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Abstract	8	

There	is	growing	interest	in	sleep	research	and	finding	easily	tracked	neural	correlates	of	brain	9	
states	is	a	central	challenge	to	the	definition	of	sleep	and	wake	states.	Here	we	demonstrate	using	10	
multi-site	electrophysiological	LFP	recordings	 in	 freely	moving	mice	 that	gamma	power	 in	 the	11	
olfactory	bulb	(OB)	allows	for	clear	classification	of	sleep	and	wake.	Coupled	with	hippocampal	12	
theta	activity,	it	allows	the	construction	of	a	robust	and	reproducible	sleep	scoring	algorithm	that	13	
relies	on	brain	activity	alone.	We	validate	the	procedure	by	comparison	with	classical	methods	14	
based	on	muscular	activity	(EMG)	and	video	tracking.	Contrary	to	EMG,	OB	gamma	power	allows	15	
correct	discrimination	between	sleep	and	immobility	in	ambiguous	situations	such	as	fear-related	16	
freezing.	Finally,	beta	power	in	the	OB	is	a	good	predictor	of	Rapid	Eye	Movement	sleep.	Overall,	17	
our	results	reveal	the	OB	can	be	used	as	a	highly	reliable	readout	of	brain	states.		18	

	19	

Introduction	20	

A	 current	 challenge	 in	 neuroscience	 is	 defining	 the	 different	 states	 of	 brain	 activity	 and	21	
describing	 how	 they	 impact	 the	 computations	 performed	 by	 neural	 networks.	 The	 most	22	
dramatic	change	of	state	is	that	between	sleep	and	wakefulness	that	involves	modifications	of	23	
cortical	activation	(Steriade	et	al.,	1993),	gene	expression	(Cirelli	&	Tononi,	2000),	engagement	24	
with	 the	outside	world	and	clearance	mechanisms	 (Xie	et	al.,	 2013)	amongst	other	changes	25	
throughout	the	whole	organism	(Benington	&	Heller,	1995;	Imeri	&	Opp,	2009).	Despite	these	26	
profound	transformations,	 to	date,	we	surprisingly	 lack	an	easily	measured	marker	of	brain	27	
activity	that	allows	unambiguous,	moment-to-moment	identification	of	sleep	and	wake	states.	28	

Several	 sleep	scoring	methods	have	been	proposed	 in	human	research	 	 (Rechtschaffen	&	29	
Kales,	1968;	Iber	et	al.,	2007)	and	are	now	widely	accepted	by	the	scientific	community.	Sleep	30	
scoring	 procedures	 in	 the	 rodent	 on	 the	 contrary	 remain	 less	 uniformly	 adopted	 (Datta	 &	31	
Hobson,	2000)	and	often	vary	from	laboratory	to	laboratory.	Moreover	all	current	sleep	scoring	32	
methods	essentially	rely	on	motor	activity	to	discriminate	sleep	from	wake,	see	Table	1	(Veasey	33	
et	al.,	2000;	Louis	et	al.,	2004;	Crisler	et	al.,	2008;	Gross	et	al.,	2009;	Stephenson	et	al.,	2009;	34	
Brankack	et	al.,	2010;	Rytkönen	et	al.,	2011;	Liang	et	al.,	2012;	Zeng	et	al.,	2012).		35	

Most	methods	of	 sleep	 scoring	 are	 either	 completely	manual	 or	 rely	 on	manually	 scored	36	
training	data	 to	 calibrate	 automatic	 algorithms	 (Table	 1).	 This	 time-consuming	 approach	 is	37	
subject	to	inter-scorer	variability.	Moreover,	these	methods	are	inherently	vulnerable	to	any	38	
mismatch	between	these	brain	states	and	the	level	of	motor	activity	such	as	during	freezing,	a	39	
commonly-used	 behaviour	 in	mice	 or	 any	 sleep	 anomalies	 causing	movement	 during	 sleep	40	
(Schenck	&	Mahowald,	2002).		41	

The	state	of	the	art	therefore	presents	both	a	conceptual	and	a	technical	problem	regarding	42	
the	definition	of	sleep	and	wake.	43	
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Several	attempts	have	been	made	to	identify	sleep	with	brain	signals	only.	Generally,	these	44	
procedures	 rely	 on	more	 elaborate	methods	 that	 extract	 composite	 features	 from	LFP	data	45	
(Gervasoni	et	 al.,	 2004).	The	main	problem	of	 this	 approach	 is	 that	 it	 relies	 entirely	 on	 the	46	
available	data.	The	resulting	axes	onto	which	the	data	are	projected	vary	from	animal	to	animal	47	
and	therefore	always	require	post-hoc	human	labelling	procedures.	Moreover,	this	makes	the	48	
resulting	state	maps	only	qualitatively	comparable	between	animals	(Gervasoni	et	al.,	2004).	49	
Finally,	these	maps	can	be	used	to	describe	sleep	states	but	it	 is	generally	impossible	to	use	50	
them	for	sleep	scoring	because	of	the	low	separation	between	states	(Gervasoni	et	al.,	2004).		51	

Sleep	scoring	methods	are	based	on	the	assumption	that	the	information	about	sleep	states	52	
is	contained	in	the	recorded	signal	and	can	be	used	as	a	marker	(Libourel	et	al.,	2015).	In	order	53	
to	implement	a	reliable	sleep	scoring,	the	candidate	marker	of	sleep	and	wake	must	not	only	54	
show	a	strong	average	difference	between	the	two	states	but	this	change	must	be	systematic	55	
and	sustained	throughout	each	state,	with	a	clear	separation	between	the	values	in	each	state.	56	
A	bimodal	distribution	with	good	separation	of	the	two	component	distributions	is	the	optimal	57	
situation	to	allow	moment-by-moment	discrimination.		58	

Despite	multiple	attempts,	such	a	clear-cut	situation	has	never	been	found	when	using	brain	59	
signals	(Brankack	et	al.,	2010).	To	compensate	for	the	poor	quality	of	the	brain-related	sleep	60	
markers,	machine	learning	techniques	have	been	used	in	several	studies	but	with	no	decisive	61	
improvement	(Crisler	et	al.,	2008;	Yu	et	al.,	2009;	Rytkönen	et	al.,	2011;	Chou	et	al.,	2013).	Here	62	
we	propose	a	novel	brain-related	marker	allowing	to	reliably	track	transitions	from	sleep	to	63	
wakefulness.	 Indeed	 the	 gamma	power	 (50-70Hz)	measured	 in	 the	olfactory	bulb	has	been	64	
shown	to	vary	between	sleep	states	(Manabe	&	Mori,	2013)	but	we	show	here	that	it	displays	65	
the	desired	characteristics	to	continuously	identify	the	different	sleep	states.	Interestingly,	the	66	
olfactory	bulb	receives	massive	projections	from	the	main	neuromodulator	systems	involved	67	
in	the	control	of	sleep	stages	(Wenk	et	al.,	1980;	Shipley	et	al.,	1985;	Senut	et	al.,	1989;	Gascuel	68	
et	 al.,	 2012).	 In	 turn,	 the	 different	 neuromodulators	 have	 been	 shown	 to	modulate	 gamma	69	
oscillations	(Hall	&	Delaney,	2001;	Gire	&	Schoppa,	2008;	Li	&	Cleland,	2013).	We	thus	propose	70	
that	 these	oscillations	can	be	used	as	a	direct	read-out	of	 the	brain	network	responsible	 for	71	
sleep/wakefulness	 cycles.	Accordingly,	we	 show	 that	 the	 gamma	oscillation	 in	 the	olfactory	72	
bulb	is	strongly	suppressed	during	sleep	and	continuously	present	during	waking.	Moreover,	73	
the	distribution	of	the	gamma	power	follows	a	bimodal	distribution	that	is	the	optimal	situation	74	
for	an	automatic	separation	procedure.	Coupling	this	indicator	with	the	classical	hippocampal	75	
theta/delta	power	ratio	allows	us	to	construct	a	fully	automated	sleep	scoring	algorithm	that	76	
classifies	wake,	rapid	eye	movement	sleep	(REM)	and	non-REM	sleep	(NREM)	based	on	brain	77	
state	alone.	We	then	use	these	variables	to	construct	a	robust	2D	phase-space	that	 is	highly	78	
robust	 across	mice	 and	 days.	We	 can	 therefore	 easily	 compare	 the	 dynamics	 of	 transitions	79	
between	 sleep	 and	wake	 states	 across	 animals.	 Together,	 we	 propose	 a	 new	 sleep	 scoring	80	
method	that	has	strong	methodological	 (automatic,	 reproducible,	no	training	data	required)	81	
and	conceptual	(no	reliance	on	motor	activity)	advantages	over	traditional	methods.	82	

