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ABSTRACT	

	 How	is	temporal	information	processed	in	human	visual	cortex?	Visual	input	is	relayed	to	

V1	through	segregated	transient	and	sustained	channels	in	the	retina	and	LGN.	However,	there	

is	 intense	debate	 as	 to	how	 transient	 and	 sustained	 channels	 contribute	 to	 visual	 processing	

beyond	V1.	Using	a	2	temporal-channel	encoding	model	we	can	predict	fMRI	responses	to	time-

varying	stimuli	ranging	from	milliseconds	to	seconds.	The	transient	channel	dominates	responses	

in	 the	 periphery	 of	 early	 visual	 cortex	 and	 lateral	 occipito-temporal	 regions.	 However,	 both	

sustained	 and	 transient	 channels	 drive	 responses	 in	 central	 early	 visual	 cortex	 and	 ventral	

occipito-temporal	 regions.	 Together	 these	 finding	 resolve	 an	 outstanding	 debate	 and	 lay	 the	

foundation	for	a	complete	temporal	model	of	neural	processing	in	visual	cortex.	Importantly,	this	

encoding	 approach	 can	be	applied	with	 fMRI	 to	decipher	neural	 computations	 in	millisecond	

resolution	 in	 any	 part	 of	 the	 brain,	 which	 has	 vast	 implications	 for	 understanding	 neural	

processing.	
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	 How	 does	 the	 visual	 system	 process	 the	 temporal	 aspects	 of	 the	 visual	 input?	 In	 the	

retina1	 and	 LGN2-4	 temporal	 processing	 is	 thought	 to	 be	 mediated	 predominately	 by	 a	

magnocellular	(M)	pathway	distinguished	by	its	large	transient	responses3,	4	and	a	parvocelluar	

(P)	pathway	which	has	larger	sustained	responses	than	the	M	pathway3,	4 (in	addition	to	a	smaller	

koniocelluar5	pathway).	While	M	and	P	pathways	remain	segregated	up	to	striate	cortex	(V1),	

there	is	intense	debate	as	to	how	these	pathways	contribute	to	visual	processing	in	extrastriate	

cortex.	The	prevailing	view	suggests	that	the	dorsal	stream,	particularly	MT,	is	M	dominated6-8,	

and	the	ventral	stream,	particularly	V4,	is	P	dominated9-11.	However,	an	opposing	view	suggests	

that	these	pathways	are	not	segregated	in	extrastriate	cortex5,	8	as	there	are	substantial	M	and	P	

contributions	to	both	V45,	9	and	MT12,	13.	

	 As	M	and	P	pathways	are	associated	with	transient	and	sustained	responses,	respectively,	

these	 theories	 make	 predictions	 regarding	 temporal	 processing	 in	 human	 visual	 cortex.	 The	

prevailing	view	predicts	that	hMT+	will	have	large	transient	but	small	sustained	responses,	and	

conversely	hV4	will	have	large	sustained	but	small	transient	responses.	However,	the	opposing	

view	predicts	substantial	transient	and	sustained	responses	in	both	hMT+	and	hV4.	While	these	

predictions	are	derived	 from	studies	of	 the	macaque	brain,	 the	human	visual	 cortex	contains	

additional	 regions.	 E.g.,	 on	 the	ventral	 cortical	 surface,	hV4	 is	neighbored	by	areas	VO-1	and	

VO-214,	and	on	the	lateral	surface,	hMT+	is	neighbored	by	LO-1	and	LO-215.	Therefore,	generating	

a	complete	model	of	temporal	processing	in	human	visual	cortex	necessitates	measurements	in	

humans.		

	 Except	for	a	few	studies16,	17,	understanding	temporal	processing	in	human	visual	cortex	

has	seen	little	progress	for	two	main	reasons.	First,	the	temporal	resolution	of	fMRI	is	in	the	order	
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of	seconds18,	an	order	of	magnitude	longer	than	the	timescale	of	neural	processing,	which	is	in	

the	tens	to	hundreds	of	milliseconds17	range.	Second,	while	fMRI	responses	are	largely	linear	for	

long	 stimulus	 presentations19,	 20,	 they	 exhibit	 marked	 nonlinearities	 for	 short	 or	 transient	

stimuli19-24.	Since	the	standard	linear	model	for	fMRI19,	25	is	inadequate	for	modeling	responses	

to	such	stimuli	and	fMRI	is	slow,	the	temporal	processing	characteristics	of	human	visual	cortex	

remain	elusive.		

	 If	 the	observed	nonlinearities	are	of	neural	 (rather	 than	BOLD)	origin,	a	new	encoding	

approach26-29,	which	uses	computational	models	 to	predict	neural	 responses,	 could	surmount	

these	 issues.	 Different	 than	 the	 standard	model,	 which	 directly	 relates	 the	 stimulus	 to	 fMRI	

signals	via	convolution	with	a	hemodynamic	response	function	(HRF),	the	encoding	approach	first	

models	neural	responses	to	the	stimulus;	these	neural	responses	are	convolved	with	the	HRF	to	

yield	fMRI	signals.	The	encoding	approach	has	been	influential	for	two	reasons:	(i)	it	provided	an	

important	 insight	 that	 accurately	modeling	 neural	 responses	 at	 a	 sub-voxel	 resolution	 better	

predicts	 fMRI	 responses	 at	 the	 voxel	 resolution,	 and	 (ii)	 it	 advanced	understanding	of	 neural	

mechanisms	by	building	explicit	quantitative	models	of	neural	computations.	

	 Here	we	sought	to	leverage	the	encoding	approach	to	characterize	temporal	processing	

in	human	visual	cortex.	Thus,	we	built	a	temporal	encoding	model	of	neural	responses	to	time-

varying	visual	stimuli	in	millisecond	resolution	and	used	this	model	to	predict	fMRI	responses	in	

second	resolution.	The	model	 is	based	on	estimation	of	the	transient	and	sustained	channels’	

impulse	 response	 functions	 from	 measurements	 in	 macaque	 V130-32	 and	 psychophysics	 in	

humans33-35.	To	determine	temporal	processing	in	visual	cortex	we	devised	three	experiments	

aimed	to	measure	fMRI	responses	to	time-varying	visual	stimuli	 that	were	either	sustained	(1	
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continuous	image	per	trial,	durations	ranging	from	2	s	to	30	s;	Fig.	1,	Experiment	1),	transient	(30	

flashed,	33	ms	 long,	 images	per	 trial,	 inter-stimulus	 intervals	 ranging	 from	33–967	ms;	Fig.	1,	

Experiment	2),	or	contained	both	transient	and	sustained	components	(30	continuous	images	per	

trial,	 durations	 ranging	 from	 67–1000	ms	 per	 image;	 Fig.	 1,	Experiment	 3).	We	 asked:	 (i)	 Do	

millisecond	 temporal	 variations	 in	 visual	 stimuli	 generate	 reproducible	 modulations	 of	 fMRI	

responses	in	visual	cortex?	(ii)	Does	a	2	temporal-channel	encoding	model	predict	fMRI	responses	

to	 stimuli	 that	 vary	 in	 their	 temporal	 properties	 from	milliseconds	 to	 seconds?	 (iii)	 How	 do	

sustained	 and	 transient	 channels	 contribute	 to	 neural	 responses	 in	 striate	 and	 extrastriate	

cortex?	

	

RESULTS	

Do	Millisecond	Temporal	Variations	in	the	Visual	Stimulus	Modulate	V1	Responses?	

	 To	test	the	feasibility	of	this	approach,	we	first	examined	V1	responses	during	the	three	

experiments.	 Since	 predicted	 fMRI	 responses	 from	 the	 standard	 model	 depend	 only	 on	 the	

duration	of	stimuli,	the	standard	model	predicts	longer	responses	for	longer	trials	and	identical	

responses	in	Experiments	1	and	3	(Fig.	2a,	blue	and	green),	which	use	the	same	visual	stimuli	and	

trial	 durations	 and	 just	 vary	 by	 the	 number	 of	 images	 per	 trial	 (1	 vs.	 30,	 respectively).	

Furthermore,	the	model	predicts	that	the	amplitude	of	responses	 in	Experiments	1	and	3	will	

increase	from	2–8	s	trials	and	will	remain	largely	the	same	for	longer	trials.	While	the	standard	

model	 predicts	 the	 same	 response	 durations	 in	 Experiment	 2,	 it	 predicts	 substantially	 lower	

response	 amplitudes	 in	 Experiment	 2	 than	 Experiments	 1	 and	 3	 because	 the	 transient	 visual	

stimuli	 are	 presented	 for	 only	 a	 fraction	 of	 each	 trial.	 Furthermore,	 the	 model	 predicts	 a	
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progressive	decrease	in	response	amplitude	during	Experiment	2	from	2–30	s	trials	as	the	fraction	

of	the	trial	in	which	visual	stimuli	are	presented	decreases	(from	1/2	to	1/30	of	the	trial,	Fig.	2a,	

red).		

	 While	V1	responses	to	sustained	visual	stimulation	in	Experiment	1	largely	followed	the	

predictions	of	the	standard	model	(Fig.	2a,	blue),	responses	in	Experiments	2	and	3	deviated	from	

the	standard	model’s	predictions.	First,	responses	in	Experiment	3	(Fig.	2b,	green)	were	higher	

than	responses	in	Experiment	1	for	all	trial	durations.	Second,	responses	to	transient	stimuli	in	

Experiment	2	(Fig.	2b,	red)	were	substantially	higher	than	predicted	by	the	standard	model.	In	

fact,	 V1	 responses	 during	 2–8	 s	 trials	 of	 Experiment	 2	 were	 equal	 or	 higher	 than	 those	 of	

Experiment	1,	even	though	the	cumulative	duration	of	stimulation	across	images	in	Experiment	

2	 was	 a	 fraction	 of	 the	 duration	 of	 stimulation	 in	 Experiment	 1.	 Third,	 different	 than	 the	

predictions	of	the	standard	model,	response	amplitudes	in	Experiment	2	did	not	systematically	

decline	with	trial	duration	but	instead	peaked	for	the	4	s	trials.		

