulse sequence optimized for gray-white matter segmentation, with slices 
collected in the AC-PC plane (176 sagittal slices; 1 mm thick; FOV = 256 mm; 256 
x 256 matrix; TR = 2530 ms; TE = 3.37 ms; flip angle = 9°). All functional MRI 
scans were collected using T2*-weighted echo-planar image (EPI) acquisition (34 
axial oblique slices; 3 mm thick; FOV = 192 mm; 64 x 64 matrix; TR = 2000 ms; TE 
= 33.0 ms; flip angle = 71°; 2x IPAT acquisition). A T1 FLASH and fieldmap 
image were also collected using these parameters to assist with coregistration of 
fMRI volumes to brain anatomy, and to correct spatial distortions. 
 
fMRI pre-processing 

For each functional image, we computed the linear transformation 
required to coregister the image to the mean image of the first functional run, 
yielding an affine motion correction matrix. Using a fieldmap image, we also 
computed the warp field necessary for correction for spatial distortion of 
functional images, then combined the two transformations and applied them to 
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the functional data in a single spatial transformation step. Then, we applied a 
high-pass filter (full-width half maximum = 160 s) and de-spiking algorithm to 
each voxel (3dDespike, AFNI). 

We next segmented anatomical images to obtain participant-specific 
functional masks. We performed this segmentation in a semi-automated fashion 
using the FreeSurfer image analysis suite, which is documented and available 
online (v5.1; http://surfer.nmr.mgh.harvard.edu) with details described 
elsewhere (e.g., Fischl et al., 2004). Briefly, this processing includes removal of 
non-brain tissue using a hybrid watershed/surface deformation procedure, 
automated Talairach transformation, intensity normalization, tessellation of the 
gray matter white matter boundary, automated topology correction and surface 
deformation following intensity gradients, parcellation of cortex into units based 
on gyral and sulcal structure, and creation of a variety of surface based data 
including maps of curvature and sulcal depth. Manual quality control checks 
were performed. We resampled FreeSurfer segmentations to functional image 
space for use as anatomical masks. Based on meta-analysis implicating 
precuneus, fusiform, parahippocampal, inferior frontal, cingulate, inferior 
parietal, and superior parietal gyri in episodic memory recall (Spaniol et al., 
2009), we assembled these segmentations into a “recall” mask for use with 
subsequent analyses. 
 
Classifier training 

To support our analyses linking memory reactivation to later memory 
outcomes, we aimed to establish an ongoing, incidental measure of memory 
reactivation. In pilot testing, using data from a functional localizer phase, we 
attempted to train a classifier sensitive to multiple visual categories (faces, 
scenes, cars, and words; Spiridon & Kanwisher, 2002). We hoped to use the 
classifier to measure reactivation of scene unit in response to word cues that 
participants had previously studied in conjunction with scenes. We have used 
this indirect approach of monitoring memory reactivation previously (e.g., Detre 
et al., 2013; Poppenk & Norman, 2014) and it has become relatively common in 
the literature. However, we found that our MOT task, with multiple moving 
dots, would consistently and inappropriately elicit activity in the scene unit, 
perhaps because the composite of multiple independent objects within a black 
frame constituted a "scene" in a neural framework. This bias was apparent even 
when the classifier was trained with the MOT task active and the visual 
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categories presented as a backdrop, and was sufficiently prominent as to prevent 
us from measuring memory reactivation in the typical manner. 

