
Estimating environmental suitability

John M. Drake1,2,3∗

Robert L. Richards1,2

1Odum School of Ecology, University of Georgia,

Athens, GA 30602-2202, USA

2Center for the Ecology of Infectious Diseases, University of Georgia,

Athens, GA 30602-2202, USA

2Department of Zoology, Oxford University

Oxford, OX1 3PS UK

∗E-mail: jdrake@uga.edu

February 15, 2017

Author statement: JD proposed the model, JD and RR wrote the code and performed the

analysis, JD wrote the first draft of the manuscript, and all authors contributed substantially5

to revisions.

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/109041doi: bioRxiv preprint 

https://doi.org/10.1101/109041
http://creativecommons.org/licenses/by/4.0/


Abstract

Methods for modeling species’ distributions in nature are typically evaluated em-

pirically with respect to data from observations of species occurrence and, occasionally,

absence at surveyed locations. Such models are relatively “theory-free”. In contrast,10

theories for explaining species’ distributions draw on concepts like fitness, niche, and

environmental suitability. This paper proposes that environmental suitability be de-

fined as the conditional probability of occurrence of a species given the state of the

environment at a location. Any quantity that is proportional to this probability is a

measure of relative suitability and the support of this probability is the niche. This15

formulation suggests new methods for presence-background modeling of species dis-

tributions that unify statistical methodology with the conceptual framework of niche

theory. One method, the plug-and-play approach, is introduced for the first time.

Variations on the plug-and-play approach were studied with respect to their numerical

performance on 106 species from an exhaustively sampled presence/absence survey of20

vegetation in the Canton of Vaud, Switzerland. Additionally, we looked at the ro-

bustness of these methods to the presence of irrelevant information and sample size.

Although irrelevant variables eroded the predictive performance of all methods, these

methods were found to be both numerically and statistically robust.

Introduction25

How the occurrence of a species in nature depends on the state of its environment is one of the

most fundamental problems in ecology. Conceptual frameworks for answering this question

introduce such ideas as fitness (Fretwell and Lucas 1969, Hirzel and Le Lay 2008, Peterson

et al. 2011), niche (Thrasher et al. 1917, Peterson et al. 2011), and environmental suitabilty

(Engler et al. 2004, Hirzel and Le Lay 2008, VanDerWal et al. 2009, Franklin 2010). Problems30

with operationalizing these concepts include vagueness about their meaning (Peters 1976,

Hurlbert 1981, Orr 2009), failure of real systems to meet assumptions such as distributional
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equilibrium (Elith et al. 2010) and lack of source-sink dynamics (Pulliam 2000), and data

problems such as the commonness of presence-only data (Brotons et al. 2004, Pearce and

Boyce 2006, Ward et al. 2009).35

This paper seeks to define some of these concepts in a theoretically unifying and computa-

tionally operational way. The proposed definitions lend themselves to a new method, which

we refer to as the plug-and-play approach to modeling environmental suitability. The plug-

and-play approach is very flexible. For instance, it allows that data might come from different

places at different times. Further, plug-and-play methods for estimating environmental suit-40

ability also yield an approach to ecological niche modeling. We study several instances and

show that the performance of the plug-and-play approach can be comparable to MaxEnt,

a leading method for species distribution modeling (Phillips et al. 2004, Elith, J., Leath-

wick 2009, Elith et al. 2011), and superior to a recently proposed density ratio estimator

(Kanamori et al. 2009, Sugiyama et al. 2013). Finally, when used in a particular way (i.e.,45

using the regularized Gaussian estimator as its base learner), the plug-and-play method can

be used for variable identification and fitting of robust models even in the presence of few

records and irrelevant variables.

Environmental suitability and the ecological niche

The state of the environment at a location i may be represented by a vector of measurements50

zi = [ai, bi, ci, ...] where a is rainfall, b is temperature, c is vegetation, etc. We assume that zi

is constant through time. The environmental distribution is the joint density of environments

in nature, denoted f(z) (notation follows Elith et al. (2011)). The environmental distribution

of species s or occurrence distribution is the joint density of environments in which s is found,

denoted f1(z), distinct from its range and niche (Drake 2015). The support of f1, i.e., the55

values of z at which f1 > 0, is the realized niche. The boundary of the support of f1 is

denoted by hF . Sometimes one is interested in the conditional probability that a species
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occurs at a location given the environment there, P (y = 1|z) (Keating and Cherry 2008,

Ward et al. 2009, Franklin 2010, Elith et al. 2011, Royle et al. 2012, Hastie and Fithian

