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ABSTRACT 

As the population increases in Southwest Texas in recent years, the urban water 

demand is drastically increasing. Regulated deficit irrigation (RDI) is expected to be one 

of the potential water management practice for saving water while maintaining crop yield. 

A field experiment was conducted at the AgriLIFE Research center in Uvalde in summer 

2008 to examine the water saving potential. Seven irrigation schemes and four varieties 

were assigned to the experimental field to test their effects on lint yield. As the spatial 

correlation of the soil moisture/ soil water content were suspected, a spatial analysis on 

lint yield and soil water content was conducted. The analysis results showed that: 1) The 

soil water contents showed spatial correlations, while the lint yield did not. 2) The 

relationship between lint yield and soil water content can be described by linear model 

better than spatial autocorrelation model. 3) The variogram fit of the soil water content 

showed a completed curve; the contour map generated using ordinary kriging illustrated 

the irrigation schemes effect well, and gradient effect was suspected. The variogram of 

the lint yield could not be fitted by a completed curve, which indicated that the sample 

field was not large enough to determine the variance function. Further study is needed to 

determine the slope effect on soil water content ,and to improve the contour map 

precision of the lint yield. 
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INTRODUCTION 

As the population increases in Southwest Texas in recent years, the urban water 

demand is drastically increasing. Since the water resources in this area are limited, 

making a good plan for the available water supply is crucial. One possible way to assist 

in solving this problem is to reduce the agricultural water use; however, the economic 

crop yield, or the growers' profit, should at least be maintained. Regulated deficit 

irrigation (RDI) is one important measure for saving water and maintaining crop yield. A 

field experiment was conducted at the AgriLIFE Research center in Uvalde in summer 

2008 to examine the water saving potential (Wen et al., 2009, 2013). Since the spatial 

correlation of the soil moisture/ water content, which may cause lint yield variation (Ge 

et al., 2008; Johnson et al., 2002), is suspected, it is essential to test the soil spatial 

correlation before the other data analysis procedure. The spatial variation of lint yield is 

also of interests.  

Many studies discussed the spatial analyses methods for soil moisture and agronomic 

yields, such as Bi et al. (2008) and de Lannoy et al. (2006). The objectives of this study 

are: 1) find out whether the soil water content and the lint yield data are spatially 

correlated; 2) if correlations are found, whether the lint yield can be predicted by the soil 

water content via a spatial model; 3) test the spatial variation of lint yield and soil water 

content and build contour maps to check whether the spatial correlation was caused only 

by irrigation, or also by some other factors. 

 

MATERIALS and METHODS 

The Cotton RDI Experiment in 2008 

The research was conducted in the AgriLIFE Research and Extension Center at 

Uvalde in summer 2008 (Wen et al., 2009, 2013). A split-split-plot design experiment was 

assigned in a 90o wedge (approximate 40 ac) (Wen, 2015). The wedge was divided into 
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four spans (160 ft width each) and two "buffer zones" (filler spans). Each span had 48 

rows, which were divided into four 12-row zones. Four widely planted commercial 

varieties were randomly selected, which were DP555, DP164, FM9063, and 989B2R. 

These four varieties were randomly assigned to the four zones in each span. The cotton 

was planted on April 15, 2008, and harvested on September 25 (162 day after planting 

/162 DAP)). 

Irrigation was applied by a center pivot with a low energy precision application 

(LEPA) system with 95% efficiency. Seven irrigation regimes were selected, including 

the fully irrigation (100X, as the control), four fixed deficit irrigation: 80X, 70X, 60X and 

50X, and two dynamic irrigation: 70D and 50D. The irrigation replacement is described 

in percentage of the net evapotranspiration (ΔET), which equals to the difference between 

evapotranspiration (ET) and rainfall (P) in a certain period: 

