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Abstract: Establishing early warning systems for anthrax attacks is crucial in biodefense. Here we present an 
optical method for rapid screening of Bacillus anthracis spores through the synergistic application of 
holographic microscopy and deep learning. A deep convolutional neural network is designed to classify 
holographic images of unlabeled living cells. After training, the network outperforms previous techniques in all 
accuracy measures, achieving single-spore sensitivity and sub-genus specificity. The unique ‘representation 
learning’ capability of deep learning enables direct training from raw images instead of manually extracted 
features. The method automatically recognizes key biological traits encoded in the images and exploits them as 
fingerprints. This remarkable learning ability makes the proposed method readily applicable to classifying 
various single cells in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, 
without any modification. We believe that our strategy will make holographic microscopy more accessible to 
medical doctors and biomedical scientists for easy, rapid, and accurate diagnosis of pathogens, and facilitate 
exciting new applications. 

Introduction 

Bacillus anthracis, a gram-positive spore-forming bacterium causing the disease anthrax, is one of the most 
destructive biological weapons that is prone to be abused for bioterrorism (1). It is thus crucial to rapidly detect 
and identify anthrax spores for biodefense (2). Various biological, chemical, and optical fingerprinting methods 
have been studied to accelerate diagnosis of B. anthracis (3-5). Conventional culture-based methods take days 
and are often inaccurate. PCR-based methods provide species-level specificity but still take hours and require 
heavy instrumentation with skilled personnel to operate the system (4). Photoluminescence and surface-
enhanced Raman scattering methods take only minutes, but require labeling with exogenous agents and cannot 
discriminate B. anthracis from other Bacillus species which are ubiquitous in nature (5). More importantly, most 
of these methods are limited by the detection sensitivity of at least thousands of bacterial cells; thus, their 
applications in practical settings such as aerosolized spores require sample amplification processes that 
significantly limit the detection speed. 

Recent developments of optical methods based on holographic microscopy combined with machine 
learning, which enables rapid and label-free identification of single cells, could be an important step to address 
the anthrax issue (6-11). Holographic microscopy (12), or quantitative phase imaging (QPI) in a broader sense, 
measures optical field images (i.e., nanometer-scale distortions of wavefronts passing through a sample) using 
laser-based interferometry. In addition to the amplitude images available from conventional intensity-based 
microscopy techniques, holographic microscopy quantitatively measures the optical phase delay maps dictated 
by the refractive index (RI) distribution of a sample (12). Because the endogenous RI distribution in a cell is 
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strongly related to the structural and biochemical characteristics (13) of the target classes (e.g., species or cell 
types), the measured field images of single cells and the corresponding class labels are passed to data-driven 
machine learning algorithms for systematic discovery of class-specific fingerprints encoded in the images. 
These approaches can be combined with flow cytometry and/or bioaerosol collection systems to achieve 
ultrafast identification of unlabeled cells and pathogens (9, 10). However, none of these methods achieved sub-
genus specificity required for discriminating B. anthracis from other Bacillus species ubiquitous in nature. 

Here we present a next-generation holographic screening method by adopting ‘deep learning’, a state-
of-the-art machine learning technique based on deep multi-layered neural networks (14, 15), to holographic 
microscopy. We designed a deep convolutional neural network (CNN) HoloConvNet specialized in the 
classification of holographic images of living cells. After training with quantitative phase images of individual 
Bacillus spores, the network identified new anthrax spores with single-spore sensitivity and sub-genus 
specificity. Its remarkable learning ability enables direct training from raw images by automatically recognizing 
key biological traits encoded in the images, and presents outstanding accuracy that outperforms previous 
approaches in all accuracy measures. As demonstrated below, this method is readily applicable to classification 
of various single cells in addition to B. anthracis without any modification. 

 

Results 
The holographic deep learning framework. The overall framework of our method is shown in Fig. 1. We used 
quantitative phase imaging unit (QPIU), a cost-effective palm-sized module that converts a conventional 
microscope into a holographic microscope (16), for phase imaging of individual Bacillus spores in an isolated 
biosafety level 3 (BSL-3) laboratory at the Agency for Defense Development, Korea. It is attached to the output 
port of an existing bright-field microscope to form a common-path interferometry for optical field imaging (Fig. 
1 A-C; see Materials and Methods). After imaging B. anthracis and four different Bacillus species with various 
levels of phylogenetic relatedness (see Supplementary Note 1), we trained our deep neural network named 
HoloConvNet as a species classifier using the phase images of individual spores and the corresponding species 
labels (training set). The learnable parameters of the deep neural network were iteratively adjusted by the error 
backpropagation algorithm(14, 15) (Fig. 1D). The performance of the trained HoloConvNet was tested by taking 
new images (test set), which were never seen before by the network, as the input to the network (Fig. 1E). The 
machine-predicted species labels were compared with the true classes to estimate identification accuracy. 