2013). We call this conditional probability the suitability of environment z, S(z), for species60

s. By Bayes’ rule,

S(z) = P (y = 1|z) =
f1(z)P (y = 1)

f(z)
, (1)

where P (y = 1) is the species prevalence. Since prevalence is a proportionality coefficient,

we will sometimes wish to ignore it, in which case we have relative suitability

SR(z) =
f1(z)

f(z)
∝ S(z). (2)

Typically, prevalence will be unknown, although (because it is a single quantity) it might

possibly be estimated through independent surveys with less effort than is required to esti-65

mate the component densities f1(z) or f(z) (Phillips et al. 2009). Assuming non-extinction,

P (y = 1) > 0, SR(z) > 0 if and only if S(z) > 0. That is, the support of S and SR are

identical. The fundamental niche, N , is defined as the set of all environments in which the

species can persist in the absence of continuous immigration from other populations. More

completely, the fundamental niche, N , is the set of all environments z such that there exists70

a population size n at which the probability of persisting at a location with environment z

and in the absence of immigration over a large time horizon T � 0 exceeds some threshold θ,

possibly close to one, in which case there is a non-zero probabilty that species s will be found

in z (S(z) > 0), further implying SR(z) > 0. Typically, this persistence condition will obtain

when there is population size n at which average absolute individual fitness exceeds one. This75

is a cumbersome definition, but it points to a way that such notorious problems as source-sink

dynamics (Pulliam 2000), Allee effects (Holt 2009), stochastic extinction (Hanski 1989), and

niche conservatism (Wiens et al. 2010) may be conceptually incorporated and quantitatively
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addressed, rather than having them swept away by unrealistic model assumptions. Formally,

N = {z : S(z) > 0}. The boundary of this set is designated hN .80

By providing definitions for environmental suitability and niche and relating these to ob-

servable quantities in nature (e.g., the frequency of occurrence of a species), this framework

allows us to formulate and answer some fundamental ecological questions, including:

• Is location i more or less suitable for species s than location j (for any choice of i and

j)?85

• What is the dimension of the niche of species s?

• What are the environmental variables that comprise the niche of species s or influence

its distribution?

• How is the potential distribution of species s influenced by a given variable x?

• What are the boundaries of the niche of species s? (What are its environmental toler-90

ances?)

• Is the environmental distribution of species s set by its niche (its tolerances) or by the

set of the environments realized in nature?

• How will the environmental distribution of species s change when the distribution of

environments in nature changes?95

• How will the spatial distribution of species s change as the distribution of environments

in nature changes?

The framework can also be used to empirically address questions in community ecology:

• What is the niche similarity of species s1 and s2?
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• Do communities S1 = {s1, s2, s3, ...sn} and S2 = {sn+1, sn+2, sn+3, ...sn+m} exhibit more100

within-community niche variation or between-community niche variation?

• What is the saturation or fraction of species in the species pool that could persist in z.

An estimator for environmental suitability

In this section, we propose that this conceptual framework lends itself to modeling, that is

building numerical or computer-learned models of environmental suitability or species’ niches105

from records of species occurrence in nature. Here is the core of the idea. First, many appli-

cations do not require an estimate of absolute environmental suitability, but (for instance)

only a rank ordering. In such cases, relative suitability is adequate. Particularly, we shall

argue below that niche identification, which is what we call the process of building a model

of hN , only requires information about relative suitability. The plug-and-play approach to110

modeling relative environmental suitability proposes that the ratio of two estimates, f̂1(z)

and f̂(z), be used as an estimator of SR:

ŜR = f̂1(z)/f̂(z). (3)

Because f1(z) and f(z) are just probability densities, they can be estimated using any of a

number of techniques for probability density estimation, such as kernel density estimation

or Parzen’s window estimator (Jones and Wand 1995). Alternatively, one might substitute115

a parametric expression, which is basically what is done by MaxEnt, a maximum entropy

algorithm commonly used for species distribution modeling (Phillips et al. 2004). Specifi-

cally, the MaxEnt algorithm for species distribution modeling stipulates that SR = eα+βh(z),

where α is a normalizing constant chosen so that f1(z) integrates to one, β is a vector of

fit coefficients and h(z) are transformations of the covariates referred to as features. (This120

function h is different from hF and hN as defined above, but used here for consistency with

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/109041doi: bioRxiv preprint 

https://doi.org/10.1101/109041
http://creativecommons.org/licenses/by/4.0/


Elith et al. (2011).) Thus, MaxEnt is a special case of environmental suitability modeling,

but does not adopt the plug-and-play approach, which allows for the substitution of alterna-

tives for f1 and f , including nonparametric options, as may be suggested by theory (either

statistical theory or biological theory), the objectives of a study, or the properties of a data125

set (such as sample size).