PETET   

For instance, the number 50 in 50X stands for 50% replacement, that is, for each 1 

mm water loss in the net evapotranspiration, we provide 0.5 mm water back to the field 

through irrigation. In practice, we recorded the daily ET and P to calculate the daily net 

water loss (ΔET), and then accumulated the net water loss day by day until it reaches to a 

certain maximal limit (we used 3.8 mm (1.5 in)), at which we applied irrigation. In the 

fixed scheme (marked as X), the replacement rate (as percentage of ΔET) is kept constant, 

e.g. 50X means in each irrigation application, we compensated the field with 50% of the 

water loss. In the dynamic scheme (marked as D), the irrigation is applied in different 

replacement ratios at each growing stages, for instance, in this study 50D was scheduled 

as 50% at vegetative stage, 100% from first bloom to 50%-open boll, and 10% thereafter 

till harvest. In total, the water use should be maintained at a certain range between 45% 

and 55% (depends on how much rain we receive at each growing stage) for 50D 

irrigation scheme.  
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The Data Collection and Analysis 

The soil moisture at 20cm, 40cm, 60cm, 80cm, 100cm, 120cm and 140cm were 

measured seven times (Jun.19, Jun. 26, Jun. 30, Jul. 10, Jul. 18, Jul. 28, and Aug. 5) using 

two neutron probes (CPN-530 DR Hydroprobe Probe Moisture Depth Gauge, Campbell 

Pacific Nuclear Corp. Int. Inc., Martinez, CA) during the cotton growing season. After 

planting, neutron probe access tubes were installed at the center of each experimental unit. 

Volumetric water content of each layer was calculated using the calibrated linear 

equations (one equation per layer), and the soil water content on each experimental unit 

in each measurement was derived. On September 25, 12 m2 areas were randomly selected 

in each experimental unit, and all seed cotton were harvested in these sample areas by 

cotton picker. Then small samples were selected from each harvested sample, and ginned 

in the Cotton Improvement Lab (Texas A&M Univ., College Station, TX). According to 

the weight ratio of lint to seed cotton of the small samples, the lint yield in each 

experimental unit was estimated. The coordinates of the centers of each experimental unit 

were calculated based on the distances to the center pivot engine and the angles to the 

North direction (Fig. 1). 

The data were first tested by the inverse-distance weighted Moran's I to check the 

possible spatial correlation. Possible models of lint yield vs. soil water content were fitted 

and compared to select the best one that can describe the relationship between them. The 

variograms of the lint yield and soil water content were calculated based on the sample 

data, and the contour maps were derived using ordinary kriging. All the spatial analysis 

were done using spdep and geoR packages installed in R (2.8.1). The default 0.05 

significance level was used in this study.  
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Figure 1: The positions of the sample points in each experimental unit 

 

RESULTS and DISCUSSIONS 

Determine the Spatial Correlations 

The Moran's I test statistics were calculated for each variable, showed in Table 1. W1 

to W7 are the soil water content at seven different times. The results indicated that the 

soil water content at the 4th measurement did not have spatial correlation. Neither did the 

lint yield. The other soil water content variables had spatial correlations. According to the 

irrigation-rainfall records, we had relatively lower ET and a bit rainfall right before the 

4th measurement, which may cause lower water consumption by plants, thus the soil 

water content differences among irrigation schemes did not show strong spatial 

correlation. In general, soil water content had spatial correlation, while lint yield did not. 
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Table 1: The inverse-distance based Moran's I test 

Variable Moran's I Standard Dev. P-value Significance 

W1 0.6168 8.1342 0.0000  

W2 0.3239 4.3343 0.0000  

W3 0.1870 2.5459 0.0059  

W4 0.0808 1.1629 0.1224 NS* 

W5 0.3586 4.7615 0.0060  

W6 0.2805 3.7648 0.0000  

W7 0.3650 4.8767 0.0000  

LintYield 0.0523 0.8062 0.2101 NS 

         * NS: not significant. In this case it means no spatial correlation. 

 

Model Fits and Comparison 

The linear relationship between lint yield and soil water content were fit by several 

different models and the fit results were compared (Tab. 2). For both linear regression 

and SAR models, different combinations of soil water content measurements were tried 

and all non-significant terms were removed, except the intercept. Both linear regression 

and SAR models agreed that the 3rd soil water content measurement was the best 

predictor for lint yield. The difference between LM1 and LM2 was LM2 did not include 

intercept, which might be a better model comparing to LM1. The AIC of SLM1 indicated 

that SLM1 is not significantly better than LM1 (1667.4 > 1665.5), and the non-significat 

lambda implied that the spatial autocorrelation is really weak; the LM2 did not show 

better fit than LM1, either (Tab. 3). Thus, LM1 seems to be the best model to predict lint 

yield in this case. 
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Table 2: Model-fit results of simple linear regression and SAR 

Model Model Description Results Significance 

LM1 Simple linear regression. 