To sidestep this issue, we adopted a classifier training protocol focused on 
the presence of an associative recall signal, similar to that developed by Rissman, 
Greely, and Wagner (2010). Rather than attempting to measure neural evidence 
for activation of scenes in the brain (i.e., memory content) we instead searched 
for neural evidence of episodic memory retrieval (i.e., memory operations). In 
particular, we trained a classifier to distinguish MOT trials incorporating words 
that were cues for previously-studied scene associates on the one hand (the "cue" 
condition), against words that were merely familiar due to prior exposure on the 
other (the "familiar lure" condition; it is worth noting that our designation of 
trials as "cues" or "familiar lures" was based on the experimental treatment of the 
word, rather than the subjective experience of the participant). Importantly, we 
incorporated equal numbers of 5- and 1- MOT target trials in each of the two 
memory conditions (associative cue and familiar lure).  By including this MOT-
difficulty manipulation but making it irrelevant (orthogonal) to the distinction 
being learned by the classifier (associative cue vs. familiar lure), we hoped to 
encourage the classifier to focus on recall-related variance and to ignore variance 
directly related to the number of MOT targets. This is a tricky issue: The point of 
having participants do the MOT task simultaneously with the memory task is to 
affect the level of memory activation, and we want the classifier to be sensitive to 
these indirect effects of MOT on recall. At the same time, we definitely did not 
want the classifier to be directly sensitive to the features of MOT, which is why 
we included a MOT-difficulty manipulation in our classifier training regime. The 
procedure that we chose can be viewed as conservative: by training the classifier 
to be insensitive to features of the MOT task, we ran the risk of making the 
classifier insensitive to indirect effects of MOT on recall, with the benefit that – if 
they are obtained – we can more clearly interpret these effects as pertaining to 
variance in recall (as opposed to variance in the surface features of the MOT 
task). Below (in the Results), we present several key analyses showing that the 
classifier has the properties that we sought. In Phase 3, we found that classifier 
output on familiar lure trials was not sensitive to the number of MOT targets 
(showing that, on trials where associative recall was not taking place, the 
classifier was not affected by properties of the MOT task); and in Phase 5, we 
found that classifier output on associative-cue trials was sensitive to the number 
of MOT targets (showing that, when recall was taking place, it was modulated in 
the anticipated fashion by the MOT task).  
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We performed our classifier analysis in Matlab using functions from the 
Princeton Multi-Voxel Pattern Analysis (MVPA) Toolbox (Detre et al., 2006; 
available for download at http://www.pni.princeton.edu/mvpa/), in the same 
manner as described in Poppenk & Norman (2014; see also Norman, Polyn, 
Detre, & Haxby, 2006, for a discussion of the logic and affordances of MVPA). 
Classifier training was performed separately for each participant using a ridge 
regression algorithm, which is sensitive to graded signal information (such as 
might be associated with intermediate states of memory reactivation). Ridge 
regression learns a ß weight for each input feature (voxel) and uses the weighted 
sum of voxel activation values to predict outcomes (in this case, a binary vector 
indicating which task is associated with each volume). The ridge regression 
algorithm optimizes each ß to simultaneously minimize both the sum of the 
squared prediction error across the training set and also the sum of the squared ß 
weights (technical details are described elsewhere; see Hastie, Tibshirani, & 
Friedman, 2001, and Hoerl & Kennard, 1970). A regularization parameter (λ) 
determines how strongly the classifier is biased towards solutions with a low 
sum of squared ß weights; when this parameter is set to zero, ridge regression 
becomes identical to multiple linear regression. The solution found by the 
classifier corresponded to a ß map for each regressor describing the spatial 
pattern that best distinguished that regressor’s condition from other conditions 
(with regularization applied).  

We provided as input to the classifier all of the grey-matter voxels that fell 
within the "recall" mask described above, and set our ridge regression penalty 
parameter (λ) to 1. We also input a training regressor describing the presentation 
of cue words and familiar lure words, shifting our regressor by four seconds (i.e., 
two TRs) to accommodate hemodynamic lag effects associated with the blood-
oxygen level dependent response in fMRI data.  

To evaluate the effectiveness of this classifier at distinguishing between 
categories of images based on patterns of activity within the recall mask, we held 
out portions of the data when training for classifier testing (Kriegeskorte, 
Simmons, Bellgowan & Baker, 2009). The localizer was divided into eight 
“folds”, each of which contained one of the four trial types (associative cues with 
5 MOT targets, associative cues with one MOT target, familiar lures with 5 MOT 
targets, and familiar lures with 1 MOT target). We left out one fold of each type 
(i.e., one eighth of the examples) on each iteration. As a reminder, although there 
were four types of trials, we trained on only two categories (cue and familiar lure 
trials), collapsing across number of MOT targets. Collapsing across folds, mean 
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classifier accuracy was above chance across participants (Fig. 2b), BSR = 3.11, P < 
0.005.  