	83	

Results	84	

Olfactory	bulb	gamma	power	modulation	throughout	brain	states	85	

Classical	sleep	scoring	methods	differentiate	sleep	and	wake	states	using	EMG	activity	or	the	86	
animal’s	motion	recorded	using	accelerometers	or	video	tracking		(see	Table	1,	Veasey	et	al.,	87	
2000;	Louis	et	al.,	2004;	Crisler	et	al.,	2008;	Gross	et	al.,	2009;	Stephenson	et	al.,	2009;	Brankack	88	
et	al.,	2010;	Rytkönen	et	al.,	2011;	Liang	et	al.,	2012;	Zeng	et	al.,	2012).	Theta	and	delta	power	89	
recorded	in	the	hippocampus	or	cortex	(due	to	the	volume	conduction	of	theta	oscillations)	can	90	
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then	 be	 used	 to	 discriminate	 REM	 from	 NREM	 sleep.	 According	 to	 classical	 sleep	 scoring	91	
methods,	wake	is	defined	by	high	EMG	activity	and	low	HPC	signal	during	arousals,	irregular	92	
HPC	activity	during	quiet	wake	or	theta	oscillation	during	active	exploration.	On	the	contrary,	93	
sleep	is	defined	by	low	EMG	power	and	NREM	is	discriminated	from	REM	using	the	theta/delta	94	
power	ratio	in	the	hippocampus.	During	NREM	delta	power	is	strong	whereas	highly	regular	95	
theta	oscillations	are	observed	during	REM	(Figure	1A).	96	

	97	

Citation	 Motor	
params.	

Brain	activity	
params.	

Manual	calibration	

Brankack	et	al.,	
2010	

EMG	 	 EEG	power	:	delta	(1–
4	Hz),	theta2	(7–8.5	Hz)	
and	gamma2	(52–	70	Hz)		

Training	data	(5%)	for	
LDA	or	classification	tree	

Crisler	et	al.,	2008	 EMG	 EEG	:107	temporal	
and	spectral	parameters	

Training	data	(2	hours	of	
recording)	for	SVM	

Gross	et	al.,	2009	 EMG	 EEG	:	Delta,	theta,	
sigma	and	beta	bands	

Training	data	and	manual	
determination	of	thresholds	

Louis	et	al.,	2004	 EMG	 EEG	:	Delta,	theta	,	
alpha,	beta		and	gamma	

Training	data	for	threshold	
determination	(1	day	
recording)	

Rytkönen	et	al.,	
2011	

EMG	 EEG	:	Delta,	theta	,	
alpha,	beta		and	gamma	

Training	data	(5%)	for	
naïve	Bayes	classifier	

Veasey	et	al.,	2000	 EMG	 EEG	:	Delta,	sigma	,	
theta	

Visual	determination	of	
thresholds	

Zeng	et	al.,	2012	 Doppler	and	
video	recording	
of	movement	
and	breathing	

none	 Training	data	for	SVM	

Liang	et	al.,	2012	 EMG	 13	EEG	features	 Training	on	2	animals	for	
all	other	animals	to	tune	
parameters	

Stephenson	et	al.,	
2009	

EMG	 EEG	:	delta,	alpha,	
theta,	beta	and	gamma	
power	

No	manual	steps	

Table	1	98	

	99	

In	order	to	construct	a	sleep	scoring	method	that	relies	on	brain	signals	alone,	we	screened	100	
multiple	brain	regions	to	find	a	good	predictor	for	discriminating	between	sleep	and	waking	101	
states.	We	recorded	from	multiple	brain	regions	in	15	freely-moving	mice:	the	olfactory	bulb	102	
(OB,	n=15),	the	hippocampus	(HPC,	n=15),	the	prefrontal	cortex	(PFCx,	n=6)	and	the	parietal	103	
cortex	 (PaCx,	 n=6)	 cortex.	 Mice	 were	 recorded	 for	 an	 average	 of	 6.6	 ±	 0.58	 hrs	 (minimal	104	
recording	length	:	2hrs)	in	their	homecages	in	the	light	period	and	slept	on	average	58%	of	the	105	
time.	We	initially	used	a	classical	sleep	scoring	method	based	on	movement	and	hippocampal	106	
activity	to	establish	a	database	of	recordings	from	different	brain	states	using	10	of	the	15	mice	107	
that	either	were	 implanted	with	an	EMG	wire	 in	 the	nuchal	muscles	 (n=6)	or	 tracked	using	108	
video	(n=4).		109	

The	average	spectra	over	wake,	NREM	and	REM	periods	are	shown	in	figure	1B.	In	cortical	110	
and	hippocampal	areas,	as	expected,	REM	and	NREM	showed	strong	differences	in	the	theta	111	
and	 delta	 band	 and	 wake	 periods	 showed	 less	 low	 frequency	 power.	 In	 cortical	 and	112	
hippocampal	areas,	no	 individual	 frequency	band	allows	to	discriminate	well	between	sleep	113	
and	wake.	Linear	combinations	of	these	parameters	extracted	using	PCA	have	been	show	to	114	
display	some	clustering	of	brain	states	but	is	not	sufficient	for	a	reliable	identification	of	sleep	115	
states	on	its	own	(Gervasoni	et	al.,	2004).		116	
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Remarkably	however,	we	found	a	strong	increase	in	power	in	the	OB	during	waking	relative	117	
to	 sleep	 states.	 This	 difference	 was	 strongest	 in	 the	 low	 gamma	 band	 centred	 at	 60Hz	 as	118	
previously	described	(Manabe	&	Mori,	2013).	This	change	is	clear	in	the	figure	1A	which	shows	119	
OB	activity	that	is	constantly	modulated	by	the	breathing	cycle	but	which	displays	a	sustained	120	
faster	oscillation	only	in	the	wake	state.	Crucially,	gamma	power	was	low	in	both	sleep	states,	121	
suggesting	that	this	parameter	could	replace	muscle	activity	for	discriminating	wake	from	REM	122	
sleep.	123	

However,	when	using	gamma	power	in	the	OB	to	identify	brain	states,	we	face	the	problem	124	
that	it	displays	strong	fluctuations	correlated	with	breathing	activity	on	the	scale	of	around	a	125	
second	(Manabe	&	Mori,	2013).	To	find	the	appropriate	time	scale	for	tracking	the	changes	in	126	
gamma	power	related	to	brain	state	changes,	we	applied	a	smoothing	window	of	varying	length	127	
to	 the	 instantaneous	 gamma	 power.	 As	 the	 smoothing	 window	 increased	 in	 length,	 the	128	
distribution	 of	 gamma	 power	 became	 more	 distinctly	 bimodal	 and	 the	 two	 underlying	129	
distributions	clearly	separated	(Figure	1C-D).	We	found	that	smoothing	windows	larger	than	130	
1s	produced	two	normal	distributions	overlapped	by	less	than	5%	(Figure	1D	bottom).	This	131	
analysis	 allowed	 us	 to	 establish	 a	 set	 of	 parameters	 (frequency,	 smoothing	 window)	 that	132	
establish	gamma	power	in	the	OB	as	a	promising	predictor	for	discriminating	between	wake	133	
and	 sleep	 on	 fine	 timescales	 of	 the	 order	 of	 one	 second	without	 any	 reliance	 on	muscular	134	
activity.	135	