Predict lint yield with the 3rd 

soil water content 

measurement 

(Intercept) p=0.8850 

W3      p=0.0338 

NS* 

LM2 Simple linear regression 

without intercept. Predict lint 

yield with the 3rd water 

content measurement. 

W3      p=0.0000  

SLM1 SAR model. Predict lint yield 

with the 3rd water content 

measurement. 

(Intercept) p=0.9142 

W3      p=0.0341 

Lambda  p=0.7679 

NS 

 

NS 

* NS: not significant. In this case it means no spatial correlation. 

 

Table 3: The linear regression and SAR models comparison 

Models Comparison Method Results 

LM2 vs. LM1 anova P = 0.8850 

SLM1 vs. LM1 AIC SLM1: AIC = 1667.4 

LM1:  AIC = 1665.5 

 

By examining the residuals of LM1 (Fig. 1), although the residuals demonstrated 

some curvature (left-hand side figure), it seems that the assumption of normal residuals is 

acceptable. Some potential outliers (e.g. #3, 4, and 87), as illustrated in Fig. 2, needed to 

be further examined though. 

In general, we concluded that the simple linear regression is the best fit for the lint 

yield and soil water content (3rd measurement) relationship. Some other spatial model, e.g. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2017. ; https://doi.org/10.1101/109025doi: bioRxiv preprint 

https://doi.org/10.1101/109025
http://creativecommons.org/licenses/by-nc/4.0/


PREPRINT_Wen_2017A 

8 

Conditional Autoregression Model (CAR model), might be able to give a better 

prediction. Another concern is, the last soil water content measurement was not the best 

linear predictor of the lint yield. The reason why the best linear predictor is the 3rd soil 

water content measurement is still unclear, thus further examine and more sampling on 

the soil moisture may be needed in the future study. 

 

Figure 2: The diagnostic of LM1 residuals. The left-hand side figure showed the residuals vs. fitted 

values. The right-hand side figure illustrated the Normal Q-Q plot. 

 

Spatial Maps of the Lint Yield and Soil Water Content 

The empirical variograms of the lint yield and the 3rd soil water content 

measurement were calculated through the sample points and the fitted exponential 

models are shown in Fig. 3. The variogram fit of lint yield illustrated a linear trend, 

which indicated that the variance is very high, and the samples were not representative 

for the whole field. The variogram fit of W3, on the contrary, showed a reasonable 

variance and a range of approximate 40 m. A summary of the variogram fits was given in 

Table 4. 
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Figure 3: The variograms of lint yield and W3 

Table 4: Summary of the variogram fits of lint yield and W3. 

 Range [m] Nugget Sill Nugget percent 

Lint Yield 18242.39 141331.34 44259821.94 3.19% 

W3 37.35 2.82 3.97 71.03% 

 

 

Figure 4: Contour maps of lint yield and W3 by ordinary kriging. 

Lint Yield W3 
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Based on the variogram fit functions, we plotted the contours of the lint yield and 

W3 (water content) use ordinary kriging. As the varigram fit function of lint yield did not 

show a completed curve, the kriging map could not show a very good spatial distribution 

of the lint yield (Fig. 4). The soil water content map demonstrated a good spatial 

distribution, confirming that the region that less water was applied has less soil water 

content left after a few days plant consumption. A gradient is shown as well, indicating 

that the soil water content, or soil moisture may be affected by slope. Further study on the 

slope or aspect effects need to be considered in the future study. 

 

CONCLUSIONS 

Based on the results and discussion, the following conclusions can be drawn: 

1) The soil water contents showed spatial correlations, while the lint yield did not. 

2) The relationship between lint yield and soil water content can be described by linear 

model better than spatial autocorrelation model. 

3) The variogram fit of the soil water content showed a completed curve; the contour map 

generated using ordinary kriging illustrated the irrigation schemes effect well, and 

gradient effect was suspected. The variogram of the lint yield could not be fitted by a 

completed curve, which indicated that the sample field was not large enough to determine 

the variance function. Further study is needed to determine the slope effect on soil water 

content, and to improve the contour map precision of the lint yield. 
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