 
Classifier output as a dependent measure  

Having established that we had successfully trained a classifier sensitive 
to neural evidence of associative recall, we next used this classifier to assess 
changes in memory reactivation over time. To obtain a temporal “read-out” from 
a ridge regression classifier corresponding to memory reactivation, we trained a 
classifier as above using all of the data from Phase 3: because brain activity in 
other phases was of primary theoretical interest, there was no need to create 
separate training and testing sets within the Phase 3 training data once adequate 
classifier performance was established. We then used the classifier to 
independently evaluate each fMRI volume. This yielded, for each timepoint, the 
amount of evidence in support of the trial being an associative cue trial ("cue 
evidence") and the amount of evidence in support of the trial being a familiar 
lure trial ("familiar lure evidence"). We combined these into a single measure by 
taking the difference between them, and refer to our subtractive measure as 
"evidence for associative recall". Note that, during classifier training, the target 
output values for the “associative cue” regression model were perfectly anti-
correlated with the target output values for the “familiar lure” regression model 
(i.e., each trial is either an associative cue trial or a lure trial, never both). Hence, 
the two regressions might learn mappings whose outputs are perfectly anti-
correlated and thus redundant. However, the ridge penalty in ridge regression 
(which pressures the model to find smaller weights, in addition to minimizing 
prediction error) exerts an extra effect that – to some extent – decouples the 
weights of the two classifiers, rendering them non-redundant. As such, taking 
the difference between outputs has the effect of providing extra information 
beyond what is obtained from each classifier alone.  
 The result of our processing was a TR-by-TR (i.e., one 2 s fMRI volume at 
a time) time-series for each phase, corresponding to a covert measure of 
associative recall. With this measure established, our next task was to assess the 
amount of memory reactivation it revealed before MOT-based reactivation, 
during MOT-based reactivation, and after MOT-based reactivation (Phases 4, 5 
and 6, respectively). We accomplished this by extracting the series of values in 
our classifier output that began just before each memory cue onset, and that 
ended just before the subsequent event onset. We refer to these time points as 
TRSTART through TREND. In the Phase 4 and 6 memory tests, START  
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Fig. 2. MOT dot-tracking performance. Participants were instructed that dot-tracking was their
primary task during MOT. During Phase 1, a staircasing algorithm was used to calibrate each
participant's speed of dot movement to a level leading to 85% dot-tracking accuracy during 5
MOT target trials. During both (a) the localizer (Phase 3) and (b) memory reactivation task
(Phase 5), dot-tracking performance in 5 MOT target trials remained consistent with this
calibrated level. Performance was better for 1 MOT target trials, but no different for associative
cue and familiar lure trials. This suggests participants complied with instructions to prioritize dot-
tracking, and completed cue visualization using only residual resources, as instructed. Error bars
describe 95% CI's (between-subjects variance; note that comparisons between conditions were
performed within-subjects).
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corresponded to -1 TR (-2 s) relative to event onset, and END corresponded to +5 
TRs (10 s) relative to event onset. In Phase 5, START corresponded to -1 TR (-2 s) 
relative to event onset and END corresponded to +12 TRs (24 s) relative to event 
onset. To ensure that we measured evoked, rather than low-frequency state-
based signals, we normalized the response to each trial by subtracting the value 
at trial onset from all TRs within that trial. This baseline was TR0 for Phases 4 
and 6, and because extra timepoints were available for Phase 5, it was the 
average of TR-2 to TR0 in that phase. To reduce the number of comparisons 
needed for our study, we focused our comparisons on the mean classifier signal 
om a window of time from 4-8 s for both memory tests, and from 4-18 s for the 
MOT phase. We started the window at 4 s (instead of 0 s) to account for lag in the 
hemodynamic response measured with fMRI. 
 Finally, we organized event responses according to our manipulations. In 
Phases 4 and 6 (memory testing), we grouped events based on whether the trial 
belonged to the associative cue (1 MOT target), associative cue (5 MOT targets), 
or omitted associative cue condition. In Phase 5 (memory reactivation), we 
grouped events based on whether they belonged to the associative cue (1 MOT 
target), associative cue (5 MOT targets), or familiar lure (5 MOT targets) 
condition.  

 
Significance testing 

To provide a random-effects statistical test of condition-level differences, 
we computed MVPA measures as described above at the single subject level, 
yielding a different mean memory reactivation timecourse for each condition. 
Group-level pairwise comparisons of condition means were then conducted 
using a non-parametric bootstrapping analysis. For each time point, pairwise 
differences between condition means across participants were calculated. These 
computations were repeated 10000 times, each time drawing 23 samples with 
replacement from the group of 23 participants. The standard deviation of 
differences provided a standard error estimate for each comparison. We divided 
the overall mean difference by the difference standard error derived from 
bootstrap resampling to obtain a bootstrap ratio (BSR), which can be treated as 
an approximate z statistic (Efron & Tibshirani, 1986). We set our significance 
threshold at an absolute value of BSR 1.96 (approximately corresponding to a 
95% confidence interval). This same approach was used for the statistical 
analysis of our behavioral data. 
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Results 
Overview 
 The goal of our experiment was to understand how the Phase 5 difficulty 
manipulation (1 vs. 5 MOT targets) impacted memory reactivation during 
associative cue trials, and whether any concurrent impact on later memory 
(Phase 6) could be ascertained. We also wished to test the usefulness of a novel 
fMRI classifier trained to measure associative memory and to remain insensitive 
to the aforementioned difficulty manipulation. We were able to train a classifier 
that satisfied these properties, and that worked in the context of a moving MOT 
task. This classifier, as well as participant behavioural responses obtained during 
the MOT task, indicated that our difficulty manipulation successfully modulated 
memory reactivation. Evidence from the post-reactivation memory task indicated 
that the memory representations cued during the MOT task had been weakened, 
regardless of the level of difficulty. 
 