	 These	 data	 demonstrate	 that	 (i)	 varying	 the	 temporal	 characteristics	 of	 visual	

presentation	 in	the	millisecond	range	has	profound	effects	on	V1	fMRI	responses,	and	(ii)	 the	

standard	 model	 is	 inadequate	 in	 predicting	 measured	 fMRI	 responses	 for	 these	 stimuli,	 in	

agreement	with	prior	data.	Furthermore,	the	higher	responses	in	Experiment	3	(which	has	both	

sustained	and	transient	visual	stimulation)	compared	to	Experiments	1	and	2	(which	have	either	

sustained	 or	 transient	 stimuli,	 respectively)	 suggest	 that	 both	 transient	 and	 sustained	

components	of	the	visual	input	contribute	to	the	fMRI	signals,	consistent	with	our	hypothesis.		
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An	Encoding	Model	for	Temporal	Processing	in	Visual	Cortex	

	 To	 accurately	 predict	 fMRI	 responses	 in	 all	 three	 experiments,	 we	 built	 a	 temporal	

encoding	model	of	neural	responses	in	millisecond	resolution	and	used	this	model	to	predict	fMRI	

responses	in	second	resolution	(Fig.	3).	Our	model	consists	of	2	neural	temporal	channels,	each	

of	which	can	be	characterized	by	a	linear	systems	approach	using	a	temporal	impulse	response	

function17,	30-32,	34,	35	(IRF).	The	sustained	channel	is	characterized	by	a	monophasic	IRF	(Fig.	3b,	

blue	channel	IRF)	peaking	at	around	40	ms	and	lasting	100–150	ms;	convolving	this	channel	with	

a	visual	stimulus	will	produce	a	sustained	neural	response	for	the	duration	of	the	stimulus.	The	

transient	channel	is	characterized	by	a	biphasic	IRF,	akin	to	a	derivative	function,	with	the	positive	

part	peaking	at	around	35	ms	and	the	negative	part	peaking	at	around	70	ms	(Fig.	3b,	red	channel	

IRF).	A	squaring	nonlinearity	is	added,	as	both	stimulus	onset	and	offset	lead	to	increased	neural	

firing	and	consequently	increased	metabolic	demands17,	36.	Thus,	convolving	the	visual	stimulus	

with	this	transient	IRF	will	produce	a	positive	neural	response	when	there	is	an	onset	or	offset	of	

the	visual	stimulus	but	zero	response	in	between	when	the	stimulus	is	presented	for	durations	

longer	than	the	duration	of	the	IRF.	The	predicted	fMRI	response	is	generated	by	convolving	the	

output	of	each	neural	channel	with	the	HRF	and	summing	the	responses	of	the	two	temporal	

channels	(Fig.	3c).	

Our	procedure	for	testing	the	2	temporal-channel	encoding	model	had	two	stages.	First,	

we	estimated	the	contributions	of	the	two	temporal	channels	to	fMRI	signals	using	concatenated	

data	 from	 Experiments	 1	 and	 2	 that	 were	 designed	 to	 largely	 drive	 sustained	 or	 transient	

channels,	 respectively.	Second,	we	cross-validated	the	model	by	testing	how	well	 it	predicted	

data	 from	 a	 third	 experiment	 that	 had	 both	 transient	 and	 sustained	 visual	 stimulation.	 As	 a	
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benchmark,	we	compared	the	performance	of	the	2	temporal-channel	model	with	the	standard	

model.	

	

Does	a	2	Temporal-Channel	Model	Explain	V1	fMRI	Responses	to	Time-Varying	Stimuli?	

	 Comparing	 the	 predictions	 of	 the	 2	 temporal-channel	model	 to	 V1	 responses	 reveals	

three	findings.	First,	the	2	temporal-channel	model	containing	one	sustained	predictor	(weighted	

by	bS)	and	one	transient	predictor	(weighted	by	bT)	generated	fMRI	signals	that	tracked	both	the	

duration	 and	 amplitude	 of	 V1	 responses	 in	 Experiments	 1	 and	 2	 (Fig.	 4a,	 compare	 model	

prediction,	black,	 to	measured	V1	data,	gray).	 Consistent	with	our	predictions,	 the	 sustained	

channel	accounted	for	the	majority	of	responses	in	Experiment	1	(Fig.	4a,	top	row,	blue),	while	

the	transient	channel	contributed	the	bulk	of	the	response	in	Experiment	2	(Fig.	4a,	bottom	row,	

red).		

Second,	the	2	temporal-channel	model	explains	V1	responses	to	both	Experiments	1	and	

2,	but	the	standard	model	fails	to	explain	responses	to	transient	stimuli	in	Experiment	2.	That	is,	

the	2	temporal-channel	model	fit	to	both	experiments,	explained	62%	±	3%	(mean	±	1	standard	

error	of	the	mean	across	participants,	SEM)	of	V1	response	variance	in	Experiment	1	(Fig.	4d)	and	

51%	±	3%	of	the	variance	in	Experiment	2	(Fig.	4e).	In	contrast,	the	standard	model	fit	to	both	

experiments	explained	61%	±	3%	of	the	variance	in	Experiment	1	(Fig.	4d)	but	less	than	1%	±	1%	

of	the	variance	in	Experiment	2	(Fig.	4e).	Thus,	while	the	standard	model	captured	V1	responses	

to	 the	 long	 stimulus	 presentations	 in	 the	 first	 experiment,	 it	 failed	 to	 capture	 responses	 to	

transient	stimuli	in	the	second	experiment.		

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2017. ; https://doi.org/10.1101/108985doi: bioRxiv preprint 

https://doi.org/10.1101/108985


	 8	

Third,	the	2	temporal-channel	model	with	bS	and	bT	fit	from	Experiments	1	and	2	(Fig.	4c)	

accurately	predicted	independent	data	from	Experiment	3	(Fig.	4b).	The	sustained	contribution	

(Fig.	4a-b,	blue)	in	Experiment	3	was	comparable	to	Experiment	1	(these	experiments	have	the	

same	total	duration	of	stimulation	per	 trial),	and	the	 transient	contribution	 (Fig.	4a-b,	red)	 in	

Experiment	 3	 was	 similar	 to	 Experiment	 2	 (these	 experiments	 have	 the	 same	 number	 of	

transients	per	trial).	Since	both	temporal	channels	provided	a	significant	contribution	to	V1	and	

the	contributions	of	 the	two	channels	are	additive,	Experiment	3	responses	were	higher	than	

both	Experiments	1	and	2	across	all	trial	durations.	Analysis	of	cross-validated	R2	showed	that	the	

2	temporal-channel	model	explained	71%	±	2%	of	variance	in	Experiment	3	(Fig.	4f)	even	though	

the	channel	weights	were	estimated	from	responses	to	independent	data	with	different	temporal	

characteristics.	 The	 cross-validated	R2	 of	 the	2	 temporal-channel	model	was	also	 significantly	

higher	than	the	standard	model	(t11	=	5.92,	p	<	0.001,	paired	t-test),	which	only	explained	63%	±	

3%	of	response	variance	in	Experiment	3	(Fig.	4f).	Thus,	the	2	temporal-channel	model	predicts	

V1	fMRI	responses	to	visual	stimuli	across	a	three-fold	range	of	presentation	durations	ranging	

from	tens	of	milliseconds	to	tens	of	seconds.		

	

Do	Temporal	Processing	Characteristics	Differ	Across	Intermediate	Visual	Areas?	

	 We	 next	 examined	 hV4	 and	 hMT+	 responses	 to	 the	 time-varying	 visual	 stimuli	 in	

Experiments	 1–3,	 as	 the	 competing	 theories	 make	 different	 predictions	 regarding	 the	

contributions	of	 sustained	and	 transient	 channels	 to	 these	 regions.	hV4	and	hMT+	 illustrated	

distinct	 patterns	 of	 responses.	 Like	 V1,	 hV4	 showed	 higher	 responses	 in	 Experiment	 3	 (30	

continuous	 images	 per	 trial)	 than	 either	 Experiment	 1	 (1	 continuous	 image	 per	 trial)	 or	
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Experiment	2	(30	flashed	images	per	trial).	Different	from	V1,	hV4	exhibited	equal	or	stronger	

responses	to	the	brief	transient	visual	stimuli	in	Experiment	2	than	the	sustained	single	images	

in	Experiment	1	(Fig.	5a).	Different	than	both	V1	and	hV4,	hMT+	exhibited	close	to	zero	evoked	

responses	for	the	sustained	stimuli	in	Experiment	1	(except	for	onset	and	offset	responses	that	

are	visible	in	trials	of	8	s	and	longer,	Fig.	5b).	However,	hMT+	showed	substantial	responses	for	

transient	 stimuli	 in	 Experiment	 2	 that	 were	 comparable	 to	 Experiment	 3,	 which	 had	 both	

transient	 and	 sustained	 stimulation.	 Together,	 these	 data	 suggest	 differences	 in	 temporal	

processing	across	hV4	and	hMT+.	

	Next,	we	 quantified	 hV4	 and	 hMT+	 responses	with	 the	 2	 temporal-channel	 encoding	

model.	The	model	fits	revealed	that	(i)	in	hV4	both	channels	contributed	to	responses,	with	the	

contribution	of	the	transient	channel	about	double	that	of	the	sustained	channel	(Fig.	5a,	inset)	

and	(ii)	in	hMT+	the	transient	channel	substantially	contributed	to	responses,	but	the	sustained	

channel	 had	 close	 to	 zero	 contribution	 (Fig.	 5b,	 inset).	 Across	 both	 regions,	 the	 2	 temporal-

channel	model	fit	data	from	Experiment	2	better	than	the	standard	model	(ts	>	4.06,	ps	<	0.01,	

paired	t-test	on	R2	values	for	each	ROI),	and	also	better	predicted	data	from	Experiment	3	than	

the	standard	model	(ts	>	4.18,	ps	<	0.05,	paired	t-test	on	cross-validated	R2	values	for	each	ROI;	

Fig.	5c).	These	results	demonstrate	that	not	only	does	the	2	temporal-channel	model	perform	

significantly	better	than	the	standard	model	at	intermediate	stages	of	the	visual	hierarchy,	but	

that	the	contributions	of	transient	and	sustained	channels	differ	across	hV4	and	hMT+.		
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What	is	the	Topology	of	Sustained	and	Transient	Channels	Across	Visual	Cortex?	

	 To	complement	the	ROI	approach,	we	next	visualized	the	spatial	topology	of	the	sustained	

and	transient	channels	across	visual	cortex,	which	enables	mapping	channel	contributions	at	the	

voxel-level.		