This approach can be extended to the problem of ecological niche identification. For a given

estimate of SR, the estimated boundary of the realized niche is just ĥR = {z : ŜR(z) = ε}),

where ε > 0 is a small threshold parameter. However, Drake (2015) argued that if a species

is rarely found in unsuitable habitats and the environmental distribution is “broad” with130

respect to the species’ niche (that is, that the range of f contains the extreme environments

in N), then hF ≈ hN (Drake 2015). Substituting ĥN for ĥF , we have an estimator for the

boundary of the fundamental niche, i.e., ĥN = {z : ŜR(z) = ε}.

An alternative to the estimator in equation 3 is to estimate the ratio directly, i.e.,

ŜR =
̂(f1(z)

f(z)

)
. (4)

This problem has been addressed generically by Sugiyama et al. (2013) and specifically by135

Kanamori et al. (2009) in the context of covariate shift adaptation (adapting statistical

analyses to changing distributions of independent variables) and Kanamori et al. (2009) and

Hido et al. (2011) in the context of outlier detection. The technical similarity between outlier

detection and ecological niche modeling has been noted before and used to motivate presence-

only models for ecological niche modeling (Drake et al. 2006, Drake and Bossenbroek 2009,140

Drake 2015). Here the analogy is used to motivate a presence-background approach. For

this purpose, Kanamori et al. (2009) introduce unconstrained Least Squares Importance

Fitting (uLSIF), which they show to be superior to a variety of alternatives when applied to

a simulated classification task. We therefore used uLSIF as a direct density ratio estimator

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/109041doi: bioRxiv preprint 

https://doi.org/10.1101/109041
http://creativecommons.org/licenses/by/4.0/


for comparison with the plug-and-play estimator.145

Methods

Plug-and-play with simple component densities

Implementing the plug-and-play approach requires estimating the component densities f and

f1. Candidate estimators for the component density functions include parametric multivari-

ate density estimators (Kotz et al. 2000), robust versions of these (which may be important150

when data are not normally distributed or contain extreme examples; Huber and Ronchetti

(2009)), sparse estimators that reduce variance through “regularization” (which may be im-

portant when fitting to small samples from high dimensional spaces; Schäfer et al. (2015)),

and nonparametric methods (Jones and Wand 1995).

To compare among these classes, we studied the performance of relative suitability models155

comprised of three kinds of Gaussian density estimates: (i) ordinary multivariate Gaussian

densities, (ii) robustly estimated Gaussian densities, (iii) densities estimated using a shrink-

age estimator proposed by Schäfer & Strimmer (Schäfer et al. 2015) in which the pairwise cor-

relation coefficients are scaled by a shrinkage intensity parameter (λ = min(1,max(0, 1−λ∗)),

where λ∗ is the analytic optimal regularization parameter of Ledoit and Wolf (2003)). For160

comparison, we also studied the nonparametric kernel density estimator of Li and Racine

(2003), which would be expected to be superior in cases where one or both of the component

densities f and f1 are strongly non-normal, for instance if they are multi-modal or highly

skewed.
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Plug-and-play with ensemble component densities165

The plug-and-play approach isn’t limited to such simple component densities as elaborated

in the previous section, but can be applied to basically any approach to probability den-

sity estimation that can be numerically evaluated. Recently, ensemble methods have been

shown in many areas of statistical application to provide robust probabilistic models that

exhibit both low variance and low bias. For instance, random forests are frequently used170

in classification and regression problems (Breiman 2001). For applications requiring species

distribution modeling, the gradient boosting machine is popular (Elith et al. 2008, Elith, J.,

Leathwick 2009). To be effective, ensemble models must exhibit improvement compared to a

single model. Typically this is achieved by “voting” the predictions of a large number of min-

imally biased (underfit) models (Drake 2014). Ensembles of highly tuned models may even175

erode performance (Mainali et al. 2015). Thus, it is important when constructing ensemble

learners to optimize the entire ensemble, not the base models.