Validation of MOT as a scalable distractor task 
 As discussed, during Phase 1 (staircasing), we used a staircasing method 
to adjust the speed at which MOT targets moved. We did so in such a way that, 
when faced with an array of 5 target dots and 5 foil dots, participants could 
successfully identify a probe dot as either a target or foil 85% of the time. This 
resulted in a median velocity of 1.43°/s, SD = 0.90°/s, range = [0.52°/s - 3.36°/s]. 
Each participants' unique velocity was applied forward throughout their 
experimental sessions. Our objective for this calibration was to present a similar 
level of disruption to visualization for all participants. To assess whether our 
approach was effective, we evaluated participant performance for 5 MOT target 
trials in the Phase 3 localizer against this 85% accuracy goal. Doing so allowed us 
to assess whether participants remained engaged throughout the experiment, 
and did not become substantively better or worse at the task as a result of factors 
such as ongoing training, fatigue, or the novel fMRI environment. In the Phase 3 
localizer task, mean dot-tracking accuracy under 5 MOT target conditions was 
not significantly different than the staircasing goal of 85% accuracy, BSR = 0.83, 
P=n.s., range = [75%-100%] (Fig. 2a). In the Phase 5 memory reactivation task, 
mean dot-tracking accuracy under 5 MOT target conditions was again not 
significantly different than the staircasing goal of 85% accuracy, BSR = 1.52, P = 
n.s., range = [70%-100%] (Fig. 2b). Although ceiling-level performance in a small 
subset of participants somewhat complicates interpretation of these values, the 
results clearly indicate that participants remained engaged throughout the 
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experiment, and suggest that the influence of practice, fatigue and the fMRI 
environment did not introduce material variation in the executive resources 
absorbed by the MOT task. 
 Dot-tracking accuracy data also presented information about the 
effectiveness of the difficulty manipulation. Performance on 1 MOT target trials 
was superior to that of 5 MOT target trials, both during the Phase 3 localizer (Fig. 
2a), BSR = 3.31, P < 0.001, and the Phase 5 memory reactivation (Fig. 2b), BSR = 
6.28, P < 0.001. Likewise, during Phase 5 memory reactivation, participants were 
faster to respond (median reaction time; RT) on 1 MOT target trials than 5 MOT 
target trials, BSR = -2.41, P < 0.05, although this pattern was not significant 
during the localizer, BSR = -1.03, P = n.s., which may be attributable to the 
smaller number of trials contributing to the stability of each participant's 
parameter estimates in that phase. These results confirmed that the task was 
more difficult when it was necessary to track five MOT targets rather than only 
one.  
 As a reminder, an important feature of the MOT task was that participants 
had two competing tasks: dot-tracking, and mental visualization of cued scene 
associates. For our dot-tracking difficulty manipulation to exert an influence over 
the amount of memory reactivation experienced by participants, it was 
important for the dot-tacking task to take priority (i.e., for memory recall to be 
accomplished using only residual cognitive resources), rather than recall taking 
priority (i.e., maximizing memory recall, at the expense of dot-tracking 
performance). Accordingly, we instructed participants to always ensure that dot-
tracking remained their top priority during MOT. However, even cooperative 
participants could have been influenced by automatic processes triggered by a 
retrieval cue, to the detriment of their dot-tracking performance and our 
manipulation. To evaluate the extent to which this was an issue, we compared 
dot-tracking accuracy for cue and familiar lure trials. On cue trials, participants 
had the opportunity to visualize a scene associate; whereas on familiar lure trials, 
there was nothing for participants to visualize. In the event that participants did 
not give full task priority to dot-tracking, then accuracy for cue trials should have 
been lower than that of lure trials. During the Phase 3 localizer task, we found no 
such difference in accuracy on 5 MOT target trials, BSR = -0.28, P = n.s., nor on 1 
MOT target trials, BSR = 1.26, P = n.s. Likewise, during 5 MOT target trials in the 
Phase 5 memory reactivation task, we found no such difference, BSR = -0.30, 
P=n.s. (note: in Phase 5, no lure trials with only 1 MOT target were available for 
comparison). Dot-tracking RT data (i.e., latency from probe dot presentation to a 
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participant response) also suggested compliance with instructions. During the 
Phase 3 localizer task, we found no RT differences between cue and lure trials on 
5 MOT target trials, BSR = 0.73, P=n.s., or 1 MOT target trials, BSR = 0.78, P=n.s. 
During Phase 5 memory reactivation, we also found no differences on 5 MOT 
target trials, BSR = -0.88, P=n.s. 
 
Validation of classifier measure of memory reactivation 
 Our classifier performed above chance when tested on left-out portions of 
the data from the Phase 3 localizer task, M = 0.58, 95% CI = [.54 .63], BSR = 3.18, P 
< 0.005. In addition to requiring that our classifier be sensitive to associative 
recall (i.e., the difference between cues and familiar lures) in the context of a 
visually dynamic MOT task with variable speeds across participants, an 
important requirement of our experiment was that, when recall is not taking 
place, our classifier should be insensitive to task difficulty (i.e., number of MOT 
targets). Although we trained our classifier with these goals in mind, no feature 
of our design guaranteed that they would be met; it is certainly possible our 
classifier could track difficulty instead of memory strength. The actual extent to 
which we were successful in training a classifier that satisfied our goals is an 
empirical question. Accordingly, we performed a comparison on each fold of 
cross-validation to establish whether our classifier would distinguish the number 
of MOT targets on trials when no associative recall was expected to occur (i.e., 
where memory strength was held constant). In particular, we compared overall 
classifier evidence for associative recall (i.e., classifier evidence for the word 
being an associative cue, minus classifier evidence for it being an familiar lure) 
on familiar lure trials with 5 MOT targets (M = -0.04, 95% CI = [-0.10 0.01]) and 
those with 1 MOT target (M = -0.08, 95% CI = [-0.15 -0.02]), and observed no 
difference, BSR = 1.14, P = n.s. (numerically, the difference was in the opposite 
direction from what you would expect if the classifier were confounding 
increased MOT difficulty with decreased recall). Nonetheless, the classifier was 
sensitive to MOT task difficulty when associative cues were presented in Phase 5, 
as we outline in the section below. While we need to be cautious in interpreting 
null effects, these results support the idea that we had created a classifier that 
was sensitive to memory strength, but, in the absence of recall, was also 
insensitive to number of MOT targets.  
  