Examining	the	contribution	of	sustained	and	transient	channels	across	ventral	and	lateral	

occipito-temporal	cortex	revealed	two	main	findings.	First,	lateral	occipito-temporal	cortex	was	

devoid	of	contributions	from	the	sustained	channel,	but	had	substantial	contributions	from	the	

transient	channel	(Fig.	6a).	This	effect	was	widespread	and	included	not	only	voxels	in	hMT+,	as	

predicted	by	the	prior	analysis,	but	also	extended	(i)	posteriorly	into	portions	of	lateral	occipital	

areas	LO-1	and	LO-2,	and	(ii)	ventrally	into	the	inferior	occipital	gyrus	and	lateral	fusiform	gyrus.	

Dorsal	 regions	 along	 the	 intraparietal	 sulcus	 also	 showed	 negligible	 sustained	 responses	

(Supplementary	 Fig.	 S3b).	 Second,	 in	 ventral	 occipito-temporal	 cortex,	 regions	 along	 the	

posterior	collateral	sulcus	and	medial	fusiform	gyrus	(where	hV4,	VO-1,	and	VO-2	are	located)	

showed	both	 transient	 and	 sustained	 responses,	with	 larger	 contributions	 from	 the	 transient	

than	sustained	channel	(Fig.	6a).		

	 We	quantified	the	mean	contributions	of	transient	and	sustained	channels	across	visual	

areas	spanning	occipito-temporal	cortex.	Our	results	showed	differences	in	the	contributions	of	

sustained	and	transient	channels	across	early	visual	cortex	 (V1–V3),	ventral	occipito-temporal	

cortex	 (hV4	 and	 VO-1/2),	 and	 lateral	 occipito-temporal	 cortex	 (LO-1/2	 and	 hMT+,	 Fig.	 6b,	

significant	temporal-channel	by	cluster	interaction,	F2,	22	=	13.16,	p	<	0.001,	two-way	ANOVA	on	

b	 weights	 with	 factors	 of	 temporal-channel	 [sustained/transient]	 and	 visual	 cluster	

[early/ventral/lateral]).	 From	 V1	 to	 higher-order	 areas,	 there	 was	 a	 larger	 drop	 in	 the	
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contribution	of	the	sustained	channel	than	the	transient	channel	(Fig.	6b).	Nevertheless,	there	

were	 significant	 differences	 among	 clusters,	 whereby	 in	 ventral	 areas	 both	 sustained	 and	

transient	channels	contributed	to	responses,	but	in	lateral	areas	responses	were	dominated	by	

the	transient	channel.	

The	 spatial	 topology	 of	 sustained	 and	 transient	 channels	 also	 revealed	 differences	 in	

temporal	 processing	 within	 regions.	 Specifically,	 in	 early	 visual	 cortex	 (V1–V3)	 the	 sustained	

channel	was	robust	in	eccentricities	<	20°,	but	declined	in	more	peripheral	eccentricities	(Fig.	7a,	

right).	 In	 contrast,	 the	 transient	 channel	 contributed	 to	 responses	 across	 all	 eccentricities	

including	 peripheral	 ones	 (>	 20°;	Fig.	 7a,	 left).	We	quantified	 these	 effects	 by	measuring	 the	

contributions	of	 the	2	 temporal-channels	across	eccentricities	using	uniformly-sized	disc	ROIs	

defined	 along	 the	 horizontal	 meridian	 representations	 in	 V1	 and	 V2/V3	 (Fig.	 7b).	 This	

quantification	showed	that	in	early	visual	areas	the	magnitude	of	the	sustained	channel	declined	

more	rapidly	with	eccentricity	than	the	transient	channel,	to	the	extent	that	at	eccentricities	of	

40°	there	still	was	a	0.90	±	0.17%	transient	response	but	less	than	0.26	±	0.07%	of	a	sustained	

response	(Fig.	7b).	Further,	the	decline	of	the	sustained	channel	with	eccentricity	occured	more	

rapidly	in	V2/V3	than	V1.	Together,	we	find	a	differential	contribution	of	transient	and	sustained	

channels	across	eccentricities	and	areas	(significant	three-way	interaction	of	temporal	channel	

[sustained	or	transient],	visual	area	[V1	or	V2/V3],	and	eccentricity	[5°,	10°,	20°,	or	40°],	F3,	33	=	

3.18,	p	<	0.05,	three-way	ANOVA	on	the	b	weights).		
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DISCUSSION	

	 Our	 results	 show	 that	 a	 2	 temporal-channel	 model	 of	 neural	 responses,	 containing	

sustained	and	transient	channels,	is	a	parsimonious	encoding	model	that	predicts	fMRI	responses	

in	human	visual	cortex	to	visual	stimuli	across	a	broad	range	of	durations	spanning	from	tens	of	

milliseconds	to	tens	of	seconds.	The	transient	channel	dominates	responses	in	lateral	occipito-

temporal	 regions	 and	peripheral	 eccentricity	 representations	of	 early	 visual	 cortex.	However,	

both	sustained	and	transient	channels	drive	responses	 in	ventral	occipito-temporal	regions	as	

well	as	foveal	and	parafoveal	eccentricities	of	early	visual	cortex.	Critically,	our	data	address	the	

ongoing	debate	regarding	the	contribution	of	sustained	and	transient	channels	 in	extrastriate	

cortex.	Consistent	with	the	prevailing	view2,	6,	7,	we	find	that	the	transient	channel	dominates	

hMT+	 responses	and	show	 for	 the	 first	 time	 that	 this	 characteristic	extends	 to	human	 lateral	

occipito-temporal	 cortex	 more	 generally.	 In	 contrast,	 we	 find	 a	 surprisingly	 large	 transient	

contribution	to	responses	in	hV4	and	neighboring	ventral	occipito-temporal	regions,	suggesting	

that	not	just	sustained	but	also	transient	channels	drive	responses	in	ventral	extrastriate	cortex.		

	

Differential	Transient	and	Sustained	Responses	Across	Visual	Cortex		

	 Our	research	fills	a	large	gap	in	knowledge	regarding	temporal	processing	in	human	visual	

cortex	by	showing	that	(i)	the	2	temporal-channel	model	is	applicable	to	at	least	10	additional	

visuals	 areas	beyond	V117,	 30-32,	 and	 (ii)	 temporal	 processing	 is	 a	 key	 functional	 attribute	 that	

differentiates	visual	areas.		

	 Our	observation	that	hMT+	responses	to	sustained	stimuli	are	close	to	zero	is	consistent	

with	the	prevailing	view	that	(i)	hMT+	is	involved	in	processing	visual	dynamics	rather	than	static	
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information,	and	that	(ii)	inputs	to	hMT+	are	M	dominated7.	Notably,	we	found	that	neighboring	

regions,	LO-1	and	LO-2,	also	have	close	to	zero	sustained	responses.	This	finding	is	interesting	

because	LO-2,	which	is	thought	to	be	involved	in	visual	processing	of	objects15,	37	and	bodyparts38,	

shows	 more	 robust	 responses	 to	 rapidly	 presented	 stimuli	 compared	 to	 nearby	 category-

selective	 regions39.	The	present	data	suggest	 that	 this	 characteristic	may	be	an	outcome	of	a	

dominant	transient	channel	–	a	hypothesis	that	can	be	tested	in	future	research.		

	 Inconsistent	 with	 the	 prevailing	 view,	 we	 found	 that	 hV4	 showed	 not	 only	 sustained	

responses	as	expected8,	10,	24,	40,	but	also	large	transient	responses.	This	observation	is	consistent	

with	findings	of	both	P	and	M	inputs	to	V45,	9.	While	the	sustained	channel	has	been	associated	

with	 coding	 static	 visual	 input	 and	 the	 transient	 channel	with	 coding	 visual	 dynamics10,	 11,	 41,	

transient	 visual	 information	 is	 also	 indicative	 of	 changes	 to	 the	 content	 of	 the	 visual	 scene.	

Indeed,	in	our	experiments,	transients	occurred	when	the	content	of	stimuli	changed	(i.e.,	when	

a	new	image	was	shown	or	an	image	was	replaced	by	a	uniform	gray	screen).	Since	the	function	

of	the	ventral	stream	is	to	infer	what	is	in	the	visual	scene,	it	is	beneficial	for	ventral	regions	to	

be	 sensitive	 to	 changes	 in	 the	 visual	 input42.	 Results	 of	 our	 experiments	 suggest	 that	 ventral	

stream	regions	(hV4,	VO1/2)	are	in	fact	sensitive	to	rapid	changes	to	the	visual	scene.	Transient	

processing	in	the	ventral	stream	may	foster	detection	of	novel	stimuli	and	rapid	extraction	of	the	

gist	of	the	visual	input.		

	 It	is	interesting	that	temporal	processing	in	lateral	occipito-temporal	regions,	like	that	of	

far	peripheral	eccentricities	(>	20°)	in	early	visual	cortex,	was	dominated	by	the	transient	channel,	

and	temporal	processing	in	ventral	occipito-temporal	regions,	 like	lower	eccentricities	 in	early	

visual	 cortex,	 showed	 a	 dual	 channel	 contribution.	 These	 functional	 characteristics	 may	 be	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2017. ; https://doi.org/10.1101/108985doi: bioRxiv preprint 

https://doi.org/10.1101/108985


	 14	

anatomically	supported	by	white	matter	connections	from	peripheral	representations	of	early	

visual	 areas	 to	 MT	 and	 nearby	 regions43	 and	 white	 matter	 connections	 from	 central	

representations	of	early	visual	cortex	to	ventral	occipito-temporal	regions44.	Furthermore,	the	

diminished	sustained	responses	 in	the	periphery	of	early	visual	cortex	 is	consistent	with	prior	

findings	 showing	 reduced	 P	 inputs45	 and	 diminished	 sustained	 luminance	 responses17	 in	

peripheral	compared	to	central	V1,	as	well	as	faster	perception	in	the	periphery46.		

	

Implications	for	Modeling	fMRI	Signals:	Millisecond	Timing	Matters	

	 Our	data	have	important	implications	regarding	modeling	fMRI	signals	and	interpreting	

results	 of	 temporal	 processing	 in	 the	 human	 brain	 because	 they	 show	 that	 (i)	 varying	 the	

temporal	characteristics	of	the	visual	stimulus	in	the	millisecond	range	has	observable	effects	on	

fMRI	responses	in	the	second	range	and	(ii)	by	considering	the	contribution	of	a	transient	neural	

channel,	the	encoding	model	can	account	for	nonlinearities	in	fMRI	responses	for	rapid	and	short	

visual	stimuli19-21,	23,	47.		