Here we explore how boostrap aggregation or bagging can be used to improve the estimate

of f or f1 by reducing its variance, and thereby improve the performance of the plug-and-

play estimator. Bagging is performed by constructing bootstrap samples (with replacement)180

from a given data set, fitting a model to each, and then reporting the average prediction of

ensemble of models (Breiman 1996). Bagging has been found to be a very robust approach

to ensemble modeling. Typically, it will be the case that there are many more records of

environmental background than species occurrence, so the estimate of f will be more precise

than that of f1 (Phillips et al. 2004). Motivated by this observation, we first propose only185

to bootstrap the estimation of the occurrence distribution in the numerator (f1), yielding a

method we call NumBag. In the implementation studied here, a kernel density estimate was

obtained for each of v = 100 bootstrap samples from the occurrence distribution and averaged

before dividing by the kernel density estimate of the background points. Alternatively, we

use bagged estimators for both f1 and f , a procedure we call DoubleBag. Since the estimated190
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density f̂ may depend on a very large number of background points, DoubleBag is expected to

be much more computationally costly than NumBag. Therefore, it is of interest to determine

the performance of NumBag relative to DoubleBag as well as the performance of both in

absolute terms. NumBag and DoubleBag are special cases of the plug-and-play idea that

offer potentially greater performance than the simple estimators described above, although195

at a cost of increased computation time.

Density ratio estimation

In contrast to plug-and-play, the uLSIF algorithm estimates the relative suitability quotient

directly. Direct estimation might be desirable if, for instance, estimation of the component

densities is more difficult than estimation of the ratio or if estimation errors in the component200

densities are compounded when the ratio is taken. Sugiyama et al. (2013) discuss density-

ratio estimation in general and the uLSIF estimator in particular. One advantage of uLSIF is

that it is possible to analytically compute the leave-one-out cross-validation score for a given

set of model parameters, greatly decreasing the time needed for model tuning in comparison

with numerical cross-validation. MaxEnt (Phillips et al. 2004) may also be viewed as a205

density-ratio estimator and is probably the most popular approach to species distribution

modeling in general.

Presence-only methods

Finally, these methods were compared to two recently introduced presence-only model-

ing methods, LOBAG-OC (Drake 2014) and range bagging (Drake 2015). In many cases210

presence-only algorithms perform as well and in some cases perform better than related

presence/absence algorithms (Maher et al. 2014). Briefly, LOBAG-OC applies bootstrap

aggregation to low bias (weakly regularized) one-class support vector machines and votes
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the result. LOBAG-OC, therefore, follows Vapnik’s principle (Vapnik 1998) in that it seeks

the set of covariate values for which the probability density is non-zero (the support), rather215

than attempting to estimate the full probability density (Drake et al. 2006). Range bagging

similarly votes a number of base learners trained on bootstrap samples of presence points. In

this case, the base learner is the convex hull of a reduced number of environmental covariates

randomly selected for each bootstrap sample. The current analysis provides, therefore, not

only a comparison of the plug-and-play method with other presence-background estimators,220

but is also the first comparison of these two presence-only methods themselves.

Computation

Statistical fitting is straightforward. For this illustration, all fitting was performed in the

statistical programming environment R (Alexander Weiße and Fehske 2008). In the case

of the ordinary Gaussian density, the covariance was estimated from the unbiased sample225

covariance using the R function cov (Alexander Weiße and Fehske 2008). The robust ver-

sion was estimated using the minimum covariance determinant (Rousseeuw and Driessen

1999) (function covRob in the robust package, Wang et al. (2014)).The regularized version

was estimated using a regularized density estimator (function cov.shrink in the corpcor

package, Schäfer et al. (2015)). Since this estimator truncates the fit distribution to the230

first two moments, we refer to this as a “regularized Gaussian” estimator. The kernel den-

sity estimates were fit using function npudens in package np (Hayfield and Racine 2008).

Bandwidth of this estimator was selected automatically using the analytic rule-of-thumb of

Li and Racine (2003). Preliminary experiments suggested that computationally intensive

bandwidth selection procedures like cross-validation could improve AUC by an average of235

only about 0.01 at a cost of ∼ 6000-fold increase in computing time. MaxEnt models were

fit using the function maxent at the default settings in the R package dismo (Hijmans 2012).

This function makes use of the java program of Phillips et al. (2004) (available on the web:
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https://www.cs.princeton.edu/~schapire/maxent/). Density ratio estimates obtained

via uLSIF were computed using the R code of Kanamori et al. (2009) (available on the web:240

http://www.math.cm.is.nagoya-u.ac.jp/~kanamori/software/LSIF/).