Memory reactivation during MOT tasks 
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 We attempted to differentially reactivate memories by varying the 
number of MOT targets present in a given trial. During Phase 5 (memory 
reactivation), participants reported lower subjective visualization during 
associative cue (5 MOT targets) trials than associative cue (1 MOT target) trials, 
BSR = –2.16, P < 0.05 (Fig. 3a), suggesting our manipulation achieved its desired 
effect. Participants' subjective responses nonetheless indicated that the MOT task 
was not so distracting that they were unable to visualize at all, as associative cue 
(5 MOT targets) trials still had higher-than-null (i.e., a score of 1) visualization, 
BSR = 24.51, P < 0.001. Along these lines, subjective visualization scores for 
familiar lure (5 MOT target) trials were significantly lower than for associative 
cue (5 MOT target) trials, BSR = –11.63, P < 0.001, and also for associative cue (1 
MOT target) trials, BSR = –12.29, P < 0.001. These differences indicated that 
participants' memories were sufficiently robust for their visualization ratings to 
discriminate among trials with studied associates (cue trials) and those without 
(familiar lure trials). 
 Participant responses to the four visualization prompts within each MOT 
trial had low within-trial variance in all types of trials; for 5 MOT target trials, 
average within-trial variance = 0.19, SD = 0.14; for 1 MOT target trials, average 
within-trial variance = 0.22, SD = 0.14. It is also worth noting that there was an 
upwards drift in subjective visualization scores over the course of a trial, which 
is the opposite pattern to what one would expect if participants were "giving up" 
on visualization. The mean within-trial slope across the four visualization 
prompts for associative cue (5 MOT target) trials was 0.03, BSR = 2.49, P < 0.05, 
and the mean within-trial slope for associative cue (1 MOT target) trials was 0.05, 
BSR = 3.85, P < 0.001. 
 As a heuristic for confirming whether each memory reactivation was 
partial or full, we compared participants' subjective evaluation of visualization 
detail against their original reports during the train-to-criterion task (i.e., after 
study and prior to reactivation). Because their original scores reflected 
visualization without distraction, and because these were sampled shortly after 
study and immediately before correctly identifying the visualized scene in 4AFC, 
we reasoned that they reflected "full recall". Mean visualization scores during 
train-to-criterion were 2.64, 95%CI = [2.45 2.86] for the localizer set, and M=2.64, 
95%CI = [2.44 2.84] for the recall manipulation set. These scores were higher than 
were later reported during the Phase 3 localizer task in associative cue (5 MOT 
target) trials, BSR = 4.19, P < 0.001, but not in the associative cue (1 MOT target) 
trials in that task, BSR = 1.31, P = n.s. This confirmed that, during Phase 3,  
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Fig. 3. Evidence of associative recall during the memory reactivation phase. During the
reactivation phase (Phase 5), participants were presented with associative cues (i.e., cues
previously associated with scenes) while tracking 5 MOT targets or 1 MOT target, and familiar
lures while tracking 5 MOT targets. During tracking, they also reported their subjective
visualization of any recalled associate. (a) These ratings were higher for associative cues than
familiar lures, regardless of whether 5 or 1 MOT targets were used; but were also significantly
higher for associative cue trials with 1 MOT target than ones with 5 MOT targets. (b) When
drawing upon classifier evidence of retrieval from this same task, this exact pattern was also
observed: classifier evidence from the BOLD-adjusted visualization window (grey; bar plot
summary at right) was greater for associative cues than familiar lures, and for 1 MOT target
than 5 MOT target associative cue trials. Horizontal lines indicate visualization period onset and
offset. Error bars describe 95% CI's (between-subjects variance; note that comparisons
between conditions were performed within-subjects). * indicates BSR > 1.96 (P < 0.05); ***
indicates BSR > 3.29 (P < 0.001).
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interference from the MOT task induced partial memory reactivation during 
associative cue (5 MOT target) trials and full reactivation during associative cue 
(1 MOT target) trials. Likewise, train-to-criterion visualization scores were higher 
than associative cue (5 MOT targets) trials during the Phase 5 memory 
reactivation task, BSR = 7.18, P < 0.001, (Fig. 3a), although visualization scores 
were also lower for associative cue (1 MOT target) trials, BSR = 3.62, P < 0.001 in 
that task. Relatively low scores in the associative cue (1 MOT target) condition of 
Phase 5 are likely attributable to the relatively long study-reactivation interval 
for the stimulus set in that task (about a day, rather than a few minutes for Phase 
3). 
 Because visualization scores reflect only subjective evidence of memory 
recall, one possible objection to our above findings is that participants' responses 
reflected demand characteristics. We therefore sought converging evidence for 
our manipulation's effectiveness using an implicit measure of memory 
reactivation: our trained classifier, which we applied to fMRI data gathered 
during the MOT phase. Output from the classifier aligned with participants' 
subjective reports: greater signal was observed during associative cue (1 MOT 
target) trials than associative cue (5 MOT target) trials, BSR = 2.05, P < 0.05 (Fig. 
3b). Also reflecting participants' reports, classifier output for familiar lure (5 
MOT target) trials was significantly lower than associative cue (5 MOT targets) 
trials, BSR = –3.95, P < 0.001, and associative cue (1 MOT target) trials, BSR = –
4.48, P < 0.001. All together, the classifier evidence from Phase 5 provided 
converging support for the idea that partial memory reactivation was modulated 
by MOT task difficulty. This convergence, in turn, provided a "sanity check" in 
suggesting the classifier mirrored participants' own reported memory 
experiences. 
 It is worth noting that, because the above analyses average across recall 
trials, it is possible that evidence of "partial activation" values could arise as an 
artifact of averaging across "all" and "none" trials. If this were true, we would 
expect that trial-wise classifier evidence for recall would be bimodally (as 
opposed to normally) distributed. To test for this, we performed the Shapiro-
Wilk parametric hypothesis test of composite normality (which was recently 
found to be the most powerful normality test in a variety of non-normal 
situations; Razali & Wah, 2011) on the trial-wise MOT reactivation data from 
each condition of each participant. The distribution of classifier output across 
trials did not fit the profile of a bimodal distribution, with the mean of 
participant P-values in the associative cue (5 MOT targets) condition falling well 
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above the cutoff of 0.05 required to assert non-normality, M = 0.48, BSR = 7.53, P 
< 0.001. Normality was therefore upheld. This same pattern of high P-values was 
seen in the 1-MOT target condition, M = 0.37, BSR = 5.93, P < 0.001. Manual 
inspection of trial-wise histogram data for classifier and cognitive responses 
further confirmed a normal distribution of reactivation strengths across trials, 
supporting our interpretation of signal from the MOT phase as reflecting partial 
memory reactivation.  
 