	 Our	data	extend	the	original	linear	model	of	fMRI	signals19,	25	by	showing	the	importance	

of	modeling	the	temporal	properties	of	neural	responses	at	millisecond	resolution	to	accurately	

predict	fMRI	signals.	In	their	original	study,	Boynton	et	al.19	noted	consistent	deviations	from	the	

linear	 (standard)	model	 in	 short	 durations	 (3–6	 s)	 in	 which	 the	model	 underestimated	 fMRI	

signals.	These	nonlinearities	are	exacerbated	in	experiments	using	even	shorter	stimuli	(1/4	to	

2	s21,	23,	47).	Boynton	and	colleagues	suggested	that	neural	adaptation	or	transient	responses	may	

explain	deviations	from	linearity.	We	favor	the	interpretation	that	transient	responses	account	

for	nonlinearities	for	two	reasons:	(i)	Taking	into	account	the	neural	transient	channel	resolves	
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this	 nonlinearity	 and	 can	 predict	 not	 only	 our	 measurements	 but	 also	 prior	 data	 showing	

nonlinearities23	 (Supplementary	 Fig.	 S4).	 (ii)	 Adaptation	 would	 have	 resulted	 in	 declining	

responses	 during	 long	 trials	 of	 continuous	 presentation	 of	 a	 single	 stimulus42.	 However,	 we	

observed	negligible	adaptation	in	early	(e.g.	V1)	and	intermediate	(e.g.	hV4)	areas	even	during	

the	30	s	single	continuous	image	trials.	As	adaptation	increases	across	the	visual	hierarchy40,	48,	

adding	to	the	2	temporal-channel	model	an	adaptation	component20	or	compressive	temporal	

summation49	may	enhance	model	fits	in	higher-order	areas.		

	 	It	 is	worthwhile	noting	that	while	the	2	temporal-channel	model	provides	a	significant	

improvement	in	modeling	fMRI	signals,	our	model	does	not	explain	the	entire	variance	of	fMRI	

signals	(Supplementary	Fig.	S2).	Therefore,	an	important	direction	for	future	research	will	be	to	

combine	the	2	temporal-channel	model	with	a	spatial	receptive	field	model26-29	to	generate	a	

complete	spatio-temporal	understanding	of	visual	responses.		

	 Given	the	pervasive	use	of	the	standard	linear	model	in	fMRI	research,	our	results	have	

broad	implications	for	fMRI	studies	in	any	part	of	the	brain.	We	find	that	timing	of	stimuli	in	the	

millisecond	range	has	a	large	impact	on	the	magnitude	of	fMRI	responses,	which	has	important	

implications	for	interpreting	results	of	studies	that	vary	the	temporal	characteristics	of	stimuli	

across	 conditions	 (e.g.50).	 Critically,	 we	 demonstrate	 that	 rather	 than	 ignoring	 fast	 cortical	

processing	 because	 of	 nonlinearities	 in	 the	 standard	model,	 it	 is	 possible	 to	 generate	 neural	

predictions	at	sub-second	resolution	and	use	them	to	accurately	predict	 fMRI	responses.	This	

encoding	 approach	 thus	 opens	 exciting	 new	 opportunities	 for	 investigating	 fast	 cortical	

mechanisms	 using	 fMRI	 in	 many	 domains	 including	 somatosensory,	 auditory,	 and	 high-level	

cognitive	processing.		
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	 In	 sum,	 our	 experiments	 elucidate	 the	 characteristics	 of	 temporal	 processing	 across	

human	visual	cortex.	These	findings	are	important	because	they	(i)	explicate	for	the	first	time	the	

contribution	of	transient	and	sustained	visual	responses	across	human	visual	cortex	beyond	V1,	

and	 (ii)	 show	 that	 accounting	 for	 neural	 responses	 at	 the	 millisecond	 range	 has	 important	

consequences	for	understanding	fMRI	signals	in	the	second	range	in	any	part	of	the	brain.	
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FIGURES	
	

	

	
Figure	1:	Measuring	brain	responses	to	combinations	of	sustained	and	transient	visual	stimuli:	
Experimental	design.	 (a)	Participants	 fixated	centrally	and	viewed	phase-scrambled	gray-level	
images	that	were	presented	 in	trials	of	different	durations,	 interleaved	with	12	s	periods	of	a	
blank	screen.	The	same	fixation	task	(detecting	change	 in	fixation	color)	was	used	 in	all	 three	
experiments.	Experiment	1:	a	single	phase	scrambled	image	was	shown	for	the	duration	of	a	trial.	
Experiment	2:	30	briefly	presented	images	(33	ms	each),	each	followed	by	a	blank	screen,	were	
presented	 in	 each	 trial.	 As	 the	 trial	 duration	 lengthens,	 the	 gap	 between	 images	 increases,	
causing	 the	 fraction	 of	 the	 trial	 containing	 visual	 stimulation	 to	 decrease.	 Experiment	 3:	 30	
continuous	images	(with	no	gaps	between	consecutive	stimuli)	were	presented	in	each	trial.	As	
the	block	duration	lengthens,	the	duration	of	each	image	progressively	increases.	(b)	The	same	
trial	durations	(2,	4,	8,	15	or	30	s)	were	utilized	across	all	three	experiments	while	the	rate	and	
duration	of	visual	presentation	varied	between	experiments.	Corresponding	trials	in	Experiments	
1	and	3	have	the	same	overall	duration	of	stimulation	but	different	numbers	of	stimuli,	whereas	
trials	 in	 Experiments	 2	 and	 3	 have	 the	 same	 number	 of	 stimuli	 but	 different	 durations	 of	
stimulation.	Top:	stimulation	durations	for	example	trial	in	each	experiment;	Bottom:	zoom	on	
the	2	s	and	4	s	trials.		
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Figure	2:	V1	responses	to	transient	stimuli	differ	from	the	predictions	of	the	standard	model.	
(a)	 The	 standard	 model	 predicts	 the	 same	 response	 in	 trials	 of	 the	 same	 duration	 across	
Experiment	1	(blue)	and	Experiment	3	(green),	since	both	present	stimuli	continuously	for	the	
same	total	duration	in	each	trial.	However,	responses	in	Experiment	2	(red)	are	predicted	to	be	
much	lower	because	stimuli	are	spaced	apart	and	are	only	presented	for	a	fraction	of	each	trial	
duration.	(b)	The	mean	V1	response	in	Experiments	1–3	averaged	across	12	participants.	Each	
curve	is	data	from	a	different	experiment	(see	legend).	Shaded	regions	around	the	curves	indicate	
±	1	standard	error	of	the	mean	(SEM)	across	12	participants.	In	both	(a)	and	(b)	the	onsets	and	
lengths	of	the	trials	are	illustrated	as	thick	black	bars	below	each	graph,	and	curves	extend	2	s	
before	the	onset	and	12	s	after	the	offset	each	trial.		
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Figure	3:	The	2	temporal-channel	model.	(a)	Transitions	between	stimulus	and	baseline	screens	
are	 coded	 as	 a	 step	 function	 representing	 when	 a	 stimulus	 was	 on	 vs.	 off	 with	 millisecond	
temporal	resolution.	In	the	example	illustrated	here,	each	stimulus	is	presented	for	33	ms	and	
followed	by	a	100	ms	blank	screen.	(b)	Separate	neural	responses	for	the	sustained	(blue)	and	
transient	(red)	channels	are	modeled	by	convolving	the	stimulus	vector	with	impulse	response	
functions	(IRFs)	for	the	sustained	and	transient	channels,	respectively,	estimated	from	human	
psychophysics.	 A	 squaring	 nonlinearity	 is	 applied	 in	 the	 transient	 channel	 to	 rectify	 offset	
deflections	 (see	 Online	 Methods).	 (c)	 Sustained	 and	 transient	 fMRI	 response	 predictors	 are	
generated	 by	 convolving	 each	 channel’s	 neural	 responses	 with	 the	 hemodynamic	 response	
function	(HRF)	and	downsampling	to	match	the	temporal	acquisition	rate	of	fMRI	data.	The	total	
fMRI	 response	 is	 the	 sum	 of	 the	weighted	 sustained	 and	 transient	 fMRI	 predictors	 for	 each	
channel.	 To	 estimate	 the	 contributions	 (b	weights)	 of	 the	 sustained	 (bS)	 and	 transient	 (bT)	
channels	 in	 V1,	 we	 fit	 the	 2	 temporal-channel	 model	 across	 data	 concatenated	 across	
Experiments	1	and	2.	
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Figure	 4:	 Sustained	 and	 transient	 contributions	 to	 V1	 fMRI	 responses.	 (a)	 Measured	 V1	
responses	in	Experiments	1	and	2	are	plotted	as	the	mean	(white)	±	1	standard	deviation	(gray)	
across	 12	 participants	 for	 each	 trial	 duration.	 Superimposed	 are	 the	 predictions	 of	 the	 2	
temporal-channel	 model	 fit	 across	 data	 from	 both	 experiments.	 Blue:	 sustained	 predictor	
weighted	by	bS;	Red:	 transient	predictor	weighted	by	bT;	Black:	prediction	of	 the	2	 temporal-
channel	model,	which	is	the	addition	of	the	two	channels.	(b)	Measured	V1	responses	and	cross-
validated	 model	 prediction	 for	 Experiment	 3.	 The	 sustained	 and	 transient	 predictors	 are	
respectively	weighted	with bS	and	bT	fitted	from	Experiments	1	and	2	[see	(c)].	In	all	panels,	trial	
durations	are	illustrated	below	the	x-axis,	and	curves	extend	2	s	before	the	onset	and	12	s	after	
the	offset	each	trial.	(c)	The	model	solution	(bS	and	bT)	for	V1	fit	with	the	two	temporal-channel	
model	using	data	concatenated	across	Experiments	1	and	2.	 (d-f)	Comparison	of	 the	variance	
explained	(R2)	by	2	temporal-channel	model	vs.	the	standard	model	for	each	experiment.	Error	
bars	in	(c–f)	indicate	±	1	SEM	across	participants.		 	
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Figure	5:	Differential	sustained	and	transient	contributions	across	hV4	and	hMT+.	(a)	hV4	and	
(b)	hMT+	responses	for	Experiment	1	(blue),	Experiment	2	(red),	and	Experiment	3	(green).	Curves	
show	mean	(solid	line)	±	1	SEM	across	12	participants	(shaded	area).	Trial	durations	are	indicated	
by	the	thick	black	lines	below	the	x-axis,	and	curves	extend	2	s	before	the	onset	and	12	s	after	
the	offset	each	trial.	The	model	solution	(bS	and bT)	for	each	region	is	plotted	to	as	an	inset	with	
error	bars	representing	±	1	SEM	across	participants.	(c)	Comparison	of	the	variance	explained	(R2)	
by	2	temporal-channel	model	vs.	the	standard	model,	both	fit	across	data	from	Experiments	1	
and	2.	Model	performance	is	quantified	separately	for	each	experiment	both	for	hV4	(top)	and	
hMT+	(bottom).	Error	bars	indicate	±	1	SEM	across	participants.		