Case study: Ecological niches of sub-alpine vegetation

Drake et al. (2006) studied the performance of support vector machines as niche models using

data on 106 plant species in 550 8m×8m plots in the Swiss Alps between 400m and 3200m

in elevation. Observed species prevalence (i.e., fraction of sampling plots in which a species245

was found) ranged from 1.1% to 35.2%. As the above-ground species in these sampling plots

were exhaustively enumerated, these data provide a rare opportunity with known absences

to benchmark the performance of alternative modeling approaches. Additionally, these data

have been studied by Maher et al. (2014), who established that presence-only methods could

perform comparably to presence-absence methods and Drake (2014) in an evaluation of the250

LOBAG-OC algorithm. Together, these papers provide a benchmark against which to com-

pare the performance of the plug-and-play approach to modeling environmental suitability.

Locations were randomly assigned to either training (80%) or testing (20%) subsets. All

predictor data were rescaled by subtracting the mean and dividing by standard deviation

of samples in the training set. A model was fit for each species using the plug-and-play255

estimator where f̂1 was obtained from the component density fit only to occurrence records

in the training set and f̂ was fit to all records in the training set. Model performance

was evaluated by predicting the relative suitability for each record in the test data set and

computing AUC, the area under the receiver-operator characteristic, which is a measure

of a model’s discriminative ability (Phillips and Elith 2010). Models were tuned using 10-260

fold cross-validation on the training set with mean AUC calculated for each model on each

species across the 10 folds. After fitting, tuned models were evaluated on the test data set.

To investigate calibration and the propensity of these models to be overfit by cross-validation,
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mean AUCs from cross-validation were compared to the test AUC with Spearman rank-order

correlation.265

Effect of irrelevant variables

As the volume of automatically recorded and remotely sensed environmental data accelerates,

an increasing problem for modeling environmental suitability or ecological niche identifica-

tion is the determination of relevant variables and optimizing performance in the presence

of irrelevant information. Intuitively, one expects model performance to decline with the270

number of irrelevant variables as the learning algorithm has to sift a smaller and smaller

fraction of true correlates from among the many possibilities. Additionally, the number of

parameters sharing the available degrees of freedom increases with the number of irrelevant

variables, diminishing the amount of information available to estimate each and eventually

resulting in ill-posededness for those methods lacking a regularization scheme to solve this275

problem. On the other hand, it has recently been shown that, amazingly, in some cases

pattern recognition is actually improved by the presence of irrelevant variables (Helmbold

and Long 2012).

We studied the performance of plug-and-play, LOBAG, range bagging, and MaxEnt methods

in the presence of irrelevant variables by simulating 1, 2, 4, 8, 16, or 32 normally distributed280

random variates with mean zero and unit variance and combining these with the ten genuine

variables prior to model fitting. As before, model performance was evaluated by calculating

AUC on the withheld test data. Results were summarized by inspecting the erosion of

performance (decline in AUC) with respect to the number of irrelevant variables, a measure

of statistical robustness, and by tabulating the number of models that converged, a measure285

of numerical robustness.
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Learning rate analysis

Finally, we studied the effect of sample size on model performance. An important property

of any statistical model is the way in which its performance changes with the number of in-

stances available to learn from, the learning rate. This problem is particularly acute in species290

distribution modeling, where a species may be known from only a small number of unique

localities. To investigate the learning rate of the algorithms studied here, we identified the 8

plant species with the greatest number of occurrence records in the training data set (Gera-

nium sylvaticum, Anthyllis vulneraria, Polygonum viviparum, Achillea millefolium, Lathyrus

pratensis, Astrantia major, Plantago media, and Pimpinella major). Training points were295

randomly assigned to 10 cross-validation folds. Within folds, each method was trained on

randomly selected subsets of the data ranging in size from n = 2 to the total number of

available presence points in the smallest set of training folds. Each of these models (m2, m3,

... , mn) was then applied to the points in the test fold and an AUC score for each was

calculated as above. These results were visualized by plotting the mean test AUC for each300

learning method as a function of the training set size.

Results

Using the classical Gaussian for both component distributions, the plug-and-play method

performed moderately well when it could be fit (mean AUC: 0.761), which was approximately

85% of cases (Fig. 1). Models using the robust Gaussian for both components typically305

yielded a poorer fit (mean AUC: 0.717) and could be fit in a similar fraction of cases (83%; Fig.