	136	

	137	

	138	

Figure	1	
A.	Example	data	showing	EMG,	HPC	and	OB	activity	in	three	brain	states.	Wake	is	characterized	by	high	EMG	
activity	and	high	gamma	power	in	the	OB	whereas	sleep	is	characterized	by	low	EMG	activity	and	low	gamma	

power	in	the	OB.	HPC	LFP	shows	regular	theta	activity	during	REM	sleep.	Filtered	signals	from	the	OB	in	the	

gamma	band	(OB-g,	50-70Hz)	shows	the	remarkable	decrease	in	gamma	during	sleep	states.	(Scale	bar	:	0.5s)	
B.	Low	(top)	and	high	(bottom)	frequency	spectra	from	different	brain	regions	during	NREM,	REM	and	wake	
states	as	classified	using	movement	based	scoring	(EMG	or	filmed	activity).	Note	the	strong	increase	in	gamma	

activity	in	the	OB	in	the	wake	state.	(n=10	for	OB	and	HPC,	n=6	for	PFCx	and	PaCx,	error	bars	:	s.e.m)	
C.	Gamma	power	in	OB	is	plotted	as	a	function	of	time	as	the	animal	transitions	from	wake	to	sleep	and	the	
distribution	of	the	corresponding	values	is	shown	on	the	right.	The	data	has	been	smoothed	different	window	

lengths	(0.1,	1	and	4s	respectively).	The	fast	fluctuations	present	in	the	awake	state	are	smoothed	out	as	the	

window	size	increases	yielding	a	more	clearly	bimodal	distribution	with	larger	smoothing	window.	

D.	Ashman’s	D	(bimodality	indicator,	significant	if	larger	than	2)	(i)	increases	and	the	overlap	between	the	two	
gaussians	(ii)	decreases	with	the	length	of	the	smoothing	window.	The	stars	show	window	sizes	illustrated	in	C.	
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Construction	of	the	sleep	scoring	algorithm	139	

A	schematic	of	the	sleep	scoring	algorithm	is	shown	in	figure	2A.	All	steps	are	automatic	and	140	
do	not	require	any	supervision	by	the	user.	Instantaneous	smoothed	gamma	power	in	the	OB	141	
shows	a	bimodal	distribution	that	can	be	well	fit	by	a	sum	of	two	gaussian	functions	(Figure	2B)	142	
(mean	R2	=0.98	±	0.009).	The	two	component	distributions	correspond	to	gamma	power	during	143	
sleep	 and	 wake	 periods	 defined	 by	 movement.	 Since	 the	 amplitude	 of	 these	 distributions	144	
depends	on	the	proportion	of	time	spent	in	each	state,	they	are	normalized	(see	Methods)	and	145	
the	sleep/wake	threshold	is	defined	as	the	intersection	of	the	two	Gaussian	curves	(Figure	2Bi).	146	
Below	threshold	values	of	gamma	power	are	defined	as	sleep	and	above	threshold	values	as	147	
wake.		148	

	149	

	150	

	151	

	152	

	153	

Figure	2	
A	 .	Flowchart	 of	 data	 through	 the	 scoring	algorithm.	 Sleep	and	wake	 states	are	 first	 classified	 based	on	OB	
gamma	(i).	Sleep	data	is	then	further	classified	into	REM	and	NREM	based	on	HPC	theta	/	delta	power	ratio	(ii).	
B.	Example	of	automatic	thresholding	of	distributions.	 	

(i)	Two	gaussian	distributions	are	fit	to	the	distribution	of	OB	gamma	power	(left)	and	their	areas	are	equalized	

(right).	The	threshold	is	placed	at	the	intersection	of	the	two	distributions.	 	

(ii)	A	gaussian	distribution	is	fitted	to	the	distribution	of	HPC	theta	/	delta	power	ratio	during	sleep.	The	residuals	

are	shown	in	the	bottom	plot.	The	threshold	is	placed	at	the	point	where	the	fit	explains	less	than	50%	of	 the	

data.	

C.	Example	2D	phase	space.	Each	3s	period	of	recording	is	plotted	according	to	its	average	OB	gamma	power	
value	and	average	HPC	theta	/	delta	power	ratio	showing	the	three	brain	states	identified:	NREM	(blue),	REM	

(red)	 and	 Wake	 (grey).	 Corresponding	 histograms	 are	 shown	 along	 the	 relevant	 axis	 with	 automatically	

determined	thresholds	in	red.	

D.	Example	data	set	showing	HPC	low	frequency	spectrogram	(i)	with	theta	/	delta	power	ratio	below	and	OB	
high	frequency	spectrogram	(iii)	with	gamma	power	below.	Hypnogram	is	shown	at	the	bottom.	
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The	instantaneous	smoothed	theta/delta	power	ratio	in	the	HPC	LFP	is	used	to	discriminate	154	
NREM	from	REM	sleep	as	in	classical	sleep	scoring.	When	restricting	this	variable	to	the	sleep	155	
period	only,	it	shows	a	peak	and	slab	type	distribution.		The	spike	is	well	fit	by	a	Gaussian	(mean	156	
R2:	0.97	±	0.004)	corresponding	to	the	NREM	period	and	the	slab	contains	the	values	from	the	157	
REM	period.	The	threshold	separating	REM	and	NREM	sleep	is	defined	as	the	value	above	which	158	
the	residuals	of	the	Gaussian	fit	explain	more	than	50%	of	the	data	(Figure	2Bii).	Importantly,	159	
the	distribution	of	theta/delta	power	ratio	during	both	sleep	and	wake	states	does	not	allow	to	160	
define	a	natural	 threshold	and	so	 the	 two	steps	of	 the	algorithm	must	be	performed	 in	 this	161	
order.	162	

Each	time	point	is	now	attributed	to	one	of	the	three	states,	based	on	its	OB	gamma	power	163	
and	 HPC	 theta/delta	 ratio	 (Figure	 2C).	 Brief	 periods	 of	 less	 than	 3s	 are	 merged	 with	 the	164	
neighbour	states	(see	methods	for	details).	An	example	session	is	shown	in	figures	2C-D	that	165	
illustrates	the	construction	of	a	two	dimensional	phase	space	for	brain	states	(Figure	2C).	This	166	
space	demonstrates	the	clear	separation	of	brain	states	even	after	the	merging	and	dropping	of	167	
short	 epochs.	 This	 suggests	 that	 the	 continuity	 hypothesis	 does	 not	 lead	 to	 any	 aberrant	168	
classification.		169	

	170	

Validation	of	the	sleep	scoring	algorithm		171	

We	validated	the	sleep	scoring	algorithm	by	comparing	it	to	manual	sleep	scoring	performed	172	
using	 HPC	 LFPs	 and	 EMG	 activity,	 the	 classical	 golden	 standard.	 Two	 expert	 scorers	173	
independently	scored	sessions	from	4	mice	with	an	average	inter-scorer	overlap	of	89	±	3%	174	
and	Cohen’s	K	of	0.81.	On	average	the	automatic	and	manual	sleep	scoring	overlapped	by	90	±	175	
2%	(Cohen’s	K	:	0.83)	throughout	the	sessions	(Figure	3A).	176	

To	more	systematically	compare	the	two	approaches	used	to	distinguish	wake	from	sleep,	177	
gamma	power	in	the	OB	and	EMG	power,	we	also	performed	scoring	using	an	automatic	EMG	178	
scoring	algorithm	(see	Methods).	Agreement	between	the	two	approaches	was	93%	(Cohen’s	179	
K	:	0.85)	(Figure	3B)	on	average	and	the	two	signals	were	highly	correlated	at	all	times	and	180	
time-locked	at	transition	points	(Figure	3C,D).		181	