Impact of memory reactivation on subsequent recall 
To the extent that memories were partially activated during the MOT phase, we 
hypothesized that this would have a negative impact on subsequent memory 
performance. To assess this impact, participants were presented with a memory 
test at the end of the experiment (Phase 6), which investigated memory for 
associations that had been cued during Phase 5 under associative cue (5 MOT 
targets), for associative cue (1 MOT target) conditions, and for associations that 
had not been cued at all during Phase 5. On each trial of the memory test, 
participants attempted to visualize the scene associate of a cue presented without 
other distraction, then attempted to select the correct associate from a 4AFC 
display. Accuracy in the associative cue (5 MOT targets) condition and accuracy 
in the associative cue (1 MOT target) condition were numerically lower than 
accuracy for baseline cues (which were omitted from Phase 5 MOT reactivation), 
but these differences from baseline were not significant: BSR = –1.47, P = n.s. for 
the associative cue (5 MOT targets) condition, and BSR = –0.95, P = n.s. for the 
associative cue (1 MOT target) condition. Likewise, no reliable difference in 
accuracy was found between associative cue (5 MOT targets) and associative cue 
(1 MOT target) trials, BSR = –0.29, P = n.s (Fig. 4). Implicit measures of memory 
strength, however, did appear to be impacted. Participants responded more 
quickly to associative cues left out from the Phase 5 memory reactivation task 
than associative cues that had been presented with 5 MOT targets, BSR = 2.51, P 
< 0.05, or 1 MOT target, BSR = 2.62, P < 0.01. However, there was no difference in 
response times for associative cue (5 MOT targets) or associative cue (1 MOT 
target) trials, BSR = 0.38, P = n.s. Classifier evidence showed a similar pattern 
(Fig. 4d): reduced classifier signal was observed in association with associative 
cue (5 MOT targets) trials relative to ones left out from Phase 5 memory 
reactivation, BSR = –2.58, P < 0.01. No such difference was found for associative 
cue (1 MOT target) trials, BSR = –1.47, P = n.s., and there was also no significant  
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Fig. 4. Impact of memory reactivation on later memory. (a) Both before and after the memory
reactivation phase, participants completed a memory test in which they first visualized the scene
associate of memory cues, then completed a multiple-choice question, followed by a mathematical
distractor task. (b) Memory accuracy was numerically, but not significantly lower for cues that had
been presented during the MOT reactivation phase (dashed line reveals chance performance
level). (c) Response times were significantly slower for cues that had been presented during the
MOT reactivation phase. (d) Classifier evidence from the BOLD-adjusted visualization window
(grey; bar plot summary at right) was lower for cues that had been presented alongside 5 MOT
targets during the MOT reactivation phase. Horizontal lines indicate visualization period onset and
offset. Error bars describe 95% CI's (between-subjects variance; note that comparisons between
conditions were performed within-subjects). * indicates BSR > 1.96.
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difference in classifier output for associative cue (5 MOT targets) and associative 
cue (1 MOT target) trials, BSR = –0.72, P = n.s. 
 