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2017. ; https://doi.org/10.1101/108985doi: bioRxiv preprint 

https://doi.org/10.1101/108985


	 22	

	
	
Figure	6:	Differential	transient	and	sustained	contributions	across	ventral	and	lateral	regions.	
(a)	Ventrolateral	view	of	occipito-temporal	cortex	(see	inset)	depicting	group-averaged	(N	=	12)	
maps	of	the	contributions	of	transient	(left)	and	sustained	(right)	channels.	We	first	estimated	b	
weights	of	each	channel	in	each	voxel	in	each	participant’s	native	brain	space. b	weight	maps	
were	transformed	to	the	FreeSurfer	average	brain	using	cortex-based	alignment	and	averaged	
across	participants	in	this	common	cortical	space.	The	resulting	group	maps	were	thresholded	to	
exclude	voxels	with	weak	contributions	(−0.1	>	b	>	0.1).	Boundaries	of	ventral	and	lateral	regions	
(black)	 are	 derived	 from	 the	 Wang	 Atlas,	 with	 hMT+	 as	 the	 union	 of	 TO-1	 and	 TO-2.	 (b)	
Contributions	(b	weights)	of	transient	(x-axis)	and	sustained	(y-axis)	channels	to	each	visual	area	
as	estimated	by	the	2	temporal-channel	model.	Marker	size	spans	±	1	SEM	across	12	participants	
in	 each	 dimension	 and	 b	 weights	 were	 solved	 by	 fitting	 the	 2	 temporal-channel	 using	 data	
concatenated	across	Experiments	1	and	2.		
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Figure	 7:	 Differential	 transient	 and	 sustained	 contributions	 across	 central	 and	 peripheral	
eccentricities.	 (a)	 Medial	 cortical	 surface	 zoomed	 on	 the	 occipital	 lobe	 (see	 inset)	 depicting	
group-averaged	 (N	 =	 12)	 maps	 of	 the	 contributions	 of	 transient	 (left)	 and	 sustained	 (right)	
channels.	We	first	estimated	b	weights	of	each	channel	in	each	voxel	in	each	participant’s	native	
brain	 space. b	weight	maps	were	 transformed	 to	 the	 FreeSurfer	 average	 brain	 using	 cortex-
based	alignment	and	averaged	across	participants	in	this	common	cortical	space.	The	resulting	
group	maps	were	thresholded	to	exclude	voxels	with	weak	contributions	(−0.1	>	b	>	0.1).	Regional	
boundaries	 (black)	 and	 eccentricity	 bands	 (white)	 of	 early	 visual	 areas	 are	 derived	 from	 the	
Benson	 Atlas.	 (b)	 Contributions	 of	 transient	 (x-axis)	 and	 sustained	 (y-axis)	 channels	 across	
eccentricities	along	the	horizontal	representation	in	V1	(grays)	and	V2/V3	(blues)	as	estimated	
by	the	2	temporal-channel	model.	Eccentricities	range	from	5°	(lightest	markers)	to	40°	(darkest	
markers).	Marker	size	spans	±	1	SEM	across	12	participants	in	each	dimension	and	b	weights	were	
solved	by	fitting	the	2	temporal-channel	using	data	concatenated	across	Experiments	1	and	2.		
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ONLINE	METHODS	

	

Participants	

Twelve	 participants	 (6	 males,	 6	 females)	 with	 normal	 or	 corrected-to-normal	 vision	

participated	 in	 this	 study.	 All	 participants	 provided	 written	 informed	 consent,	 and	 the	

experimental	protocol	was	approved	by	the	Stanford	University	Institutional	Review	Board.	Each	

individual	participated	in	three	fMRI	sessions,	two	used	to	fit	and	validate	the	2	temporal-channel	

model,	and	one	session	 in	which	we	conducted	population	receptive	 field	 (pRF)	mapping26	 to	

define	 retinotopic	 cortical	 regions	and	another	experiment	 to	define	human	motion-sensitive	

area	(hMT+)51-53.		

	

Temporal	Channels	Experiments	

Visual	stimuli	

We	 used	 full-field	 phase-scrambled	 stimuli	 to	 generate	 robust	 visual	 responses	 while	

minimizing	 cognitive	 factors.	 Stimuli	 consisted	 of	 grayscale	 images	 that	 were	 generated	 by	

randomizing	the	phase	spectrum	of	naturalistic	images	used	in	our	previous	publications39	(Fig.	

1a,	right).	We	normalized	the	mean	luminance	and	distribution	of	grayscale	values	in	each	image	

using	the	SHINE	toolbox54.	Stimuli	were	displayed	to	participants	in	the	scanner	using	an	Eiki	LC-

WUL100L	projector	(resolution:	1920	x	1200;	refresh	rate:	60	Hz)	that	was	controlled	by	an	Apple	

MacBook	Pro	using	MATLAB	(www.mathworks.com)	and	functions	from	Psychophysics	Toolbox55	

(http://psychtoolbox.org).	Participants	viewed	the	projected	images	through	an	auxiliary	mirror	

mounted	on	the	RF	coil.	The	mirror	was	adjusted	in	each	participant	such	that	stimuli	spanned	
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approximately	 40°	 of	 visual	 angle	 in	 the	 vertical	 dimension	 and	 60°	 of	 visual	 angle	 in	 the	

horizontal	dimension.		

Experimental	design	

To	obtain	data	that	can	be	used	to	estimate	and	test	the	2	temporal-channel	encoding	

model,	we	introduce	a	novel	fMRI	paradigm	that	estimates	independent	sustained	and	transient	

contributions	 to	 fMRI	 responses	 across	 visual	 cortex	 using	 three	 experiments.	 All	 three	

experiments	used	the	same	stimuli,	trial	durations,	and	task,	and	only	varied	in	their	temporal	

presentation	of	the	stimuli	as	detailed	below	and	illustrated	in	Fig.	1.		

Experiment	1	—	largely	sustained	stimulation:	phase-scrambled	 images	were	shown	in	

trials	of	varying	durations	(2,	4,	8,	15,	or	30	s	per	trial)	in	which	a	single	phase-scrambled	image	

was	shown	for	the	entire	duration	of	the	trial	(Fig.	1,	blue).	Before	and	after	each	trial	there	was	

a	12	s	baseline	period	(blank	gray	screen	matched	to	the	mean	luminance	of	the	stimuli).	Across	

trials	the	number	of	stimuli	(one	per	trial)	and	transients	(at	the	onset	and	offset	of	each	stimulus)	

are	matched;	just	the	duration	of	sustained	stimulation	varies.	This	experiment	was	designed	to	

primarily	activate	the	sustained	channel,	especially	in	the	long	trials.		

Experiment	2	—	largely	transient	stimulation:	used	the	same	trial	durations	and	general	

experimental	 design	 as	 Experiment	 1,	 except	 that	 in	 each	 trial	 30	 different	 phase-scrambled	

images	were	shown	briefly,	each	for	33	ms.	Thus,	the	number	of	stimuli,	number	of	transients,	

and	total	duration	of	visual	stimulation	are	matched	across	trial	durations.	The	only	factor	that	

varied	across	trials	was	the	inter-stimulus	interval	(ISI)	between	consecutively	presented	images.	

The	ISI	consisted	of	a	blank	mean-luminance	screen	that	was	33	ms	long	in	the	2	s	trials,	100	ms	

in	the	4	s	trials,	233	ms	in	the	8	s	trials,	467	ms	in	the	15	s	trials,	and	967	ms	in	the	30	s	trials	(Fig.	
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1,	red).	This	experiment	was	designed	to	maximally	drive	the	transient	channel	and	minimally	the	

sustained	channel	since	each	image	was	shown	for	only	33	ms.		

Experiment	3	—	combined	sustained	and	transient	stimulation:	used	the	same	design	as	

Experiment	2,	except	that	in	each	trial	we	presented	30	different	phase-scrambled	images	in	a	

continuous	fashion	without	an	ISI	between	sequential	images.	The	durations	of	images	(67,	133,	

267,	500,	or	1000	ms	per	image)	varied	across	trials	that	were	matched	in	length	to	Experiments	

1,	whereby	the	67	ms	presentations	occurred	 in	the	2	s	 trials	and	the	1000	ms	presentations	

occurred	 in	 the	 30	 s	 trials	 (Fig.	 1,	 green).	 This	 experiment	 was	 designed	 to	 drive	 both	 the	

sustained	and	transient	channels:	(i)	during	the	entire	trial	duration	there	was	always	a	stimulus	

on	the	screen	and	(ii)	there	were	always	30	different	images	per	trial.	

Task:	In	all	three	experiments,	participants	were	instructed	to	fixate	on	a	small,	central	

dot,	and	respond	by	button	press	when	it	changed	color	(occurring	randomly	once	every	2–14	s,	

8	s	on	average).		

Experiments	 were	 designed	 such	 that	 if	 the	 sustained	 component	 is	 dominant,	 then	

Experiments	1	and	3	should	yield	similar	responses	since	they	have	the	same	overall	duration	of	

stimulation.	However,	if	the	transient	component	is	dominant	then	responses	in	Experiments	2	

and	3	 should	be	 similar	as	 they	have	 the	 same	number	of	 transients.	 Finally,	 if	 transient	and	

sustained	channels	contribute	 independently	 to	 responses,	 then	 fMRI	signals	 in	Experiment	3	

that	has	both	types	of	visual	stimulation	should	be	higher	than	either	Experiments	1	or	2.	

Data	acquisition	

Data	were	obtained	with	a	TR	of	1	s	and	a	surface	coil,	collecting	16	slices	per	acquisition.	