We	compared	how	well	the	distributions	of	each	variable	were	described	by	fitting	with	two	182	
Gaussians	 (Figure	 3E).	 Both	 variables	were	 strongly	 bimodal	 (Figure	 3E,	 left),	 however	 the	183	
error	of	the	fit	is	higher	for	the	EMG	power.	We	found	that	this	error	was	explained	by	a	higher	184	
proportion	of	values	in	the	trough	between	the	two	Gaussians	(11	±	2%	for	EMG	and	4	±	3%	for	185	
gamma	 power).	 This	 indicates	 that	 the	 ‘ambiguous’	 zone	 between	 sleep	 and	wake	 is	more	186	
densely	occupied	when	using	EMG	scoring	leading	to	more	potential	errors.	187	

This	demonstrates	that	sleep	scoring	using	gamma	power	in	the	OB	and	EMG,	using	either	188	
automatic	or	manual	methods,	give	very	similar	classification	of	brain	states,	confirming	that	189	
gamma	power	is	a	good	predictor	of	wake	and	sleep	as	classically	defined.	Moreover,	gamma	190	
power	 provides	 distributions	with	 a	 clearer	 separation	 than	EMG	power,	making	 it	 a	more	191	
reliable	predictor.	192	
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	193	

	194	

Figure	3	
A.	Overlap	of	manual	scoring	with	OB	gamma	scoring.	Each	column	gives	the	percent	of	manually	identified	brain	
state	(x	label)	that	is	classified	as	NREM	(blue),	REM	(red)	and	wake	(grey)	respectively	using	OB	gamma	scoring.	

(n=6)	

B.	Overlap	of	automatic	EMG	scoring	with	OB	gamma	scoring.	(n=6)	
C	 .	 Correlation	 of	 OB	 gamma	 power	 and	 EMG	 power	 for	 an	 example	 mouse	 with	 automatically	 determined	
thresholds	for	each	distribution	in	red.	Dots	in	the	upper	right	and	lower	left	hand	corner	are	identically	classified	

by	both	approaches.		
D.	OB	gamma	and	EMG	power	triggered	on	transitions	from	wake	to	sleep	and	sleep	to	wake	determined	by	the	OB	
gamma	demonstrating	tight	temporal	locking	of	changes	with	both	indicators	(n=6).	

E.	 Comparison	 of	 the	 fit	 quality	 of	 bimodal	 distribution	 of	 two	 gaussians	 to	 gamma	 power	 and	 EMG	 power	
distributions.	Both	distributions	are	strongly	bimodal	as	the	average	Ashman’s	D	is	larger	than	2.	However	both	

mean	square	error	and	Rsquare	show	that	gamma	power	distributions	are	better	fit	by	a	sum	of	gaussians.	(n=15	

for	gamma,	n=6	for	EMG.	Ttest,=p=0.43,	0.009,0.0005	respectively)		
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Robustness	of	the	sleep	scoring	method	195	

Sleep	scoring	is	often	performed	on	large	batches	of	animals,	requiring	simple	surgeries	and	196	
a	high	success	rate.	It	is	known	that	theta	rhythm	can	be	easily	recorded	in	the	hippocampal	197	
area	using	a	single	LFP	wire.	How	does	gamma	power	used	for	sleep	scoring	depend	on	the	198	
exact	placement	of	the	recording	site?	To	answer	this	question,	we	simultaneously	recorded	199	
activity	 from	multiple	 depths	 in	 the	 olfactory	 bulb	 covering	 the	 outer	 and	 inner	 plexiform	200	
layers,	the	mitral	cell	layer	and	granular	cell	layer	using	a	sixteen	site	linear	probe	(Figure	4A).	201	
We	found	that	gamma	oscillations	could	be	observed	at	all	depths	and	sleep	scoring	performed	202	
using	electrodes	at	all	depth	highly	overlapped	(>92%)	with	classical,	movement	based	sleep	203	
scoring	(Figure	4B).	We	however	observed	that	the	separation	between	wake	and	sleep	peaks	204	
was	best	in	the	deeper	recording	sites	and	in	particular	the	most	coherent	scoring	was	found	in	205	
those	sites	within	the	granule	cell	layer	where	gamma	oscillations	are	visibly	stronger	(Figure	206	
4C,D).	207	

	208	

Figure	4	
A.	Anatomical	position	(right)	of	16-site	silicon	probe	in	the	olfactory	bulb	as	estimated	from	histological	
examination	(left).	This	allows	to	estimate	that	sites	1-4	are	above	the	granule	layer	and	sites	12-16	are	

below.	

B.	Sleep	scoring	 is	performed	using	the	gamma	activity	 from	each	electrode	site	and	compared	 to	sleep	
scoring	using	the	animal’s	movement.	Accuracy	is	calculated	as	total	overlap	in	sleep/wake	periods.		

C.	 Gamma	 power	 distributions	 for	 each	 electrode	 separated	 into	 supragranular,	 granular	 and	
infragranular	 layers.	Note	 that	 the	 strong	 separation	of	 sleep	and	wake	peaks	 is	 clearest	 in	 electrodes	

within	and	below	the	granule	layer.	

D.	Correlation	matrix	of	sleep	scoring	performed	using	gamma	power	from	different	depths.	Each	square	
shows	the	percent	overlap	between	scoring	performed	with	the	corresponding	electrodes.	All	values	are	

high	(above	95%)	but	the	granule	cell	layer	shows	particularly	coherent	scoring	(>99%).	

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 16, 2017. ; https://doi.org/10.1101/109033doi: bioRxiv preprint 

https://doi.org/10.1101/109033
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9	

This	demonstrates	that	placement	of	the	LFP	wire	for	reliable	scoring	does	not	require	great	209	
precision	during	implantation,	assuring	good	scoring	for	all	implanted	animals.	The	granule	cell	210	
layer	however	appears	to	be	the	optimal	anatomical	region	to	ensure	reliable	scoring	since	it	211	
shows	the	highest	coherence	in	gamma	power	fluctuations.	The	coordinates	we	recommend	212	
aim	for	the	center	of	this	zone	(AP	+4,	ML	+0.5,	DV	−1.5).	213	

An	 optimal	 sleep	 scoring	 technique	must	 provide	 easily	 comparable	 results	 in	 the	 same	214	
animals	throughout	time	and	between	animals.	In	other	words,	the	phase	space	used	to	define	215	
sleep	states	must	be	stable.	This	phase	space	was	constructed	so	that	the	separation	between	216	
wake	and	sleep	on	the	one	hand	and	REM	and	NREM	on	the	other	hand	used	orthogonal	axis.	217	
This	simple	space	is	remarkably	consistent	among	animals	and	across	days	as	can	be	seen	by	218	
the	similar	position	of	the	clouds	of	points	representing	each	state	(Figure	5A).		219	

We	first	quantified	this	similarity	in	the	same	animals	between	days	and	between	light	and	220	
dark	cycles.	We	used	the	thresholds	defined	for	one	animal	on	a	given	light-cycle	to	score	test	221	
data	from	the	same	animal	on	a	subsequent	light-	or	dark-cycle.	The	scoring	was	then	compared	222	
with	that	obtained	using	thresholds	determined	from	the	test	data	itself.	Thresholds	for	one	223	
animal	were	calculated	as	the	distance	from	the	SWS	peak,	both	for	OB	gamma	activity	and	HPC	224	
theta/delta	ratio,	to	correct	for	the	shifts	in	overall	amplitude	that	might	be	caused	for	instance	225	
by	changes	in	recording	site	(see	methods	for	details).	226	

We	found	that	the	observed	consistency	was	sufficient	to	perform	highly	accurate	scoring	on	227	
the	next	day	light	cycle	(average	over	recordings:	97	±	0.5%,	Cohen’s	K:	0.97,	n=15,	Figure	5Bi)	228	
and	during	the	dark	cycle	(average	over	recordings:	96	±	0.9%,	Cohen’s	K:	0.94,	n=4,	Figure	229	
5Bii)	using	independently	defined	thresholds	(see	methods).		230	