The quantitative nature of holographic microscopy captures subcellular phase delay distribution which 
could be exploited by machine learning algorithms to extract fingerprint information (8, 13). On the other hand, 
conventional techniques (e.g., phase contrast microscopy) provide rough morphological information only (Fig. 
S1). Simple morphological parameters such as spore size (Fig. S2) are not enough for species discrimination due 
to high genetic similarities and large cell-to-cell variations (8, 16). 

The endogenous RI distribution of Bacillus spores, which dictates the sample-induced phase delay 
imaged by QPIU, is strongly related to specific characteristics of each species (8, 13). However, because this 
relation is often indirect, it should be approximated using supervised learning. The precision of this function 
approximation obviously dominates the performance of the trained classifiers. Deep neural networks are 
universal approximators for virtually any arbitrarily nonlinear functions (15), while conventional machine 
learning techniques mostly rely on linear or only slightly nonlinear decision boundaries (8). 

The network architecture of HoloConvNet is illustrated in Fig. 2 (and Table S1). A phase image of a 
single spore is processed by multiple layers of convolution, nonlinearity, and pooling operations, and then 
finally receives scored class labels through fully-connected layers. The network makes its prediction by 
selecting the final-layer neuron with the strongest activation. The key functional block of this process is a 
convolutional layer followed by nonlinearity: 
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where x and y are input and output vectors, and w and b are synaptic weights and biases, respectively. Equation 
1 emulates integration of synaptic inputs by a biological neuron (14, 15) that fires only when the net input 
exceeds a certain threshold (more precisely, a population of neurons with an output firing rate modeled by a 
rectified linear unit (ReLU)). Note that the entire processing by the network from images to class labels is a 
nonlinear mapping which corresponds to the approximating function explained above. 
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Training a deep neural network is essentially a large-scale nonlinear optimization of the synaptic 
weights (and biases) which govern the network behaviour. The large number of the learnable parameters makes 
training process extremely difficult. However, CNNs such as HoloConvNet have dramatically smaller number 
of parameters (14, 17) by employing localized and shared receptive field structures inspired by physiological 
visual processing (see Supplementary Note 2). Thus the network can be trained using the error back propagation 
algorithm that minimizes the mismatch between the machine-predicted and true labels (see Materials and 
Methods). HoloConvNet efficiently converges to a hierarchical representation of the images that gradually 
transforms the data space in which the classes are easily separable. This property is called the ‘representation 
learning’ capability of deep learning (14) and enables direct training from raw images. 

 

Performance. The performance of HoloConvNet is shown in Fig. 3. A well-trained neural network reflects the 
general relations between the input and output data, so that it accurately predicts the class labels of new images 
(generalization property). The multiclass identification performance of the network for the five Bacillus species, 
trained with 5 class labels representing individual species, is shown in Fig. 3A. HoloConvNet clearly identifies 
B. anthracis spores from the other four species with high sensitivity and specificity. Since diagnosing anthrax 
spores from other species is our prime objective, the network was next trained with binary class labels (anthrax 
versus non-anthrax). Using this method, the performance could be enhanced (Fig. 3B) by letting the 
optimization process focus on the characteristics distinguishing B. anthracis from others. When the problem was 
relaxed by excluding the two Bacillus cereus group species (note that these species are rare, while Bacillus 
subtilis is ubiquitous in nature; see Supplementary Note 1), HoloConvNet achieved a remarkable accuracy of 
95.3% (Fig. 3C). 

The performance of our method was compared with those of several previous techniques (Fig. 3D): 
holographic microscopy with conventional machine learning (8), conventional microscopy with deep learning 
(training HoloConvNet with binary morphology images; see Materials and Methods), and conventional 
microscopy with conventional machine learning (linear discriminant analysis with the morphological parameters 
in Fig. S2). HoloConvNet outperformed the previous methods in all accuracy measures, which clearly 
demonstrates the great potential of deep-learning-based holographic screening of anthrax spores in realistic 
settings. 