To	gain	full	coverage	of	occipitotemporal	cortex,	all	participants	completed	two	scan	sessions	on	
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different	days	with	partially	overlapping	slice	prescriptions.	In	each	session	participants	viewed	

three	288	s	runs	of	each	experiment.	Each	run	of	each	experiment	contained	of	two	repeats	of	

each	trial	duration	presented	in	random	order.	Data	from	different	sessions	were	pooled	in	each	

participant's	 volume	 anatomy.	 The	 three	 runs	 of	 each	 experiment	 were	 blocked	 in	 each	

participant,	and	the	order	of	experiments	was	counterbalanced	between	participants.		

Population	 receptive	 field	 (pRF)	 mapping:	 To	 delineate	 retinotopic	 boundaries,	 we	

collected	four	200	s	runs	of	pRF	mapping	in	each	participant,	same	as	in	Dumoulin	and	Wandell26.	

In	this	experiment,	a	bar	swept	across	a	circular	aperture	(40°	by	40°	of	visual	angle)	 in	eight	

directions	and	baseline	periods	were	interspersed	throughout	each	run.	Participants	performed	

the	same	color	exchange	fixation	task	as	in	the	main	experiments.	We	used	the	data	to	generate	

polar	angle	and	eccentricity	maps,	which	were	used	to	define	retinotopic	visual	areas	as	in	our	

prior	publications38,	39,	56.	

hMT+	localizer:	To	functionally	define	hMT+,	in	each	participant	we	collected	one	300	s	

run	of	a	motion	localizer	experiment38.	In	this	experiment,	low	contrast,	40°	by	40°,	concentric	

rings	alternated	between	16	s	periods	of	motion	(expansion/contraction)	and	16	s	periods	of	a	

stationary	display.	The	experiment	contained	6	cycles	of	alternating	moving	and	stationary	trials.	

Participants	performed	the	color	exchange	fixation	task.		

Magnetic	Resonance	Imaging	(MRI)	

MRI	data	were	collected	using	a	3T	GE	Signa	MR750	scanner	at	the	Center	for	Cognitive	

and	Neurobiological	Imaging	(CNI)	at	Stanford	University.		

fMRI:	 We	 used	 a	 Nova	 16-channel	 visual	 array	 coil	 (http://novamedical.com)	 to	 give	

participants	 a	 large	 unobstructed	 visual	 field	 of	 view.	 In	 each	 participant,	 we	 acquired	 two	
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partially-overlapping	 oblique	 slice	 prescriptions	 in	 separate	 scan	 sessions	 that	 together	 fully	

cover	occipitotemporal	cortex	(resolution:	2.4	×	2.4	×	2.4	mm;	one-shot	T2*-sensitive	gradient	

echo	acquisition	sequence:	FOV	=	192	mm,	TE	=	30	ms,	TR	=	1000	ms,	and	flip	angle	=	73°).	We	

also	collected	T1-weighted	inplane	images	with	the	same	prescription	as	the	functional	data	to	

align	each	participant's	data	to	their	high-resolution	whole	brain	anatomy.	

In	a	separate	session,	we	obtained	pRF	mapping	and	hMT+	localizer	data	with	the	same	

RF	coil	setup	and	spatial	resolution	using	28	oblique	slices	covering	the	same	brain	volume	but	

with	a	longer	TR	(resolution:	2.4	×	2.4	×	2.4	mm;	one-shot	T2*-sensitive	gradient	echo	acquisition	

sequence:	FOV	=	192	mm,	TE	=	30	ms,	TR	=	2000	ms,	and	flip	angle	=	77°).	We	again	collected	T1-

weighted	inplane	images	in	the	same	prescription	to	finely	align	inplane	data	to	the	whole	brain	

anatomy	of	each	participant.	

Anatomical	MRI:	We	acquired	a	whole-brain,	anatomical	volume	in	each	participant	using	

a	Nova	32-channel	head	coil	(resolution:	1	×	1	×	1	mm;	T1-weighted	BRAVO	pulse	sequence:	TI	=	

450	ms,	flip	angle	=	12°,	1	NEX,	FOV	=	240	mm).		

	

Data	analysis		

Data	were	analyzed	with	MATLAB	using	code	from	vistasoft	(http://github.com/vistalab)	

and	FreeSurfer	(http://freesurfer.net).	

Data	pre-processing		

Functional	 data	 were	 aligned	 to	 each	 participant’s	 native	 anatomical	 space	 using	 T1-

weighted	inplane	images,	and	volumes	acquired	within	the	first	8	s	of	each	run	were	discarded	

to	allow	time	for	magnetization	to	stabilize.	We	then	performed	slice	time	correction,	motion	
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compensation	(within	and	between	scans),	and	transformed	voxel	time	series	to	units	of	percent	

signal	change.	To	normalize	the	baseline	 level	of	response	across	experiments,	we	subtracted	

from	time	points	in	each	run	the	mean	signal	across	the	4	s	periods	preceding	the	trial	onsets	in	

each	 run.	 This	 baseline	 removal	 procedure	 centers	 the	mean	 response	 for	 the	 blank	 screen	

around	 zero	 to	 improve	 cross-validation	 performance57	 and	 to	 enable	 comparison	 of	 trial	

responses	relative	to	the	blank	baseline.		

Region	of	interest	(ROI)	definition		

Areas	 V1,	 V2,	 V3,	 V3A,	 V3B,	 hV4,	 VO-1,	 VO-2,	 LO-1,	 and	 LO-2	 were	 defined	 in	 each	

participant’s	native	anatomical	space	using	data	from	the	pRF	mapping	experiment	as	in	prior	

publications38,	 39,	 56	 (Supplementary	 Fig.	 S2a).	 To	 improve	model	 performance	 in	 later	 visual	

areas,	we	fit	one	pRF	to	the	run-averaged	time	series	of	each	voxel	using	the	compressive	spatial	

summation	(CSS)	variant	of	the	standard	pRF	model58,	59.	ROIs	were	drawn	bilaterally	on	each	

participant’s	cortical	surface	using	the	resulting	polar	angle	and	eccentricity	maps.	We	excluded	

from	ROI	analyses	voxels	with	pRF	fits	that	explain	less	than	5%	of	their	response	variance.	Dorsal	

visual	areas	V3A	and	V3B	were	also	defined	in	each	participant,	but	here	we	focus	on	regions	in	

early	visual	cortex	(V1,	V2,	and	V3),	ventral	occipito-temporal	cortex	(hV4,	VO-1,	and	VO-2),	and	

lateral	occipito-temporal	cortex	(LO-1,	LO-2,	and	hMT+)	because	these	regions	have	been	more	

widely	studied	with	regard	to	their	temporal	capacity	than	dorsal	stream	regions7,	9,	24,	30-32,	60.	

Data	for	V3A	and	V3B	are	included	in	Supplementary	Fig.	S3.		

We	 defined	 hMT+	 bilaterally	 in	 each	 participant	 using	 data	 from	 the	motion	 localizer	

experiment	 as	 described	 in	 our	 previous	 publications38.	 hMT+	 was	 defined	 as	 voxels	 in	 the	
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posterior	 inferior	 temporal	 sulcus61	 that	 responded	 significantly	 (t	>	 3)	more	 to	moving	 than	

stationary	stimuli.	

2	temporal-channel	model		

In	 typical	 analysis	 of	 fMRI	 responses19,	 25,	 the	 stimulus	 vector	 is	 convolved	 with	 the	

hemodynamic	response	function	(HRF)	to	obtain	a	prediction	of	the	fMRI	response.	However,	

this	 model	 does	 not	 account	 for	 distinct	 temporal	 channels	 of	 neural	 responses30-32,	 62.	 To	

generate	predicted	fMRI	responses	accounting	for	the	temporal	channels,	we	implemented	an	

encoding	approach	similar	to	Horiguchi17.		

The	 model	 illustrated	 in	 Fig.	 3	 shows	 the	 procedure.	 First,	 we	 estimate	 the	 neural	

response	of	each	channel	by	convolving	the	stimulus	(Fig.	3a)	separately	with	the	neural	impulse	

response	function	(IRF)	for	the	sustained	channel	(Fig.	3b,	blue	channel	 IRF)	and	the	transient	

channel	 (Fig.	3b,	 red	channel	 IRF).	This	generates	 the	predicted	neural	 response	 to	 the	visual	

stimulus	for	each	channel.	Then,	the	estimated	neural	responses	for	each	channel	are	convolved	

with	the	hemodynamic	response	function	(HRF,	Fig.	3c)	and	summed	to	generate	a	prediction	of	

the	fMRI	response.	We	use	a	general	 linear	model	(GLM)	to	solve	for	the	contributions	of	the	

sustained	and	transient	channels	(b	weights)	given	the	measured	fMRI	responses.		

The	 sustained	 neural	 channel	 is	 characterized	 by	 a	monophasic	 IRFS	 that	 generates	 a	

response	for	the	entire	duration	of	a	stimulus.	The	transient	neural	channel	is	characterized	by	a	

biphasic	IRFT	that	generates	a	brief	response	at	the	onset	and	offset	of	an	image30-32,	34,	35.	The	

transient	 channel	 also	 contains	 a	 nonlinearity	 (squaring	 operation),	 that	 generates	 positive	

responses	both	from	the	onset	and	offset	of	the	stimulus,	as	firing	rates	associated	with	transient	

‘on’	or	‘off’	responses	are	positive63	and	metabolically	demanding17,	36.	The	nonlinearities	in	this	
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model	are	at	the	neural	level,	and	a	linear	relationship	is	assumed	between	the	neural	and	BOLD	

responses.		

Modeling	 the	 neural	 impulse	 response:	 Our	 model	 used	 impulse	 response	 functions	

estimated	from	human	psychophysics35	(Fig.	3b)	to	approximate	the	temporal	sensitivity	of	the	

human	 visual	 system.	 These	 IRFs	 are	 expressed	 as	 the	 difference	 between	 excitatory	 and	

inhibitory	linear	filters.	The	excitatory	filter	is	expressed	as		

h1(t) = u(t) × [t(n1 - 1)!]-1 × (t/t)n1-1 × e-t/t	,		

where	u(t)	is	the	unit	step	function	at	time	t;	t is	a	fitted	time	constant,	and	n1	is	the	number	of	

stages	 in	the	excitatory	filter.	The	 inhibitory	filter	 incorporates	the	same	time	constant	and	 is	

expressed	as	

h2(t) = u(t) × [kt(n2 - 1)!]-1 × (t/kt)n2-1 × e-t/kt ,	

where	k	is	the	ratio	of	time	constants	for	the	two	filters	and	n2	is	the	number	of	stages	in	the	

inhibitory	filter.	Both	the	sustained	and	transient	channel	IRFs	are	derived	with	the	formula	

	 hc(t) = x[h1(t) - z	h2(t)] , 	

where	the	normalization	parameter	x	is	used	to	match	the	height	of	the	functions	and	is	equal	

to	1	for	IRFS	and	1.44	for	IRFT;	the	transience	parameter	z	is	equal	to	0	for	IRFS	and	1	for	IRFT.		