We	next	compared	the	phase	space	used	for	sleep	scoring	between	animals.	We	found	that	231	
after	normalizing	distributions	to	the	mean	NREM	values,	both	OB	and	HPC	distributions	were	232	
highly	reproducible	across	mice	and	the	independently	determined	thresholds	had	very	close	233	
values	(Figure	5C).	Scoring	one	animal	using	the	thresholds	determined	for	another	as	above,	234	
we	found	that	scoring	was	also	highly	reliable	(average	over	recordings:	90	±	2.5%,	Cohen’s	K:	235	
0.85,	n=15,	Figure	5D).	236	

Finally,	 since	gamma	oscillations	 in	 the	olfactory	bulb	have	been	 linked	with	 information	237	
processing	and	novelty	(Kay	et	al.,	2009),	we	exposed	8	mice	to	a	novel	environment	for	15min,	238	
during	 which	 the	 animals	 actively	 explored.	 On	 average	 only	 2	 ±	 1.1%	 of	 the	 time	 was	239	
misclassified	 as	 sleep.	 This	 demonstrates	 that	 any	 changes	 in	 gamma	 activity	 linked	 to	240	
behaviour	remain	well	within	the	bounds	of	the	wake	state	as	previously	defined.	241	

This	 demonstrates	 that	 brain	 state	 related	 changes	 in	 gamma	 power	 are	 quantitatively	242	
robust	 over	 multiple	 days,	 throughout	 the	 circadian	 cycle	 and	 during	 exposure	 to	 new	243	
environment.	 Moreover	 the	 phase	 space	 thus	 constructed	 is	 highly	 reproducible	 between	244	
animals.	This	makes	it	an	excellent	parameter	to	use	for	automatic	methods	of	scoring	and	a	245	
promising	tool	for	comparing	sleep	in	cohorts	of	animals.	246	

	247	
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	248	

	249	

	250	

Figure	5	
A.	 Phase	 space	 of	 brain	 states	 and	 corresponding	 histograms	 along	 the	 relevant	 axis	 with	 automatically	
determined	 thresholds	 of	 the	 same	 mouse	 over	 different	 days	 (i	 vs	 ii)	 and	 in	 two	 different	 mice	 (i	 vs	 iii)	

demonstrating	the	highly	conserved	architecture	across	time	and	individuals.	

B.	Overlap	of	scoring	using	thresholds	determined	on	the	same	mouse	on	one	day	and	applied	the	following	day	
(i)	and	during	successive	light	and	dark	periods	(ii).	Each	column	gives	the	percent	of	the	brain	state	(x	label)	

identified	using	thresholds	determined	on	the	reference	data	set	that	is	classified	as	NREM	(blue),	REM	(red)	and	

wake	(grey)	using	thresholds	determined	using	data	from	different	days	(i)	or	during	the	light	period	(ii).	(n=10	

mice	were	recorded	on	consecutive	days	and	used	 for	 inter-day	scoring,	n=5	mice	were	recorded	over	a	24h	

period	of	light	and	dark	periods)		

C.	Heat	map	of	point	density	averaged	over	all	phase	spaces	for	all	mice	(n=15).	Circles	show	the	95%	boundaries	
of	NREM,	 REM	and	wake	 for	 each	mouse.	 Histograms	 from	all	mice	are	 shown	along	 the	 relevant	axis	with	

automatically	determined	thresholds	(*).	

D.	Overlap	of	scoring	using	thresholds	determined	on	one	mouse	and	applied	to	a	different	mouse	(n=15	mice).	
As	in	B.	
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A	powerful	tool	to	study	mismatch	between	brain	state	and	motor	activity	251	

A	major	issue	with	current	approaches	to	sleep	scoring	is	that	EMG	activity	conflates	absence	252	
of	 movement	 and	 sleep	 which	 suffers	 from	 notable	 exceptions	 such	 as	 during	 freezing	253	
behaviour.	Freezing	is	a	widely-studied	behaviour	in	paradigms	such	as	fear	conditioning.	It	is	254	
defined	 as	 a	 complete	 absence	 of	 all	 movement	 except	 for	 respiration.	 This	 absence	 of	255	
movement	 is	associated	with	a	strong	drop	in	EMG	power.	Although	it	has	been	shown	that	256	
average	 EMG	 power	 is	 lower	 during	 sleep	 than	 freezing	 (Steenland	 &	 Zhuo,	 2009),	 we	257	
investigated	whether	freezing	could	be	misclassified	as	sleep	using	EMG	power	and	whether	258	
OB	gamma	power	could	resolve	this	issue.	Six	mice	were	therefore	fear-conditioned	by	pairing	259	
tones	 with	 mild	 footshocks	 and	 during	 test	 sessions	 displayed	 robust	 freezing	 to	 tone	260	
presentation	(see	methods).		261	

	262	

	263	

Figure	6	
A.	OB	gamma	power,	quantity	of	movement	and	EMG	power	during	an	example	test	session	during	which	the	mouse	
displayed	freezing	episodes	(blue	line).	Freezing	was	determined	using	the	quantity	of	movement.	Red	lines	indicate	

the	sleep/wake	thresholds	 independently	determined	during	a	previous	session	in	the	homecage	for	OB	gamma	

and	EMG	power.	

B.	 In	 gray,	 distribution	 of	 gamma	 (left)	 and	 EMG	 (right)	 power	 during	 the	 homecage	 session.	 In	 black	 the	
distribution	during	the	test	session,	including	the	freezing	periods.		For	gamma	power	all	values	recorded	during	

the	test	session	are	classified	as	wake	whereas	the	EMG	power	during	values	from	freezing	periods	are	below	the	

threshold.	

C.	Averaged	OB	gamma	power	(left)	and	EMG	power	(right)	triggered	on	two	types	of	transitions	from	mobility	to	
immobility:	the	wake	to	sleep	transition	and	the	active	to	 freezing	transition.	OB	gamma	power	drops	when	the	

animal	falls	asleep	but	not	when	the	animal	freezes.	EMG	power	shows	similar	changes	during	freezing	and	sleep	

onset	(n=6,	error	bars	:	s.e.m)	
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The	example	session	shown	in	figure	6A	illustrates	the	strong	expected	drop	in	EMG	power	264	
during	 freezing	 periods,	 sometimes	 below	 the	 sleep/wake	 threshold	 independently	265	
determined	during	a	previous	sleep	session.	Although	 the	EMG	power	 is	 indeed	on	average	266	
higher	than	during	the	sleep	state,	freezing	time	point	can	be	misclassified	as	sleep	(Figure	6B).		267	
In	the	example	in	figure	6A,	54%	of	freezing	periods	were	classified	as	sleep	and	EMG	shows	a	268	
similar	drop	in	power	at	freezing	and	sleep	onset	(Figure	6C).	In	sharp	contrast,	gamma	power	269	
remains	systematically	above	the	sleep/wake	threshold	(Figure	6B).	Gamma	power	triggered	270	
on	freezing	onset	shows	that	the	variable	is	independent	of	freezing	onset	(Figure	6C).		271	

Freezing	 is	 a	 behaviour	 that	 dissociates	 complete	 immobility	 from	 sleep,	 allowing	 us	 to	272	
clearly	show	that	OB	gamma	power	is	tracking	transitions	from	wake	to	sleep	and	not	from	273	
mobility	to	immobility.	EMG	in	contrast	is	an	unreliable	marker	for	sleep	scoring	when	animals	274	
are	susceptible	to	display	immobility	during	wakefulness.	275	