1), whereas models using the regularized Gaussian routinely performed very well (mean AUC:

0.829) and could always be fit. The model using kernel density estimates for the components

was similarly robust in the sense that a reasonable model could always be obtained. Initially,

we thought this improvement might come at considerable cost in terms of computational310
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complexity to allow for empirically optimizing bandwidth parameters, but ultimately we

found the model could be estimated using the analytic rule of thumb of Li and Racine

(2003) with very little loss of performance (mean AUC: 0.840). The ensemble approaches

NumBag and DoubleBag were among the best performing methods we studied, with high

average AUC values (0.836 and 0.837, respectively) and the large majority of models able315

to be fit (98% and 97%). LOBAG-OC (mean AUC: 0.756, 93% fit), range bagging (mean

AUC: 0.777), and uLSIF (mean AUC: 0.789) all performed less well. Thus, both the plug-

and-play method (when using either KDE or regularized Gaussian component distributions)

and the ensemble approaches NumBag and DoubleBag were found to perform comparably

to MaxEnt (mean AUC: 0.841; Fig. 1) and better than two other methods we have recently320

introduced.

To assess the tunability of each method and vulnerability to overfitting, we compared AUC

in the cross-validation folds with the AUC calculated on the test data. An overfit model will

have higher AUC on training data than on test data. Additionally, the correlation between

the mean AUC in cross-validation folds and test AUC indicates the extent to which the325

observed AUC in training is predictive of the AUC that can be expected with respect to

unseen examples. In this study, all cross-validation AUC values were significantly (p < 0.01)

and positively correlated with test values (Fig. 2). The strongest correlations were shown

by the plug-and-play method with classical Gaussian components (ρ = 0.589), NumBag

(ρ = 0.569), DoubleBag (ρ = 0.601) algorithms, suggesting that measured performance330

will be most indicative of future performance in novel analyses performed with these three

models.

Performance of the studied methods varied greatly in the presence of irrelevant variables

(Fig. 3). The plug-and-play approach with KDE and regularized Gaussian component

densities, NumBag, DoubleBag and MaxEnt models clustered together as the best performing335

overall (Fig. 3). Specifically, although performance declined as the number of irrelevant

variables increased, it declined very slowly so that the reduction in AUC was only about
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6% in the presence of 32 irrelevant variables, at which point random variables outnumbered

real variables by more than three to one. Thus, in the sense that introducing irrelevant

information had little effect on the final output, these three models were all statistically340

very robust. In contrast, the performance of the plug-and-play approach with classical

Gaussian and robust Gaussian component densities, range bagging, LOBAG-OC, and density

ratio estimation with uLSIF declined much more rapidly (Fig. 3). Additionally, although

the plug-and-play approach with KDE and regularized Gaussian components and MaxEnt

models converged in all cases, the plug-and-play approach with classical Gaussian and robust345

Gaussian components increasingly failed to converge as the dimension of the environmental

data increased.

Analyses of learning rate showed similar performance for some methods across the eight most

abundant species in our data and variable performance for others (Fig. 4). Additionally, the

niches of some species (e.g., Plantago media) seemed inherently more learnable. The group350

of high-performing methods (i.e., DoubleBag, NumBag, KDE, regularized Gaussian, and

MaxEnt) tended to perform relatively poorly with fewer than around 15 training points, but

improved quickly approaching their maximum performance at around 20 or 30 observations.

At the other end of the spectrum (i.e.. with around 100 observations in Achillea millefolium

and Plantago media), MaxEnt tended to perform slightly better than DoubleBag and other355

high performing methods, although this was not always true (compare Pimpinella major).

Interestingly, the performance of the density ratio estimated with uLSIF varied substantially

across species. In some cases (e.g., Pimpinella major and Plantago media) uLSIF performed

consistently less well than the group of highest fit models, while in other cases (e.g., Geranium

sylvaticum and Lathyrun pratensis) uLSIF overtook the performance of DoubleBag with360

increasing numbers of training points. The robust Gaussian method was a clear outlier

overall, routinely exhibiting lower performance at all sample sizes.

16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/109041doi: bioRxiv preprint 

https://doi.org/10.1101/109041
http://creativecommons.org/licenses/by/4.0/


Discussion

This study proposes numerical definitions for the ecological concepts of environmental suit-

ability, relative suitability, and niche that we believe are consistent with common usage. A365

virtue of these definitions is the potential to unify ecological niche theory with dynamical

theory, as alluded to by Peterson et al. (2011), particularly where those theories make prob-

abilistic statements about occurrence within a landscape (i.e. metapopulation theories) or

persistence over long times (i.e. stochastic population theory). A practically useful fea-

ture of this framework is that it suggests a new approach – the plug-and-play method – for370

estimating relative suitability.