The	other	parameters	are	taken	directly	from	Watson35	and	are:	t =	4.94	ms,	k =	1.33,	n1	=	9,	and	

n2	=	10.		

Modeling	the	visual	input:	Since	the	neural	impulse	response	to	a	stimulus	occurs	on	a	

millisecond	timescale,	we	code	each	stimulus	sequence	in	milliseconds.	The	stimulus	is	coded	as	

a	binary	vector	of	ones	and	zeros,	where	one	represents	the	presence	of	a	stimulus	and	zero	
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indicates	when	there	is	no	stimulus,	just	a	blank	mean	luminance	screen	(Fig.	3a).	To	capture	the	

digital	transitions	of	the	display	(constrained	by	the	60	Hz	refresh	rate	of	the	projector),	a	17	ms	

gap	is	coded	at	the	offset	of	each	image.	Next,	the	stimulus	vector	is	convolved	separately	with	

each	channel	IRF	to	generate	separate	sustained	and	transient	neural	response	predictors	(Fig.	

3b).	 To	model	 the	 corresponding	 fMRI	 responses	 from	each	 channel,	 each	of	 the	 two	neural	

response	 predictors	 are	 convolved	 with	 a	 HRF	 (Fig.	 3c)	 that	 was	 sampled	 at	 the	 same	 high	

(millisecond)	temporal	resolution	of	the	neural	response	predictors.	Here,	we	slightly	adapted	

the	 parameters	 of	 the	 canonical	 HRF	 implemented	 in	 SPM8	

(www.fil.ion.ucl.ac.uk/spm/software/spm8)	 to	 better	 capture	 the	 rise	 and	 fall	 of	 the	 BOLD	

response	in	our	measurements	(delay	of	peak	response	=	5	s,	delay	of	undershoot	=	14	s,	kernel	

length	=	28	s).	

Fitting	the	2	temporal-channel	model:	Since	the	HRF	acts	as	a	low-pass	temporal	filter,	

this	enables	us	to	resample	the	predicted	fMRI	response	to	the	lower	temporal	resolution	of	the	

acquired	fMRI	data	(TR	=	1	s).	This	resampled	fMRI	response	predictor	is	compared	to	measured	

fMRI	responses	to	solve	for	the	contributions	(b	weights)	of	each	channel.	We	normalized	the	

predicted	 fMRI	 responses	across	 the	 two	channels,	 such	 that	 the	maximal	height	 is	 the	same	

across	both	channels.	Then	we	used	a	GLM	to	estimate	the	weights	of	the	sustained	(bS)	and	

transient	(bT)	predictors	by	comparing	the	predicted	responses	to	the	measured	response	using	

data	across	all	runs	of	Experiments	1	and	2.	The	GLM	is	applied	to	the	mean	response	of	each	

visual	area	in	each	participant.	Quantification	of	model	performance	in	each	of	Experiments	1	

and	2	is	presented	in	Fig.	4d-e	for	V1,	in	Fig.	5c	for	hV4	and	hMT+,	and	in	Supplementary	Fig.	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2017. ; https://doi.org/10.1101/108985doi: bioRxiv preprint 

https://doi.org/10.1101/108985


	 36	

S2b-c	for	all	ROIs.	The	predicted	fMRI	responses	generated	by	the	model	are	shown	in	Fig.	4a	for	

V1	and	Supplementary	Fig.	S1	for	other	ROIs.		

Validating	the	2	temporal-channel	encoding	model:	We	assessed	the	predictive	power	of	

the	2	 temporal-channel	model	by	 testing	how	well	 it	predicts	 responses	 in	 independent	data	

obtained	in	Experiment	3	(Fig.	4b).	Thus,	we	coded	the	visual	stimulation	of	Experiment	3	in	the	

same	manner	described	above,	and	convolved	it	separately	with	the	IRFs	of	the	sustained	and	

transient	neural	channels	to	generate	the	neural	predictors.	These	neural	predictors	were	then	

convolved	with	HRF	and	downsampled	to	1	s.	Then	we	multiplied	each	channel’s	fMRI	response	

predictor	with	its	respective	b	weight	(bS	orbT)	that	was	estimated	with	data	concatenated	across	

Experiments	1	and	2.	We	then	tested	how	well	the	predicted	responses	matched	the	measured	

response	 in	 Experiment	 3,	 operationalized	 as	 cross-validated	 R2.	 That	 is,	 the	 proportion	 of	

response	 variance	 explained	 using	 b	 weights	 that	 were	 estimated	 from	 independent	 data.	

Although	conceptually	like	the	classical	R2	statistic,	cross-validated	R2	can	be	negative	when	the	

residual	variance	of	an	 inaccurate	prediction	exceeds	the	variance	 in	the	measured	response.	

Quantification	of	cross-validation	performance	is	shown	in	Fig.	4f	for	V1,	in	Fig.	5c	for	hV4	and	

hMT+,	and	in	Supplementary	Fig.	S2d	for	all	ROIs.	The	predicted	fMRI	responses	generated	by	

the	model	are	shown	in	Fig.	4b	for	V1	and	Supplementary	Fig.	S1	for	other	ROIs.		

Fitting	 and	 validating	 the	 standard	 model:	 For	 model	 comparison	 to	 the	 standard	

approach	used	in	fMRI,	we	also	fit	a	standard	GLM	to	the	data.	The	standard	GLM	predicts	fMRI	

responses	by	convolving	a	stimulation	vector	with	the	HRF	(basically	steps	a	and	c	in	Fig.	3).	To	

describe	 the	 visual	 stimulation	 in	 our	 experiments,	we	 used	 the	 same	millisecond	 resolution	

visual	stimulation	vector	as	in	the	2	temporal-channel	model	described	above.	After	convolving	
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with	 the	 same	 HRF	 used	 in	 the	 2	 temporal-channel	 model,	 we	 downsampled	 the	 predicted	

response	 to	 1	 s	 resolution	 to	 compare	 to	 measured	 fMRI	 responses.	 As	 the	 stimuli	 in	 all	

experiments	 were	 identical	 and	 the	 only	 difference	 was	 the	 timing,	 we	 generated	 a	 single	

predictor	across	Experiments	1	and	2	and	fit	one	b	weight.	Like	the	2	temporal-channel	model,	

we	fit	the	standard	model	to	data	concatenated	across	all	runs	of	Experiments	1	and	2,	and	we	

then	cross-validated	this	b	weight	on	Experiment	3	data.	Standard	model	predictions	for	V1	are	

shown	in	Fig.	2a	and	for	other	ROIs	in	Supplementary	Fig.	S1.	Model	performance	is	quantified	

separately	for	Experiments	1	and	2	in	Supplementary	Fig.	S2b-c.		

Model	comparison:	We	used	repeated	measures	analysis	of	variance	(ANOVA)	to	

compare	the	performance	of	the	2	temporal-channel	model	to	the	standard	model	across	the	

visual	hierarchy.	To	test	for	differences	in	the	predictive	power	of	the	two	models	at	various	

stages,	we	performed	a	two-way	repeated	measures	ANOVA	with	factors	of	model	(2	temporal-

channel/standard)	and	visual	field	map	cluster	(early/ventral/lateral)	on	the	cross-validated	R2	

values	from	each	ROI	(see	Supplementary	Fig.	S2d	for	ANOVAs	including	dorsal	regions).	For	

the	2	temporal-channel	model,	we	additionally	tested	for	differences	in	the	relative	

contributions	of	the	sustained	and	transient	channels	across	the	hierarchy	using	a	two-way	

repeated	measures	ANOVA	with	factors	of	temporal	channel	(sustained/transient)	and	visual	

field	map	cluster	(early/ventral/lateral)	on	the	channel	b	weights	estimated	for	each	ROI	using	

data	from	Experiments	1	and	2	(Fig.	6b).		

Noise	ceiling	calculation:	To	compare	the	level	of	noise	in	measurements	from	different	

brain	regions,	we	estimated	the	noise	ceiling	of	each	ROI	using	a	procedure	proposed	by	Kay58.	

This	method	estimates	the	maximal	R2	that	a	model	could	achieve	given	the	level	of	noise	in	the	
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data	by	simulating	noisy	measurements	of	a	signal	 (with	noise	characteristics	matched	to	the	

data)	and	using	a	bootstrapping	procedure	to	estimate	the	median	accuracy	with	which	any	given	

model	could	explain	the	simulated	measurements.	This	procedure	was	performed	separately	for	

the	2	temporal-channel	model	and	the	standard	model,	and	we	plot	the	average	noise	ceiling	

estimate	across	both	models	for	each	ROI	in	Supplementary	Fig.	S2.		

Generating	 group	 parameter	 maps	 of	 temporal	 channel	 contributions:	 To	 map	 the	

topology	of	contributions	from	the	transient	and	sustained	channels	across	visual	cortex,	in	each	

participant	we	fit	the	2	temporal-channel	model	in	each	voxel	using	data	from	Experiments	1	and	

2,	as	described	above.	We	then	generated	in	each	participant’s	brain	parameter	maps	of	each	

temporal	 channel’s	 b	 weights.	 To	 generate	 group	 maps,	 we	 first	 registered	 all	 participants’	

anatomy	 to	 the	 FreeSurfer	 average	 brain	 template	 using	 cortex-based	 alignment	 (CBA)	 in	

FreeSurfer	version	5.3.c64-67.	Then,	we	averaged	these	maps	across	participants	on	the	common	

fsaverage	 cortical	 surface	 to	 obtain	 group	 maps	 (Figs.	 6a,	 7a;	 Supplementary	 Fig.	 S3b).	 To	

independently	validate	our	results	from	ROI	analyses,	group	hV4,	VO-1,	VO-2,	LO-1,	LO-2,	and	

hMT+	 are	 outlined	 on	 the	 ventrolateral	 surface	 using	 the	 atlas	 developed	 by	 Wang	 and	

colleagues68	(Fig.	6b,	Supplementary	Fig.	S3b).	Note	that	hMT+	is	defined	based	on	the	union	of	

TO-1	and	TO-2	maps53	from	the	Wang	atlas68.	To	illustrate	channel	contributions	in	relation	to	

the	eccentricity	map	in	early	visual	cortex,	we	used	atlases	developed	by	Benson	and	colleagues69	

to	overlay	the	regional	boundaries	of	V1,	V2,	and	V3	and	trace	eccentricity	bands	on	the	group	

average	(Fig.	7a).		