	276	

Olfactory	bulb	activity	is	tightly	linked	to	REM/NREM	state	277	

The	OB	receives	input	from	multiple	neuromodulatory	systems	(see	discussion)	and	it	may	278	
therefore	be	a	reliable	marker	of	brain	states	in	general.	We	therefore	investigated	whether	OB	279	
activity	changed	between	REM	and	NREM	sleep.		The	results	presented	figure	1B	shows	that	280	
during	REM	sleep	there	is	a	drop	of	power	in	the	10-30Hz	beta	band.	This	rhythm	has	been	281	
shown	 to	 be	 modulated	 by	 learning	 (Beshel	 et	 al.,	 2007;	 Martin	 &	 Ravel,	 2014)	 but	 not	282	
previously	related	to	vigilance	states.	283	

	Comparing	OB	and	HPC	spectrograms,	a	loss	of	synchrony	in	the	beta	band	is	visible	in	the	284	
OB,	tightly	locked	to	the	appearance	of	the	theta	band	in	the	HPC	for	each	bout	of	REM	sleep	285	
(Figure	7A).	We	found	a	high	correlation	between	HPC	theta/delta	power	and	OB	beta	power,	286	
with	most	 time	points	 clearly	 segregating	 into	 two	clusters	 (Figure	7B).	The	distribution	of	287	
power	in	the	10-15Hz	band	during	sleep	for	all	mice	shows	a	spike	and	slab	structure	similar	288	
to	that	observed	for	the	theta/delta	ratio	in	the	HPC	(Figure	7C).	This	allows	us	to	classify	brain	289	
states	into	a	high-beta	and	a	low-beta	state	and	evaluate	to	what	extent	they	correspond	with	290	
NREM	and	REM	periods.	291	

We	compared	the	OB-based	scoring	with	 that	obtained	using	HPC	activity.	We	quantified	292	
both	the	sensitivity	and	specificity	of	the	method,	sensibility	being	defined	as	the	proportion	of	293	
classical	 HPC-based	 REM	 correctly	 identified	 as	 REM,	 and	 specificity	 being	 defined	 as	 the	294	
proportion	of	‘true’	or	HPC-based	NREM	correctly	identified	as	NREM	(Figure	7D).	This	shows	295	
that	OB	drops	in	beta	power	is	highly	specific	to	REM	but	misses	around	25%	of	 ‘true’	REM	296	
periods.	Altogether,	these	results	demonstrate	a	striking	relationship	between	OB	oscillations	297	
and	brain	states.	298	
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	299	

	300	

	301	

Discussion	302	

Here	we	show	that	automatic	sleep	scoring	can	be	achieved	with	brain	signals	only.	We	found	303	
that	gamma	oscillations	in	the	olfactory	bulb	was	a	brain	signal	usable	to	continuously	identify	304	
the	different	sleep	stages.	It	can	be	substituted	to	the	muscular	activity	or	body	movements	that	305	
are	required	in	all	the	other	sleep	scoring	methods.		306	

Utility	of	the	novel	method	307	

The	novel	sleep	scoring	method	we	propose	here	relies	on	activity	recorded	in	the	HPC	and	308	
the	OB	only.	Implantation	of	electrodes	for	recording	LFP	in	these	two	areas	is	easy	to	achieve	309	
because	both	areas	 show	robust	oscillations	 in	 the	 theta	and	gamma	ranges	 respectively	 at	310	
multiple	 recording	 sites.	 After	 implantation	 the	 method	 is	 full	 automated	 and	 therefore	311	

Figure	7	
A.	Example	spectrograms	of	OB	(top)	and	HPC	(bottom)	activity.	The	coloured	bar	indicates	the	state	of	 the	
animal	defined	using	OB	and	HPC	activity:	blue	for	SWS,	red	from	REM	and	gray	for	wake.	Note	that	during	

REM	periods,	defined	by	strong	theta	activity	in	the	HPC,	there	is	a	drop	in	a	wide	band	from	10	to	20Hz	in	the	

OB.	(bar	:	3min)	

B.	Correlation	of	OB	beta	power	and	HPC	theta/delta	ratio	power	for	the	same	mouse	as	in	A	with	automatically	
determined	thresholds	for	each	distribution	in	black.	Dots	in	the	upper	left	and	lower	right	hand	corner	are	

identically	classified	by	both	approaches.		
C.	Distributions	of	beta	power	in	the	OB	during	sleep	(n=15).	
D.	Sensitivity	and	specificity	of	REM	identification	using	OB	beta	power,	where	true	REM	is	defined	using	the	
HPC	activity.	Sensitivity	 is	 defined	as	the	proportion	of	 ‘true’	or	HPCal	REM	correctly	 identified	as	REM	and	

specificity	as	the	proportion	of	‘true’	or	HPCal	SWS	correctly	identified	as	SWS.	(n=15,	error	bars	:	s.e.m)	
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removes	 the	 time-consuming	 steps	 of	 scoring	 by	 hand	 the	 full	 data	 set	 or	 a	 training	 set	 to	312	
calibrate	 semi-automatic	 algorithms.	We	 have	 shown	 that	 this	 method	 for	 sleep	 scoring	 is	313	
robust	 to	 slight	 changes	 in	 implantation	 site,	 across	 days	 and	between	different	 animals.	 It	314	
therefore	allows	easy	comparison	between	mice	and	 throughout	 time,	and	may	be	between	315	
data	sets	from	different	laboratories.	316	

Beyond	the	technical	ease	of	use,	this	method	also	provides	a	promising	framework	for	the	317	
study	 of	 the	 dynamics	 of	 brain	 states.	 Using	 activity	 recorded	 in	 the	 brain	 and	 not	muscle	318	
activity	allows	to	track	sleep/wake	activity	independently	of	movement.	This	could	provide	the	319	
heretofore	lacking	methodology	to	study	phenomena	such	as	REM	without	atonia	induced	in	320	
lesion	studies	(Lu	et	al.,	2006).	Our	construction	of	a	highly-reproducible	phase	space	across	321	
animals	 and	days	allows	 for	 easy	pooling	of	data	 sets	 and	 comparison	of	dynamics.	 Finally,	322	
gamma	activity	in	the	OB	is	a	variable	with	fast	dynamics	that	allows	to	study	fine	time-scale	323	
transitions	not	accessible	to	other,	slower	sleep-related	oscillations	such	as	delta	power.		324	

The	olfactory	bulb	gamma	oscillations	as	a	gating	mechanisms	during	sleep	325	

Interestingly,	olfaction	is	the	only	sensory	system	in	the	mammalian	brain	that	does	not	pass	326	
through	 the	 thalamic	 relay	 before	 reaching	 the	 cortex.	 The	 thalamus	 is	 thought	 to	 play	 an	327	
important	role	in	gating	(McCormick	&	Bal,	1994)	during	sleep.		328	

This	 naturally	 raises	 the	 question	 as	 to	 where	 state-dependent	 gating	 occurs	 along	 the	329	
olfactory	 pathway.	 Part	 of	 the	 gating	 could	 occur	 in	 the	 piriform	 cortex.	 Indeed,	 during	330	
anesthesia	different	states	can	coexist	with	wake-like	and	sleep-like	periods	that	display	slow	331	
membrane	 oscillations	 comparable	 to	 up	 and	 down	 states	 (Murakami	 et	 al.,	 2005).	332	
Interestingly,	suppression	of	sensory	response	is	observed	in	the	piriform	cortex	but	not	in	the	333	
OB	since	during	sleep-like	states	(Murakami	et	al.,	2005).	These	results	have	to	be	taken	with	334	
caution	since	sensory	response	in	anesthetized	preparations	are	poorly	predictive	of	responses	335	
in	natural	situation	without	drug	(Cotillon-williams	&	Edeline,	2002).		336	