Performance of six versions of the plug-and-play method was studied with respect to 106

plant species that had been exhaustively sampled for species presence and absence. Mean

AUC of these models ranged from 0.717 to 0.841. Except for the plug-and-play approach with

classical and robust Gaussian components, the current models are all superior to those of375

Drake et al. (2006), which used support vector machines in three different ways and achieved

average AUC of less than 0.8 in all cases. On the other hand, Drake et al. (2006) fit models

only to data on species occurrences (i.e., presence-only models) whereas plug-and-play is

a presence-background approach. Similarly, Maher et al. (2014) studied nine presence-only

and seven presence/absence niche modeling methods using these data. All sixteen of those380

methods returned average AUC of less than 0.8, with the exception of a k-nearest neighbor

method configured to fit both presence and absence data where the average AUC was 0.804.

Thus, the presence-background approaches studied here (with the exception of classical and

robust Gaussian components), are superior to all the presence-only and presence-absence

methods studied by Maher et al. (2014) with AUC improvements on the order of 4-6%. One385

conclusion from this study together with earlier analyses (Drake et al. 2006, Drake 2014,

Maher et al. 2014) is that there may yet be scope for improvement, but also that many

methods may be contrived to yield very similar results. Particularly, a number of methods
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perform similarly to MaxEnt, which is currently a widely preferred method. Ultimately, if

ecologists wish to choose a method on the basis of empirical superiority (compare Brotons390

et al. (2004), Elith et al. (2006)), many more data sets will be needed.

One of the key assumptions of the approaches introduced here is that environments are

constant and species distributions do not primarily reflect past environmental conditions.

Modeling environmental suitability in the presence of dynamic environments is an important

problem for further research. Extensions of the current approach to dynamic environments395

are easy to imagine. Suppose we supplement our spatial indexing (i) with a temporal indexing

(t). Occurrence records also must be indexed by time. Recognizing that a location’s past

environment affects its present species composition, one would model the probability of

occurrence as a function of both present and past environments, perhaps downweighting the

the effect of conditions in the distant past or considering only those environmental conditions400

within a window of time. Now, the probability of occurrence is given by a function of

both present and past environments or a weighted mixture of densities. The definition of

environmental suitability with respect to the present time is retained, however. A simpler way

to implement this idea is to introduce time-lagged covariates into the feature set, i.e., zi,t =

[ai,(t), ai,(t−1), ai,(t−2), ...bi,(t), bi,(t−1), bi,(t−2), ...]. Joint densities f and f1 could be fit as done405

here and present suitability returned either by marginalizing over historical environments

or by evaluating the full model (including time-lagged variables) for all locations’ actual

environmental histories. As the current study of irrelevant variables shows, if the lagged

environmental variables aren’t grossly irrelevant or too numerous, the effects they have on

a suitably chosen model (i.e., plug-and-play approach with KDE or regularized Gaussian410

components or MaxEnt) are minimal, and we may expect the resulting model to be fairly

robust.

In principle, it might seem that this approach also makes the assumption that the species

distribution is at equilibrium (since it is assumed that f and f1 are stationary). Applied

naively to all the data that one might acquire, this is true. However, because the problem415
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does not explicitly include spatial dependence, the modeler can easily restrict the data to a

subset prior to estimating f and f1. Thus, for instance, the set of records for estimating f

and f1 could be just the locations that were searched for the species. (In fact, this is what

has been done in any study where the background data reflect only study locations, including

the current study.) Alternatively, the data could be selected to be drawn only from regions420

considered to be “accessible” to the species (Peterson et al. 2011). This is very similar to the

problem of study extent addressed by Barve et al. (2011).

This paper advocates estimating relative suitability or niche boundary rather than absolute

suitability in applications where species’ prevalence is irrelevant (for instance to rank sites

by their value to species conservation). The plug-and-play approach nevertheless solves an425

unnecessary intermediate problem: estimating the densities f and f1 (or, in the case of sample

selection bias, f2). It would seem that estimating the ratio f1/f directly might be a more

efficient approach, as has been advocated by Sugiyama et al. (2013). In comparative studies,

Sugiyama et al. found models based on density ratio estimation to be superior to models

based on density estimation itself (Sugiyama et al. 2013). The empirical analysis reported430

here shows this not to be generally true, however, as uLSIF exhibited performance inferior

to plug-and-play methods. Except for MaxEnt (Elith et al. 2011), to our knowledge, density

ratio estimation has not previously been used for species distribution modeling. What, then,

explains the superior performance of MaxEnt compared with uLSIF? Possibly it is due to the

fitting criterion, which MaxEnt stipulates to be the Kullback-Leibler divergence between f̂1435

and f̂ . In contrast, plug-and-play methods propose no such constraint. Thus, for instance,

in the current study the alternative component distributions are chosen to meet different

criteria applying to different plausible conditions that might restrict the performance of

a simple estimator (like the classical Guassian). As it turns out, some of these options

degrade performance (i.e., robust Gaussian components), while others improve it (i.e., KDE440

and regularized Gaussian components). The set of possible estimators for the component

densities f1 and f and the rationale for choosing among them is an important problem for
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further study. For now, we recommend the plug-and-play approach with KDE or regularized

Gaussian components or MaxEnt when computing resources are limited. In contrast, when

the size of the data is small or when computing resources are not a concern, NumBag and445

DoubleBag are our method of choice.
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M. Araújo. 2011. Ecological Niches and Geographic Distributions. Monographs in Popu-

lation Biology, Princeton University Press.