Discussion 
 In the current study, we sought to establish a parametrically scalable 
procedure for reactivating memories. Our first contribution was to implement a 
procedure that, according to both classifier evidence as well as participant 
subjective reports, was successful both at partially activating memories and 
modulating the particular amount of partial activation that took place. As 
predicted, this procedure led to evidence of memory weakening in a post-
reactivation memory test, although for more definitive tests of the non-
monotonic plasticity hypothesis, it will be necessary to select parameters that 
broaden the range of observed partial reactivation values. Our second 
contribution was to train an "associative recall" classifier able to distinguish cues 
with associates from familiar lures, while remaining insensitive to irrelevant 
factors (such as MOT difficulty). 
 
Parametrically scalable memory reactivation 
 As we have argued, the experimental procedures used to study memory 
weakening typically incorporate binary manipulations (e.g., retrieval practice; 
and think/no-think paradigms). Across many studies, these manipulations have 
been shown to lead to weakening (Murayama et al., 2014); according to the non-
monotonic plasticity hypothesis, this is because they induce intermediate levels 
of memory reactivation (e.g., Newman & Norman, 2010; Lewis-Peacock & 
Norman, 2014). However, "partial memory reactivation" is not a discrete state; 
rather, memory reactivation and its downstream effects fall on a continuous 
dimension (e.g., Johnson, McDuff, Rugg, & Norman, 2009; see also Detre et al., 
2013, for evidence and discussion). Here, we have shown an MOT difficulty-
based manipulation to be effective at influencing memory reactivation in a 
graded manner. In particular, altering the number of target dots to be tracked in 
an MOT task while participants concurrently performed mental visualization 
allowed us to: 1) reduce memory reactivation below baseline levels on a 
behavioural index; and 2) modulate fMRI classifier evidence of memory 
reactivation. 
 In the current study, we chose to manipulate MOT difficulty by 
modulating the number of target dots that participants needed to track during 
dot-tracking. This had the advantage that perceptual features were nearly 
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identical across difficulty conditions, with the only difference between "easy" and 
"hard" trials being the number of dots painted as MOT targets prior to the onset 
of the trial. A limitation of manipulating the number of MOT targets is that it can 
only be manipulated in discrete steps (adding or removing an MOT target) – in 
our experiment, one MOT target still imposed sufficient processing load to 
induce less-than-full memory reactivation. As such, future work might benefit 
from other, more fine-grained ways of manipulating difficulty. Notably, prior 
work has found that it is principally the amount of time that tracked MOT 
targets spend in close proximity to lures that consumes executive resources 
(Franconeri, Jonathan, & Scimeca, 2010; Franconeri, Lin, Enns, Pylyshyn, & 
Fisher, 2008). Changes such as increasing dot speed, growing the size of dots 
relative to the area they can move on the screen, increasing dot clustering 
behaviour, or altering other parameters that increase the frequency of dot 
collisions are therefore expected to have similar resource-depleting effects to our 
own difficulty manipulation of increasing the number of MOT targets. 
Accordingly, these parameters should have similar effects on mental 
visualization if used in conjunction with a reactivation task. Modifying these 
parameters to influence memory reactivation may be advantageous in that they 
lie on a truly continuous distribution (unlike manipulating the number of dots 
that are MOT targets) and thus can be adjusted to induce a broader range of task 
difficulty values. 
 It should be acknowledged that the multi-faceted nature of the task made 
it difficult to explain and perform, but with coaching, practice, and calibration of 
dot velocity to the individual ability, participants were able to master it. In 
particular, they showed high accuracy on the MOT dot classification task, which 
requires vigilance throughout the entire trial period, alongside stable 
visualization reports during MOT trials. These reports showed a slight upwards 
bias (i.e., more visualization over time). Together, these observations suggest that 
participants remained engaged in and could adequately perform both aspects of 
the task. 
 
Effects of partial reactivation on memory 
 Our study joins a growing number of experiments that have illustrated a 
link between classifier evidence of partial memory reactivation and weaker 
overall subsequent memory (e.g., Detre et al., 2013; Lewis-Peacock & Norman, 
2014; Poppenk & Norman, 2014). Memory cues that were exposed during MOT – 
whether participants were under instructions to track 5 MOT targets or just 1 
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MOT target – were shown, on average, to be partially activated. Relative to other 
memory cues not presented during that phase, memory for the partially 
activated items was found to be weakened in a post-reactivation memory test, as 
revealed by both slower response times and lower classifier output than in the 
pre-reactivation memory test. Numerically, weakening (i.e., a reduction in 
memory strength relative to the omit / not-reactivated condition) was 
consistently greatest across our dependent measures (accuracy, reaction time, 
and classifier output) for associative cue (5 MOT targets) trials, which was also 
the only condition to show significant classifier evidence of weakening. 
However, none of these variables revealed significant differences when 
associative cue (5 MOT target) and associative cue (1 MOT target) trials were 
compared directly; and associative cue (1 MOT target) trials did show 
significantly slower reaction times than omitted items. This pattern likely reflects 
the fact that during the MOT task, participants' subjective ratings indicated that 
reactivation was less than "full" even for associative cue (1 MOT target) trials; 
and that although this partial reactivation pushed items somewhat out of the 
reactivation range associated with weakening, some weakening nonetheless took 
place. The pattern also limits the strength of the argument that can be made 
about the impact of partial reactivation on forgetting, as when interpreted in 
isolation, it leaves open the logical possibility that reactivation in general causes 
weakening. The present study can best be viewed as a “proof of concept” that 
memory reactivation strength can be parametrically manipulated using MOT, 
leading to memory weakening. In future work, we will parametrically vary 
reactivation across a wider range of values, with the goal of fully reconstructing 
the U-shaped curve predicted by the non-monotonic plasticity hypothesis. 
  