However,	we	show	here	that	gamma	oscillations	could	also	serve	participate	in	this	gating.	337	
Gamma	 oscillations	 are	 thought	 to	 play	 an	 important	 role	 in	 information	 transmission	338	
throughout	the	brain	(Buzsáki	&	Wang,	2012).	In	particular,	in	the	OB	they	are	hypothesized	to	339	
play	an	essential	role	for	effective	transmission	and	processing	of	odour	input	to	the	piriform	340	
and	orbitofrontal	cortices	(Mori	et	al.,	2013).	Indeed,	gamma	oscillations	are	influenced	by	task	341	
demands	(Beshel	et	al.,	2007;	Martin	&	Ravel,	2014)	and	 their	suppression	 impairs	sensory	342	
processing	(Lepousez	&	Lledo,	2013).	Therefore,	the	suppression	of	gamma	oscillations	during	343	
sleep	 could	 provide	 another	 mechanism	 for	 sensory	 gating,	 the	 lack	 of	 synchronous	 firing	344	
among	OB	 neurons	 rendering	 inefficient	 the	 transfer	 of	 information	 to	 secondary	 olfactory	345	
areas.	Moreover,	the	decrease	in	OB	gamma	power	is	observed	in	SWS	and	REM	sleep	as	well	346	
and	could	explain	the	lack	of	response	in	all	sleep	states.	Interestingly,	gamma	oscillations	are	347	
strongly	 reduced	 during	 anaesthesia,	 further	 supporting	 their	 possible	 link	 with	 states	 of	348	
suppressed	sensory	input	(Chery	et	al.,	2014).	349	

The	olfactory	bulb	as	a	marker	for	brain	states	350	

Altogether,	these	observations	raise	the	question	as	to	why,	compared	with	other	areas,	the	351	
OB	is	so	well	suited	to	identifying	the	switch	between	sleep	and	wakefulness.	One	explanation	352	
comes	 from	 the	 fact	 that	 the	 olfactory	 bulb	 receives	massive	 projections	 from	most	 of	 the	353	
neuromodulator	systems	and	notably	those	involved	in	the	control	of	sleep/wake	alternation.		354	

For	instance,	the	OB	receives	large	projection	from	the	cholinergic	nuclei	and	expresses	high	355	
level	of	cholinergic	receptors	(D’Souza	&	Vijayaraghavan,	2014).	Accordingly,	acetylcholine	has	356	
been	proposed	as	a	neuromodulator	that	could	enable	sensory	gating	in	the	olfactory	system	357	
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(Mori	et	al.,	2013).	However,	given	the	roughly	similar	reduction	of	gamma	power	in	both	REM	358	
and	NREM	periods	and	the	high	cholinergic	levels	during	REM,	this	neuromodulator	seems	an	359	
unlikely	candidate	for	gamma	suppression	during	sleep.		360	

In	addition	to	cholinergic	innervation	of	the	OB,	other	neuromodulatry	systems	know	to	be	361	
involved	in	sleep	regulation	send	projection	to	the	OB.	Hypocretinergic/orexinergic	projections	362	
from	the	hypothalamus	sparsely	innervate	all	of	the	layers	of	the	OB	(Gascuel	et	al.,	2012)	and	363	
the	locus	coeruleus	sends	extremely	dense	noradrenergic	projection	to	the	OB	that	are	10	times	364	
greater	than	to	any	other	part	of	the	cerebral	cortex	(Shipley	et	al.,	1985).	Moreover,	receptors	365	
of	both	neuromodulatory	systems	are	strongly	expressed	in	the	OB	(McCune	et	al.,	1993;	Hardy	366	
et	 al.,	 2005).	 Since	 these	 neuromodulators	 have	 an	 essential	 role	 in	 regulation	 of	 the	367	
sleep/wake	cycle	and	have	been	show	to	enhance	gamma	oscillations	 in	 the	OB	or	 in	other	368	
systems	(Hall	&	Delaney,	2001;	Gire	&	Schoppa,	2008;	Li	&	Cleland,	2013;	Ishibashi	et	al.,	2015),	369	
they	are	potential	candidates	for	the	state	switching	we	observe	in	the	OB.		370	

A	recent	method	has	been	proposed	to	track	continuously	vigilance	states	by	tracking	pupil	371	
diameter	(McGinley	et	al.,	2015).	Interestingly	it	was	showed	that	pupil	fluctuation	follows	the	372	
activity	of	cholinergic	and	adrenergic	activity	in	the	cortex	(Reimer	et	al.,	2016).	However,	this	373	
method	is	difficult	to	implement	in	freely	moving	animals.	The	results	showed	here	suggest	that	374	
the	gamma	power	of	the	olfactory	bulb	could	offer	an	attractive	strategy	for	the	monitoring	of	375	
vigilance	 states	 in	 natural	 situations.	 Of	 course,	 the	 question	 of	whether	 OB	 could	 have	 an	376	
influence	on	sleep/wake	alternation	will	deserve	further	investigation.		377	

Nevertheless,	we	show	that	OB	gamma	oscillations	can	be	used	as	a	direct	read-out	of	the	378	
brain	 network	 responsible	 for	 sleep/wakefulness	 cycles	 that	 constitutes	 the	 first	 method	379	
allowing	a	clear	identification	of	sleep	and	wake	states	with	brain	signal	only.		380	

	381	
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	396	

Materials	and	methods	397	

	398	

Subjects	and	surgery	399	

A	 total	 of	 15	 C57Bl6	 male	 mice	 (Mus	 musculus),	 3–6	 months	 old,	 were	 implanted	 with	400	
electrodes	(tungsten	wires)	in	the	right	olfactory	bulb	(AP	+4,	ML	+0.5,	DV	−1.5)	and	in	the	right	401	
CA1	hippocampal	layer	(AP	-2.2,	ML	+2.0,	DV	−1.0).	6	of	these	mice	were	also	implanted	with	a	402	
hooked	EMG	wire	in	the	right	nuchal	muscle.	6	mice	were	also	implanted	in	the	right	prefrontal	403	
cortex	(AP	+2.1,	ML	+0.5,	DV	−0.5)	and	parietal	cortex	(AP	-1.7,	ML	+1.0,	DV	−0.8).	One	mouse	404	
was	recorded	with	a	sixteen-site	linear	probe	(100um	spacing,	Neuronexus	Tech,	Ann	Arbor,	405	
MI,	 USA).	 During	 recovery	 from	 surgery	 (minimum	 3	 d)	 and	 during	 all	 experiments,	 mice	406	
received	food	and	water	ad	libitum.	Mice	were	housed	in	an	animal	facility	(08:00–20:00	light),	407	
one	per	cage	after	surgery.	All	behavioural	experiments	were	performed	in	accordance	with	the	408	
official	European	guidelines	for	the	care	and	use	of	laboratory	animals	(86/609/EEC)	and	in	409	
accordance	with	 the	Policies	of	 the	French	Committee	of	Ethics	 (Decrees	n°	87–848	and	n°	410	
2001–464).	Animal	housing	 facility	of	 the	 laboratory	where	experiments	were	made	 is	 fully	411	
accredited	by	the	French	Direction	of	Veterinary	Services	(B-75-05-	24,	18	May	2010).	Animal	412	
surgeries	and	experimentations	were	authorized	by	the	French	Direction	of	Veterinary	Services	413	
for	K.B.	(14-43).	414	

Signals	 from	 all	 electrodes	 were	 recorded	 using	 an	 Intan	 Technologies	 amplifier	 chip	415	
(RHD2216,	sampling	rate	20	KHz).	Local	field	potentials	were	sampled	and	stored	at	1,250	Hz.	416	
Analyses	were	performed	with	custom	made	Matlab	programs,	based	on	generic	code	that	can	417	
be	 downloaded	 at	 http://www.battaglia.nl/computing/	 and	418	
http://fmatoolbox.sourceforge.net/.	419	