 

Representation learning. Representation learning by HoloConvNet, the fundamental improvement developed 
in this study, was further examined (Fig. 4). The network transforms the images into a representation in which 
the data points are linearly separable because a single layer of neurons is a linear classifier (15). We applied t-
distributed stochastic neighbor embedding (t-SNE), a high-dimensional data visualization technique (18), to the 
activation of individual neurons in the last hidden layer (Fig. 4 A-C; see Materials and Methods). The nice 
separation observed indicates the great ability of HoloConvNet to learn the optimal representation of phase 
images without any pre-designed features required by conventional machine learning techniques. The different 
degrees of separation in the three cases explain the different identification performance. Additionally, the 
relative distances between the species clusters shown in Fig. 4A are consistent with the phylogenetic relationship 
(see Supplementary Note 1); here it should be noted that the relationship was independently discovered by 
HoloConvNet through training. 

The outstanding performance of the proposed method raises a question: what are the key biological 
traits that are measured and exploited for the identification of anthrax spores? We speculated that cellular dry 
mass (19), the mass of non-aqueous cellular components, is one of the most important traits. This hypothesis is 
based on the domain knowledge that there exists an additional outermost structure, called the exosporium, in the 
B. cereus group spores but not in the remaining two species (20). It was reasoned that structural distinction 
might result in an inter-species difference of dry mass which is inherently measured by holographic imaging 
with femtogram-level sensitivity (see Materials and Methods). Indeed, a strong positive correlation was found 
between dry mass and activation of the ‘anthrax neuron’ at the output layer (Fig. 4 D-F). This observation makes 
sense if the mean dry mass of B. anthracis is the heaviest among the five species, which turns out to be true 
(Fig. 4G). As expected, B. anthracis is slightly heavier than the other two B. cereus group species, and the 
remaining two species lacking exosporium have considerably lighter dry mass. The subtle difference within the 
B. cereus group might be due to species-dependent compositions and nanostructures of exosporium (21), while 
their contribution to dry mass should be confirmed by additional investigations. It was noted that the same order 
relation of dry mass was observed in all independent measurements (Fig. S3), and the overall range of measured 
dry mass is consistent with previous studies (16, 22). 
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To confirm the causality between dry mass and species prediction by HoloConvNet, a computational 
disabling strategy was employed. Detrimental effects on the performance were observed by computationally 
normalizing the phase images to remove the dry mass information. As shown in Fig. 4H, the network trained 
and tested with normalized phase images shows a significantly impaired performance, supporting the key role of 
dry mass. However, it does not mean that it is the sole information extracted by the network; the performance of 
a single-feature linear discriminant classifier based solely on dry mass was also significantly worse. This 
suggests that other traits such as spatial distribution of subcellular components in the spores play roles in 
screening. From these observations, it can be concluded that the inter-species difference of dry mass is 
recognized and exploited through representation learning by HoloConvNet. Here, it should be emphasized that 
we never taught the network on how to calculate dry mass from phase images. On the other hand, a conventional 
machine learning algorithm cannot make use of dry mass unless it is manually selected by a researcher. 

Finally, the generality of our method expected from the outstanding learning abilities was 
investigated. As a proof-of-concept example, HoloConvNet was trained for diagnosing the pathogen L. 
monocytogenes, the causative agent of listeriosis which is often fatal to neonates and the elderly (23), from five 
different Listeria species. The diagnostic accuracy was surprisingly high, showing higher than 85%. The 
architecture and learning rules were identical to those used for the diagnosis of Bacillus species. It is also noted 
that L. monocytogenes is not the species with the heaviest dry mass in this case (Fig. S4). These results suggest 
that the holographic deep learning framework reported here has immediate and wide applicability in contrast to 
problem-specific conventional machine learning approaches. 

 

Discussion 
We proposed and experimentally demonstrated a novel method for screening of anthrax spores by combining 
holographic microscopy and deep learning for the first time. The new strategy enables rapid label-free 
identification of individual anthrax spores with sub-genus specificity extending our previous inter-genus 
bacterial fingerprinting method based on conventional machine learning (8). In addition to the superior 
performance due to the extreme flexibility of deep neural networks, the transition from classical machine 
learning to deep learning fundamentally transforms holographic single-cell identification techniques by 
acquiring the representation learning capability. HoloConvNet automatically recognizes and then uses key 
biological characteristics which are species-dependent (e.g., dry mass in the anthrax problem) simply from raw 
images. Additionally, the present method can be readily extended to other single-cell classification problems, 
such as the diagnosis of L. monocytogenes demonstrated in this study, without any modification. Thus, our 
method eliminates the need to manually design and optimize features based on trial-and-error for individual 
problems. 