Measuring	temporal	channel	contributions	across	eccentricities:	To	quantify	changes	 in	

the	contributions	of	transient	and	sustained	channels	within	regions	in	early	visual	cortex	as	a	
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function	 of	 eccentricity,	 we	 defined	 a	 series	 disc	 ROIs	 (each	 ~1	 cm	 in	 diameter)	 in	 each	

hemisphere	of	the	fsaverage	cortical	surface	using	the	tksurfer	package	included	with	FreeSurfer.	

Using	the	Benson	atlas69,	uniformly-sized	ROIs	were	dilated	around	mesh	vertices	centered	on	

eccentricities	 of	 either	 5°,	 10°,	 20°,	 or	 40°	 (see	 Fig.	 7b)	 both	 along	 the	 horizontal	 meridian	

representations	in	V1	and	along	the	ventral	and	dorsal	borders	of	V2/V3.	Note	that:	(i)	we	used	

the	Benson69	atlas	as	it	contains	eccentricities	further	into	the	periphery	that	were	not	mapped	

in	pRF	mapping	experiment	(visual	angle	was	limited	to	20°	from	fixation,	see	above),	and	(ii)	we	

placed	 disk	 ROIs	 along	 the	 horizontal	 meridian	 as	 the	 phase-scrambled	 stimuli	 used	 in	

Experiments	 1–3	 extended	 further	 into	 the	 periphery	 in	 the	 horizontal	 than	 the	 vertical	

dimension	(30°	vs.	20°	degrees	from	fixation,	respectively).	The	disc	ROIs	were	then	transformed	

to	each	participant’s	native	brain	space,	and	we	fit	the	two	temporal-channel	model	to	data	from	

Experiments	1	and	2	 in	each	ROI	as	described	previously	 (Fig.	7b).	To	compare	differences	 in	

temporal	channel	contributions	across	eccentricities	between	V1	and	V2/V3,	we	used	a	three-

way,	repeated	measures	ANOVA	with	factors	of	channel	(transient	or	sustained),	visual	area	(V1	

or	V2/V3),	and	eccentricity	(5°,	10°,	20°,	or	40°).		

Explaining	previously	reported	nonlinearities	for	short	stimuli:	To	externally	validate	the	2	

temporal-channel	model,	we	 simulated	 the	 temporal	 characteristics	of	 visual	 stimulation	 in	a	

previous	 study	 by	 Birn	 et	 al.23	 that	 measured	 V1	 responses	 to	 brief	 presentations	 of	 a	

checkerboard	stimulus	that	was	contrast	inverted	at	a	rate	of	8	Hz	(see	Supplementary	Fig.	S4a).	

We	used	data	from	the	Birn	study	because	it	showed	other	experimental	conditions	in	which	the	

standard	model	underestimated	measured	fMRI	responses	using	stimulus	presentations	in	the	

millisecond	range.	To	predict	 responses	to	this	8	Hz	stimulus	with	our	model,	we	coded	each	
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125	ms	phase	of	a	flicker	sequence	as	a	separate	image	within	a	trial	(as	described	for	Experiment	

3).	Using	this	coding	of	the	stimulus	in	the	Birn	study,	we	used	our	2-temporal	channel	model	to	

generate	 fMRI	response	predictors	of	each	channel,	and	multiplied	the	predicted	response	of	

each	channel	using	the	b	weights	estimated	for	V1	across	Experiments	1	and	2	(Supplementary	

Fig.	 S4b,	 left).	 Finally,	we	used	 the	 same	 stimulus	model	 and	 the	b	weight	 estimated	by	 the	

standard	model	for	V1	(Supplementary	Fig.	S4b,	right)	to	compare	the	validity	of	the	two	models.		
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SUPPLEMENTARY	FIGURES	
	

	
Supplementary	 Figure	 S1:	Modeling	 sustained	 and	 transient	 contributions	 across	 the	 visual	
hierarchy.	 Each	 row	 depicts	 the	 average	 ROI	 response	 (white)	 ±	 1	 standard	 deviation	 (gray)	
across	 12	 participants.	 Left:	 Experiment	 1;	Middle:	 Experiment	 2;	 Right:	 Experiment	 3.	 Trial	
durations	are	indicated	by	the	thick	black	lines	below	the	x-axis,	and	curves	extend	2	s	before	the	
onset	and	12	s	after	the	offset	each	trial.	Green:	predictions	of	the	2	temporal-channel	model;	
Blue:	 predictions	of	 the	 standard	model.	 Both	models	 are	 fit	 using	data	 concatenated	 across	
Experiments	1	and	2	and	then	validated	against	data	from	Experiment	3.	 	
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Supplementary	Figure	S2:	Comparison	of	the	variance	explained	by	the	2	temporal-channel	vs.	
standard	 model.	 (a)	 Definition	 of	 retinotopic	 visual	 areas	 in	 a	 representative	 participant.	
Boundaries	of	retinotopic	areas	(black)	are	overlaid	on	an	example	participant’s	inflated	cortical	
surface	 depicting	 a	 polar	 angle	map	 generated	 using	 pRF	mapping.	 hMT+	 is	 outlined	with	 a	
dashed	white	line.	(b–d)	The	performance	of	the	2	temporal-channel	model	and	standard	model	
is	 compared	across	 four	clusters	of	visual	areas:	Early	visual	 (V1,	V2,	V3),	ventral	 (hV4,	VO-1,	
VO-2),	lateral	(LO-1,	LO-2,	hMT+),	and	dorsal	(V3A,	V3B).	Both	models	are	fit	separately	in	each	
region	using	data	concatenated	across	Experiments	1	and	2,	and	the	accuracy	(R2)	with	which	
these	b	weights	 predict	 fMRI	 responses	 is	 quantified	 separately	 for	 (b)	 Experiment	 1	 and	 (c)	
Experiment	2.	(d)	Cross-validated	R2	of	model	predictions	for	independent	data	in	Experiment	3.	
Note	R2	may	be	negative	if	the	variance	in	the	model	prediction	exceeds	that	of	the	data.	Error	
bars:	±	1	SEM	across	12	participants.	Black:	2	temporal-channel	model;	White:	standard	model;	
Gray	line:	noise	ceiling.	Statistical	significance	of	model	fit	comparison	across	visual	areas	was	
evaluated	by	a	repeated-measures	ANOVA	for	each	experiment,	shown	beside	each	panel.		
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Supplementary	Figure	S3:	Modeling	sustained	and	transient	contributions	in	dorsal	retinotopic	
visual	areas.	(a)	Each	row	depicts	the	average	ROI	response	(white)	±	1	standard	deviation	(gray)	
across	12	participants	for	dorsal	regions	V3A	and	V3B.	Left:	Experiment	1;	Middle:	Experiment	2;	
Right:	Experiment	3.	Trial	durations	are	indicated	below	the	x-axis,	and	curves	extend	2	s	before	
the	onset	and	12	s	after	the	offset	each	trial.	Green:	predictions	of	the	2	temporal-channel	model;	
Blue:	 predictions	of	 the	 standard	model.	 Both	models	 are	 fit	 using	data	 concatenated	 across	
Experiments	1	and	2	and	then	validated	against	data	from	Experiment	3.	(b)	Group-averaged	(N	
=	12)	maps	of	the	transient	(left)	and	sustained	(right)	channels	shown	from	a	dorsolateral	view.	
We	first	estimate	b	weights	of	each	channel	in	each	voxel	in	each	participant’s	native	brain	space.	
b	weight	maps	were	transformed	to	the	FreeSurfer	average	brain	using	cortex-based	alignment	
and	averaged	across	participants	in	this	common	cortical	space.	The	resulting	group	maps	were	
thresholded	to	exclude	voxels	with	weak	contributions	(−0.1	>	b	>	0.1).	Boundaries	of	dorsal	and	
lateral	regions	(black)	are	derived	from	the	Wang	Atlas,	with	hMT+	as	the	union	of	TO-1	and	TO-2.	
(c)	The	contributions	of	the	transient	(x-axis)	and	sustained	(y-axis)	channels	to	responses	in	each	
visual	area	as	estimated	by	the	2	temporal-channel	model.	Marker	size	spans	±	1	SEM	across	12	
participants	in	each	dimension	and	b	weights	were	solved	by	fitting	the	2	temporal-channel	using	
data	concatenated	across	Experiments	1	and	2.		
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Supplementary	Figure	S4:	The	2	temporal-channel	model	explains	response	nonlinearities	for	
briefly	presented	stimuli.	 (a)	Figure	adapted	 from	Birn	et	al.	 (y-axis	values	are	unreported	 in	
original	 version).	Top	 left:	measured	V1	 responses	 to	brief	 (250–2000	ms)	presentations	of	 a	
checkerboard	 stimulus	 that	 was	 contrast	 inverted	 at	 8	 Hz	 in	 all	 trial	 durations;	 Top	 right:	
predicted	 V1	 responses	 based	 on	 a	 standard	 linear	 model	 solved	 using	 responses	 to	 longer	
presentations	of	the	checkerboard	stimulus.	Bottom:	same	data	as	above	except	the	measured	
and	 predicted	 fMRI	 responses	 are	 superimposed	 for	 each	 trial	 duration.	 (b)	 Simulated	 V1	
responses	 to	 the	 stimuli	 used	by	Birn	et	 al.	 that	 are	derived	with	 the	b	weights	 solved	using	
models	fit	to	V1	data	from	Experiments	1	and	2	of	the	present	study.	Left:	predictions	of	the	2	
temporal-channel	model	for	each	trial	duration;	Right:	predictions	of	the	standard	model	for	each	
trial	 duration.	 Bottom:	 same	 data	 as	 above	 except	 the	 predictions	 of	 the	 two	 models	 are	
superimposed	for	each	trial	duration.	The	simulations	show	that	the	standard	model	replicates	
Birn	 et	 al.’s	 linear	model	 and	 underestimate	 responses.	 In	 contrast,	 the	 2	 temporal-channel	
model	better	explains	the	measured	responses	(a-left)	and	predicts	higher	responses	than	the	
standard	model	in	each	duration	(b-bottom).	
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