Associative recall classifier 
 Training a classifier capable of measuring memory reactivation in the 
context of our new procedure was challenging, as conventional, visual category-
based classifiers appeared to attribute the moving MOT dot fields as similar to a 
particular visual category ("scenes"). We solved this issue by using a procedure 
similar to that of Rissman et al. (2010): training our classifier on the basis of 
memory operations (associative recall using cue words vs. recognition of familiar 
lures) rather than the more typical approach of using distinctive visual categories 
(e.g., Spiridon & Kanwisher, 2002). By supplying the classifier with trials that 
varied in difficulty within the same condition, we ensured that training on 
difficulty-linked features would yield low classifier accuracy, and reduced the 
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probability that classifier output would be sensitive to these features. We found 
that, when MOT task difficulty was held constant, this classifier was able to 
deliver above-chance performance in the challenging cognitive environment of 
dot-tracking in an MOT task. The trained classifier also met the important 
requirement of being insensitive to task difficulty when memory cues were not 
present. This pattern indicates that differences in classifier evidence evoked by 
associative cues with 1 vs. 5 MOT targets reflected different levels of memory 
retrieval strength, rather than task difficulty per se.  
 
Applications 
 We anticipate that there will be many uses for paradigms like this one that 
provide greater control over levels of memory reactivation. We wish to highlight 
two important applications of interest to our own laboratories. First, as noted 
earlier, experiments aimed at charting the "link function" between memory 
reactivation and subsequent memory strength (e.g., Detre et al., 2013) have relied 
on naturally-occurring variability in memory activation strength. A shortcoming 
of this approach is that mapping out the full U-shaped curves requires 
observations at a wide range of recall strength levels and there is no guarantee 
that enough observations will be obtained at these levels (especially at the high 
and low extremes).  By exposing participants to a range of MOT difficulty 
parameters that yield lower and higher memory reactivation, it may be possible 
(in future work) to use the paradigm described here to populate the tails, and 
therefore sample from a more uniform memory reactivation distribution. 
 Along these lines, another important affordance of a parametrically 
scalable reactivation protocol is the possibility of adapting it towards closed loop 
experimentation, adjusting difficulty as each trial unfolds in an attempt to 
generate memory reactivation at particular levels. A classifier in an fMRI 
environment configured to deliver a live read-out (e.g., deBettencourt, Cohen, 
Lee, Norman, & Turk-Browne, 2015) could, in the context of the current 
procedure, provide information about the amount of memory reactivation 
triggered by the current memory cue at the current level of MOT difficulty, 
accounting for variation injected by fluctuations in the association's strength and 
the participant's attention. This information, in turn, could be used to modulate 
difficulty levels such memory reactivation could be readjusted towards a goal 
level. This introduces the possibility of a causal test of the non-monotonic 
plasticity hypothesis: experimenters could induce partial memory reactivation at 
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specific sections of the non-monotonic plasticity curve, probing for predicted 
impacts on subsequent memory. 
 Eventually, therapeutically applied versions of closed-loop procedures 
could be used to steer all memories into the portion of the non-monotonic 
plasticity curve most associated with weakening, with the goal of attenuating the 
traumatic associates of powerful memory cues. Most phases of our design could 
be eliminated this context, since patients would not need to learn new 
associations – presumably, the traumatic associations would precede therapy. 
Only MOT difficulty calibration (Phase 1), localizer training (Phase 3), and 
memory reactivation (Phase 5) would be required. As these steps could easily be 
completed in two short sessions, we believe our technique to be viable as a 
prospective therapeutic approach. 
  
Conclusions 
 In summary, we have illustrated a "proof of concept" application of an 
MOT-based procedure for parametrically modulating memory reactivation. 
Behavioural and classifier measures of reactivation both confirmed that 
modulating MOT difficulty influenced the degree of memory reactivation. In 
turn, this partial memory reactivation appeared to lead to subsequent memory 
weakening. This procedure is intended to make possible new, focused 
investigations into human learning that exert greater experimental control over 
memory reactivation to conduct, for example, causal tests of the non-monotonic 
plasticity hypothesis. Our procedure also may pave the way for closed-loop 
clinical procedures that are based on principles of partial memory reactivation. 
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