 The next steps beyond this proof-of-concept study to achieve practical ultrafast screening of anthrax 
spores are straightforward. Above all, the proposed method should be combined with flow cytometry (9, 10) and 
bioaerosol collection(24) systems to fully exploit the single-spore and label-free nature of the method. Then, a 
large amount of holographic imaging data from the resultant high-throughput device would be used to train 
HoloConvNet for more species and strains under various environmental conditions to assure stable field 
performance. The performance could be further improved by adopting multimodal QPI (e.g., spectral (25), 
polarimetric (26), or tomographic (27) images as the stacked input to the network) to increase the amount of raw 
information investigated by the network. 

Despite the fast and label-free nature of holographic microscopy, the limited chemical specificity has 
left this tool overshadowed by fluorescence microscopy. Specific domain knowledge (e.g., homogeneity of 
hemoglobin concentration in red blood cells, high RI of lipid droplets in eukaryotic cells, etc.) has been required 
for effective use of the technique. The method proposed in this paper solves this difficulty by using the powerful 
learning abilities of deep neural networks. As we demonstrated in this study, now intelligent holographic 
microscopy can actively recognize and exploit the class-specific fingerprints, encoded in the raw images of 
various biological samples, without any prior knowledge. We believe that our strategy will make holographic 
microscopy more accessible to medical doctors and biomedical scientists for easy, rapid, and accurate diagnosis 
of pathogens, and facilitate exciting new applications. 

 

Materials and Methods 
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Preparation of Bacillus spores. Bacillus anthracis Sterne (pXO1+ and pXO2-) was obtained from the Centers 
for Disease Control and Prevention, Korea (KCDC). Bacillus thuringiensis BGSC 4AJ1 was obtained from the 
Bacillus Genetic Stock Center (BGSC). Bacillus cereus ATCC 4342 was obtained from the American Type 
Culture Collection (ATCC). Bacillus atrophaeus KCCM 11314 was obtained from the Korean Culture Center 
for Microorganisms (KCCM). Bacillus subtilis 168 was obtained from the Korean Collection for Type Cultures 
(KCTC). 

All experiments involving B. anthracis were conducted in a BSL-3 laboratory following the regulations in 
the Republic of Korea. Bacterial cells from frozen glycerol stocks were streaked onto Luria-Bertani (LB) agar 
plates and incubated at 30°C overnight. Next day, a single colony was inoculated into 5 mL of LB broth in a 50 
mL CELLSTAR CELLreactor tube (Greiner Bio-One, Austria) and incubated at 30°C with shaking (200 rpm) 
for 8 hours. Then, 250 μL of the culture broth were transferred to 25 mL of GYS sporulation medium (28) in a 
125 mL polycarbonate Erlenmeyer flask with a vent cap (Corning, NY) and incubated at 30°C with shaking 
(200 rpm) for 48 hours. After sporulation was completed, spores were harvested by centrifugation (5,420×g, 
4°C) and washed four times with phosphate-buffered saline (PBS; Life Technologies, CA). Finally, the spores 
were suspended in 5 mL of PBS and stored at 4°C until use. Note that we prepared all the species with the same 
procedure. 

A small volume (approximately 10 μL) of the bacterial solution was placed in an imaging chamber 
comprised of standard cover glasses (C024501, Matsunami Glass, Japan) and (optional) spacers with a thickness 
of 20-30 μm. Imaging was performed at room temperature after the spores settled down to the bottom and 
spread into a single layer. All Bacillus experiments were independently repeated three times. 
 
Holographic imaging. Because all anthrax experiments had to be conducted in a separate BSL-3 facility at the 
Agency for Defense Development, we used a compact and portable QPIU recently developed in our group(16), 
as the holographic imaging modality. It consists of two polarizers (LPVISE100-A, Thorlabs Inc., NJ) and a 
Rochon prism (#68-824, Edmund Optics Inc., NJ) inside an aluminum tube mounted in front of a CCD camera 
(FL3-U3-88S2C-C, PointGrey, Canada). Inserting the unit into the output port of a conventional bright-field 
microscope (B-382PLi-ALC, Optika, Italy) converts it into a holographic microscope. The light source for 
illumination was a diode laser (CPS532, λ = 532 nm, 4.5 mW, Thorlabs Inc., NJ), and the total magnification 
was ×100 determined by an objective lens (M-148, NA 1.25, oil-immersion, Optika, Italy). Acquisition time per 
interferogram was less than 20 ms, which could be reduced by many orders with high-intensity light sources and 
more sensitive cameras. 