Fear	conditioning	420	

Habituation	and	fear	conditioning	took	place	in	context	A	consisting	of	a	square	transparent	421	
Plexiglas	box	in	a	black	environment	with	a	shock	grid	floor	and	cleaned	with	ethanol	(70%)	422	
before	and	after	each	session.	Extinction	learning	and	test	sessions	were	performed	in	context	423	
B	consisting	of	cylindrical	transparent	Plexiglas	walls	with	a	grey	plastic	floor	placed	in	a	white	424	
environment	and	cleaned	with	acetic	acid	(1%)	before	and	after	each	session.		425	
To	 score	 freezing	 behaviour	 animals	 were	 tracked	 using	 a	 home-made	 automatic	 tracking	426	
system	that	calculated	the	instantaneous	position	of	the	animal	and	the	quantity	of	movement	427	
defined	 as	 the	 pixel-wise	 difference	 between	 two	 consecutive	 frames.	 The	 animals	 were	428	
considered	to	be	freezing	if	the	quantity	of	movement	was	below	a	manually-set	threshold	for	429	
at	least	2	s.		430	
On	day	1,	mice	were	submitted	to	a	habituation	session	in	context	A,	in	which	they	received	431	

four	presentations	of	the	CS-	and	of	the	CS+	(total	CS	duration,	30	s;	consisting	of	50-ms	pips	at	432	
0.9	Hz	repeated	27	times,	2	ms	rise	and	fall;	pip	frequency,	7.5	kHz	or	white-noise,	80	dB	sound	433	
pressure	level).	Discriminative	fear	conditioning	was	performed	on	the	same	day	by	pairing	the	434	
CS+	with	a	US	(1-s	foot-shock,	0.6	mA,	8	CS+	US	pairings;	inter-trial	intervals,	20–180	s).	The	435	
onset	of	the	US	coincided	with	the	offset	of	the	CS+.	The	CS-	was	presented	after	each	CS+	US	436	
association	but	was	never	reinforced	(5	CS-	presentations;	inter-trial	intervals,	20–180	s).	On	437	
day	2	and	day	3,	conditioned	mice	were	submitted	to	a	test	session	in	context	B	during	which	438	
they	received	4	and	12	presentations	of	the	CS-	and	CS+,	respectively.		439	
	440	
Histological	analysis	441	
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After	completion	of	the	experiments,	mice	were	deeply	anesthetized	with	ketamine/xylazine	442	
solution	(10%	/1%).	With	the	electrodes	left	in	situ,	the	animals	were	perfused	transcardially	443	
with	 saline	 (~50	ml),	 followed	by	~50	ml	of	PFA	 (4	g/100	mL).	Brains	were	extracted	and	444	
placed	in	PFA	for	postfixation	for	24	h,	transferred	to	PBS	for	at	least	48	h,	and	then	cut	into	50-445	
μm-thick	 sections	 using	 a	 freezing	 microtome	 and	 mounted	 and	 stained	 with	 hard	 set	446	
vectashield	mounting	medium	with	DAPI	(Vectorlabs).	447	
	448	

Bimodality	quantification	449	

Bimodality	was	quantified	by	fitting	a	mixture	of	two	normal	distributions	and	evaluating	450	

either	Ashman’s	D	(Ashman	et	al.,	1994),	! = 2 $%&$'
(%)('

		where	D>2	is	required	for	a	clean	451	

separation	or	the	overlap	of	the	two	distributions.	452	

Automatic	sleep	scoring	algorithm	453	

LFP	recordings	from	the	OB	were	filtered	in	the	gamma	(50-70Hz)	band	and	instantaneous	454	
amplitude	derived	from	the	Hilbert	Transform.	This	time-series	was	then	smoothed	using	a	3s	455	
sliding	(Fig.1D)	window	and	the	distribution	of	values	could	be	fit	with	a	mixture	of	two	normal	456	
distributions.	To	maximize	the	probability	of	correct	classification,	the	threshold	between	sleep	457	
and	wake	should	be	defined	as	the	intersection	of	these	two	distributions.	This	value	however	458	
depends	on	the	amplitude	of	the	two	distributions	and	therefore	on	the	ratio	of	sleep	and	wake	459	
recorded.	 To	 establish	 a	 threshold	 independent	 of	 this	 ratio,	 the	 two	 distributions	 are	460	
normalized	to	each	have	area	one	(Fig2.Bi,	right)	and	the	intersection	of	these	distributions	is	461	
used.	Values	inferior	to	this	value	are	classified	as	sleep	and	those	superior	as	wake.	Periods	of	462	
sleep	and	wake	shorter	than	3s	were	merged	into	the	surrounding	periods	to	avoid	artificially	463	
short	epochs.	Then,	LFP	recordings	from	the	HPC	restricted	to	the	sleep	periods	defined	above,	464	
were	 filtered	 in	 the	 theta	 (5-10Hz)	 and	 delta	 (2-5Hz)	 bands	 and	 instantaneous	 amplitude	465	
derived	 from	the	Hilbert	Transform.	The	ratio	of	 the	 theta	and	delta	powers	was	smoothed	466	
using	a	2s	sliding	window	and	the	distribution	of	values	was	fit	by	a	single	normal	distribution	467	
that	accounted	for	the	NREM	data	points	(low	theta/delta	ratio).	The	REM/NREM	threshold	468	
was	placed	at	the	point	above	which	the	residuals	systematically	explained	more	than	50%	of	469	
the	actual	data	 (Fig2.Bii).	Periods	of	NREM	and	REM	shorter	 than	3s	were	merged	 into	 the	470	
surrounding	periods	to	avoid	artificially	short	epochs.	471	

Automatic	EMG	scoring	472	

Automatic	EMG	scoring	was	performed	in	a	similar	fashion	to	automatic	OB	gamma	power	473	
scoring.	EMG	data	was	filtered	in	the	50-300Hz	band	and	instantaneous	amplitude	derived	from	474	
the	Hilbert	Transform.	This	time-series	was	then	smoothed	using	a	2s	sliding	window	and	the	475	
distribution	of	values	could	be	fit	with	a	mixture	of	two	normal	distributions.	The	intersection	476	
of	these	two	distributions,	once	normalized	provided	the	sleep-wake	threshold.	The	theta/delta	477	
power	ratio	and	period	dropping	procedures	are	the	same	as	above.	478	

Manual	sleep	scoring	479	

Automatic	scoring	was	performed	independently	by	two	experimenters	using	a	home-made	480	
matlab	GUI.	 The	 scorers	were	 provided	with	 EMG	 (raw,	 filtered	 in	 the	 50-300Hz	 band	 and	481	
smoothed	instantaneous	amplitude)	and	HPC	(raw,	low	frequency	spectrogram	and	smoothed	482	
instantaneous	theta	to	delta	ratio)	and	3s	windows	were	determined	to	be	NREM,	REM	or	Wake	483	
depending	on	which	brain	state	was	judged	to	be	in	the	majority.		484	

	485	
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	486	

Evaluation	of	overlap	of	scoring	methods	487	

The	percentage	agreement	between	methods	is	calculated	for	each	state	and	shown	in	the	488	
relevant	figures.	Given	that	average	agreement	can	be	potentially	misleading,	we	also	used	the	489	
confusion	matrix	to	calculate	Cohen’s	k	(Cohen,	1960)	defined	as	:		490	

* =	,- − ,/1 − ,/
	491	

	with	492	

,- = 	 1223
245 	where	122 	 is	 the	probability	 that	both	methods	classify	data	as	 the	 identical	493	

state	i	(REM,	NREM,	wake).	494	

,/ = 	 1523
245 ×172 	where	152	and	172 	are	the	independent	probabilities	that	methods	1	and	495	

2	will	classify	data	as	state	i.	496	

We	applied	the	same	criteria	as	used	in	(Libourel	et	al.,	2015)	to	evaluate	the		quality	of	the	497	
agreement	:		498	

Quality	of	agreement	 Cohen’s	k	

Almost	perfect	 >0.81	

Substantial	 0.8-0.61	

Moderate	 0.6-0.41	

Fair	 0.4-0.21	

Slight	 0.2-0	

Poor	 <0	

	499	

	500	
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