Phillips, S., M. Dud́ık, and R. Schapire. 2004. A maximum entropy approach to species dis-

tribution modeling. Proceedings of the Twenty-First International Conference on Machine

Learning 69:655–662.540

Phillips, S. J., M. Dud́ık, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, and S. Fer-

rier. 2009. Sample selection bias and presence-only distribution models: Implications for

background and pseudo-absence data. Ecological Applications 19:181–197.

Phillips, S. J., and J. Elith. 2010. POC plots: Calibrating species distribution models with

presence-only data. Ecology 91:2476–2484.545

Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters

3:349–361.

Rousseeuw, P. J., and K. V. Driessen. 1999. A Fast Algorithm for the Minimum Covariance

Determinant Estimator. Technometrics 41:212–223.

Royle, J. A., R. B. Chandler, C. Yackulic, and J. D. Nichols. 2012. Likelihood analysis of550

species occurrence probability from presence-only data for modelling species distributions.

Methods in Ecology and Evolution 3:545–554.

Schäfer, J., R. Opgen-Rhein, V. Zuber, M. Ahdesmäki, A. P. D. Silva, and K. Strimmer.,
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Figure 1: Performance of six plug-and-play species distribution models compared with two
presence-only species distribution models (LOBAG-OC and RangeBag), MaxEnt, and a den-
sity ratio estimator (uLSIF). The plug-and-play methods were classical multivariate Gaussian
densities (Gauss), robust Gaussian (Rob. Gauss), regularized Gaussian (Reg. Gauss), and
kernel density estimator (KDE) applied to both f and f1; Numerator Bagged plug-and-play
(NumBag); and Double Bagged plug-and-play (DoubleBag). Range in AUC was smallest for
the regularized Gaussian, KDE, NumBag, and DoubleBag methods (top panel). Methods
with the highest average AUC were the regularized Gaussian, KDE, NumBag, and Dou-
bleBag plug-and-play approaches and MaxEnt (bottom panel). The classical Gaussian and
robust Gaussian plug-and-play methods and presence-only methods LOBAG-OC and Range-
Bag performed considerly more poorly; the density ratio estimate obtained using uLSIF was
intermediate. Error bars are mean +/- s.e. Both the classical Gaussian and robust Gaussian
were unable to fit all models due to numerical instability or ill-posedness (89 and 87 out of
106 fit, respectively).
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Figure 2: Mean performance (AUC) across 10 cross-validation folds is compared to per-
formance (AUC) of each model on the testing subset. A one-to-one line is plotted on each
graph and 95% confidence intervals for mean cross-validation AUCs are shown. Points falling
on the one-to-one line are models where the estimated performance in cross-validation was
equal to performance on the test set. Points below the line are overfit (higher performance
in cross-validation than with withheld data) while points above the line are underfit (higher
performance in withheld data than in cross-validation). AUC values were significantly and
positively correlated for all models (Spearman’s ρ shown).
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Figure 3: Performance of six plug-and-play species distribution models compared with two
presence-only species distribution models (LOBAG-OC and RangeBag), MaxEnt, and a
density ratio estimator in the presence of irrelevant variables. Performance was degraded
the least by irrelevant variables in the regularized Gaussian, KDE, DoubleBag, NumBag,
and MaxEnt models (top panel; error bars are mean +/- s.e.).
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Figure 4: Learning rates of six plug-and-play models, two presence-only models, MaxEnt,
and a density ratio estimator on data for 8 abundant species. Models generally perform
more poorly at low numbers of training points and gain performance as more training points
are oered. KDE, NumBag, DoubleBag, and regularized Gaussian tended to approach a
performance plateu at large samples sizes while uLSIF shows inconsistent behavior, occa-
sionally outperforming all other models at all sample sizes (e.g., Geranium sylvaticum), but
more commonly showing superior performance only at small sample sizes (e.g., Anthyllis
vulneraria).
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