QPIU, shown in Fig. 1A, is a spatially-modulated self-reference interferometry. When the light 
passing through the sample encounters the unit, it becomes linearly polarized by the front polarizer. Then, the 
following Rochon polarizing prism divides the beam into two duplicated beams with slightly different 
propagation directions. Finally, the orthogonal polarization states of the divided beams become parallel by the 
rear polarizer. Thus, the two beams of parallel polarization generate an interference pattern at the overlapped 
region on the CCD plane. The linear polarizers before and after the prism are adjusted so that the interferogram 
has a high visibility (Fig. 1B). The quantitative phase information is retrieved (Fig. 1C) from the measured 
interferogram using a standard field-retrieval algorithm (29). The details on the principle of QPIU can be found 
elsewhere(16). 
 
Image analysis. All image analysis procedures were done with MATLAB (R2014b; MathWorks Inc., MA). The 
reconstructed phase images containing multiple spores were segmented by phase thresholding to be separated 
into images of single spores. The isolated spores were computationally aligned at the centres of square 
backgrounds for further analysis. The segmented regions were considered as the morphologies of individual 
spores that could be measured with conventional microscopy techniques such as phase contrast microscopy. The 
representative morphological parameters plotted in Fig. S2 were quantified with the regionprops function of 
MATLAB. 

Calculation of the single-spore dry mass from phase images exploited the well-known proportionality 
between the optical phase delay and cellular dry mass (30). The total dry mass (m) can be calculated from the 
phase delay map ( ( )rφΔ r

) as follows: 

( ) 2

2 S

m r d r
λ φ
πα

= Δ∫∫
r r

 
where λ is the illumination wavelength, S is the projection area of the cell surface, and α is the RI increment for 
non-aqueous molecules. Because the RI increment is known to be 0.18–0.21 mL/g for typical biological cells 
(30), we used α = 0.2 mL/g, and the results were consistent with those measured by other techniques (16, 22, 
31). Note that we never explicitly taught the network about this relation. 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/109108doi: bioRxiv preprint 

https://doi.org/10.1101/109108
http://creativecommons.org/licenses/by/4.0/


Deep learning. HoloConvNet is a CNN designed for the classification of holographic images of single cells. 
We implemented HoloConvNet using MatConvNet (32) framework (version 1.0 - beta 20) due to its simplicity 
and compatibility with our experimental data primarily processed with MATLAB. The final network 
architecture shown in Fig. 2 and Table S1 was carefully chosen after comparing several variations. Motivated by 
the recent trend for ‘small receptive fields and deep layers,’ the sizes of the receptive fields of the convolutional 
layers were chosen to be small (3-by-3), and thus, the total number of learnable parameters was relatively 
manageable (approximately 0.1 million). Because the architecture is substantially deep, we used the ReLU 
nonlinearity as the neuron model to avoid the vanishing gradient problem (33). Note that we used only phase 
images and not noisy amplitude images (due to the transparency and small sizes of the single spores) as the 
inputs to the network. 

In addition to the traditional ‘weight decay’ regularization (15), several recent techniques were used to 
reduce overfitting. We used the ‘dropout’ technique, a regularization method based on efficient ensemble 
learning (34), for the last hidden layer with a dropout rate of 0.5. For further regularization and accelerated 
training speed, ‘batch normalization’ was done at every interface between a convolutional layer and the 
following ReLU layer (35). Due to the large number of learnable parameters, we used ‘data augmentation’ that 
enlarged the training dataset (17) by a factor of 128. This is simply done by generating the new labeled images 
by rotating the original images by random angles sampled from a zero-mean Gaussian distribution with a 
standard deviation of 10 degrees and by flipping the images with a probability of 0.5. 

During the training stage, the learnable parameters were updated toward the direction minimizing the loss 
function using the concept of error backpropagation (14, 15). We used cross-entropy loss based on softmax 
function, which quantifies the mismatch between the machine-predicted and true labels, as the objective 
function to be minimized. By calculating the partial derivatives of the loss function with respect to the elements 
of the synaptic weight tensors using the chain rule, we could update the parameters in a stochastic gradient 
descent (SGD) scheme (14, 15). The learning rule was conventional SGD assisted with a momentum of 0.5 
(note that using recent learning rules instead could further improve the performance), and the training batch size 
was 1024. The weights were initialized from a zero-mean Gaussian distribution with layer-wise scaling based on 
the input sizes (36). The biases were initialized with the constant 0. We used an equal learning rate for all layers, 
which was attenuated by a factor of 5 per five epochs (15). The hyperparameters were selected by cross-
validation; the grid searching process with the initial learning rate and weight decay regularization strength 
resulted in values of 0.05 and 0.0005, respectively. We used one GPU (GeForce GTX 680, NVIDIA, CA) and 
CUDA Toolkit 7.5 (NVIDIA, CA), which increased the training speed typically by 5-10 fold. We note that it is 
possible with more computing resources to train multiple network models with different random initializations 
to compose a committee machine to further enhance the performance (17). Finally, the identification 
performance was estimated using separate test images which were never shown during the training stage. The 
error bars in Figs. 3 and 4 represent standard deviation calculated from 10 classification models with different 
random initializations. 

The visualization of HoloConvNet codes was performed by the unsupervised dimensionality reduction 
technique t-SNE, which embeds high-dimensional data in a low-dimensional space while preserving the 
pairwise distances of the data points, implemented in MATLAB (18). The activation strengths of individual 
neurons at the last hidden layer by the test images were used as the raw variables. The parameters for the 
stochastic optimization for t-SNE were as follows: the perplexity was 30, and the dimension for initial principal 
component analysis was 30. 

 

The Listeria experiments. The six major bacterial species of the genus Listeria, Listeria monocytogenes 
(10403S), Listeria grayi (ATCC 19120), Listeria innocua (ATCC 33090), Listeria ivanovii (ATCC 19119), 
Listeria seeligeri (ATCC 35967), and Listeria welshimeri (ATCC 35897), were cultured in Brain-Heart Infusion 
media without antibiotics. After culturing overnight in a 37°C shaking incubator, the vegetative bacterial cells 
were washed and diluted with PBS based on the cultured concentration estimated by optical density 
measurements at 600 nm. The bacterial solution was placed and imaged in imaging chambers described above 
for the Bacillus experiments. 

The holographic imaging of prepared samples was done with a Mach-Zehnder interferometry (12) with 
varying illumination angles to exploit the high-resolution synthetic aperture imaging technique (37). Optical 
field reconstruction and image processing protocols were identical to those of the Bacillus experiments. 
The same network architecture and learning rule for training the original HoloConvNet (for Bacillus spores) 
were used to train the network for Listeria. The only preprocessing was to adjust the size of the input images to 
match the input dimension of HoloConvNet. 
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Figures 

 

Fig. 1. Holographic deep learning framework for screening of anthrax spores. (A) Schematic diagram of QPIU 
for holographic imaging of individual Bacillus spores. (B) An interferogram formed by spatial modulation. It 
encodes quantitative phase images of individual spores as shown in (C). (D) The measured phase images from 
multiple Bacillus species are used to train a deep neural network using the error backpropagation algorithm. (E) 
The trained network accurately predicts the corresponding species when independently-measured phase images 
are shown.  
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Fig. 2. Architecture of HoloConvNet. When a phase image of an individual spore is taken as the input, the 
network first processes the images through 3 rounds of convolution, ReLU nonlinearity, and max pooling layers. 
Then two fully-connected (and ReLU) layers follow; the first is the last hidden layer under dropout 
regularization, and the second is the output layer with the class scores. These scores are used to calculate the 
loss function and to make species predictions in the training and test stages, respectively. Only 10 two-
dimensional activation maps per layer are presented with layer-wise scaling for visualization (see Table S1 for 
detailed architecture).  
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Fig. 3. Performance of HoloConvNet. (A-C) The test images were used to measure the performance of (A) 
multiclass classification of 5 Bacillus species; (B) binary classification of B. anthracis and the other 4 species; 
(C) binary classification of B. anthracis and 2 non-member species of the B. cereus group. (D) The performance 
of the proposed method is compared to previous techniques (see the main text). Holographic microscopy and 
deep learning significantly improve the performance in all cases.  
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Fig. 4. Representation learning by HoloConvNet. The inter-species difference in cellular dry mass is 
automatically recognized and used for screening of anthrax spores. (A-C) t-SNE visualization of the CNN codes 
at the last hidden layer, which shows the representation learning capability of HoloConvNet (see the main text). 
(D-F) The activation of the ‘anthrax neuron’ at the output layer shows a strong correlation with dry mass. (G), 
Dry mass of individual Bacillus spores calculated from the quantitative phase images. (H) Computationally 
disabling the dry mass information significantly impairs the performance of HoloConvNet. Dry mass alone is 
not enough for full performance as well. 
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