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ABSTRACT

How are perceptual decisions made? The answer to this seemingly simple question
necessitates that we specify the nature of perceptual representations on which
decisions are based. Some traditional models postulate that the perceptual
representation consists of a simple point estimate of the stimulus. Such models do
not allow the estimation of sensory uncertainty. On the other hand, recent models
have proposed that the perceptual representation involves a full probability
distribution over the possible stimulus values. Such models allow a precise
estimation of sensory uncertainty. These two possibilities - point estimates vs. full
distributions - are often seen as the only alternatives but they are not. Here I
present five possible perceptual representation schemes that allow the extraction of
different levels of sensory uncertainty. I explain where popular models fall within
the five schemes and explore the relevant empirical evidence and theoretical
arguments. The overwhelming evidence is at odds with both point estimates vs. full
distributions. This conclusion is in stark contrast with current popular models in
computational neuroscience built on such distributions. Instead, the most likely
scheme appears to be one in which the perceptual representation features a point

estimate coupled with a strength-of-evidence value.


https://doi.org/10.1101/108944
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/108944; this version posted February 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

INTRODUCTION

Uncertainty in perception

Everybody in the audience is quiet. The tennis player has a match point. The play
turns into a long rally from the baseline until her opponent hits a shot that seems to
land just out. However, the line judge remains quiet implying that the ball was inside
the court. The player can stop the play and challenge the call using the replay
system. The problem is that she will automatically lose the point if the ball was

indeed not out. What should she do?

Situations that push our perceptual abilities to the edge are common in tennis. They
are also more common in our daily life than we realize. We make judgments on
when to cross a busy road that lacks traffic lights, who is the person talking outside
our office door, and whether the “weird” smell indicates that the cheese is just right

or completely spoiled.

The nature of the perceptual representation

The first step in understanding how we make the perceptual decisions described
above is to determine the nature of the perceptual representation. When the tennis
player ponders whether to challenge the call, what information is she basing her

decision on?

Some traditional theories imply that the player only forms a point estimate of the

most likely landing location of the ball (Figure 1, left). In contrast, many recent
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theories argue for the existence of a full probability distribution over landing
locations (Figure 1, right). Deciding between these competing possibilities is not
only fundamental for understanding the nature of our perceptual representation but
would necessarily falsify a large number of popular theories that imply the wrong

representation.

Figure 1. Perceptual representation of ball landing location in tennis.

Two extreme proposals for the nature of perceptual representations exist: the
representation may consist of a simple point estimate (represented on the left as a ball
landing just outside the court) or a full probability distribution (represented on the

right as a ball landing within a certain area of the court).

A false dichotomy
The distinction between point estimates and full probability distributions
represents a false dichotomy: there are a number of “intermediate” possibilities

about the nature of the perceptual representation.

Here I present five different schemes for the nature of the perceptual

representation. Point estimates and full distributions feature as the extreme
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possibilities. Further, [ show that both of these extremes are strongly contradicted
by the evidence. These considerations upend some of the most popular theories of

perceptual decision making.

FIVE SCHEMES FOR THE NATURE OF THE PERCEPTUAL REPRESENTATION

The perceptual representation of a given stimulus is different in different stages of
the visual hierarchy. Here we are interested in the perceptual representation that
the brain uses at the decisional level (Pouget, Beck, Ma, & Latham, 2013). Even if full
distributions could be extracted from the population response in V1 or MT, it does

not follow that this information is in fact available at the decision stage.

The five schemes presented below are arranged in order of increasing complexity.
To compare between them, I use the example of representing the direction of a
single moving bar (Figure 2A). For simplicity, [ will assume that the moving bar
activates to a different degree a set of 36 neurons each having its receptive field
centered 10° away from the previous one (Figure 2B). The question is what part of

this population code is available for making the final decision.

Scheme 1. Single point estimate (no sensory uncertainty)

A first possibility is that the perceptual representation consists of a single point
estimate (Figure 2C). For example, the direction a moving bar would be
represented as a single orientation (e.g., 50°). In our neural example, the point

estimate could be based on which of the 36 neurons has the highest activity.
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However, more complex scenarios are also possible. For example, it is possible that
maximum likelihood estimation (MLE) or another method is used to estimate the
most likely direction of motion by taking into account all 36 neurons. The critical
point, however, is that only the single value is passed onto the decision stage and

therefore this first scheme does not allow the estimation of sensory uncertainty.

A popular model that falls within this scheme is the drift diffusion model (Ratcliff &
McKoon, 2008). In its most common variant, a particle diffuses towards one of two
boundaries representing each choice and the decision is made when the particle
reaches one of the boundaries (Figure 3A). At the end of the process, the only
available information is which of the two boundaries was reached - a single point
estimate. Other examples from this category are low- and high-threshold models
which postulate that stimuli give rise to a limited number - typically 2 - internal

states (Krantz, 1969).

Scheme 2. Multiple point estimates (indirect sensory uncertainty)

The second possibility is that the perceptual representation consists of multiple
point estimates (Figure 2D). For example, in estimating the direction of motion,
people may additionally estimate the contrast of the bar, as well as their own
decision time and attentional state. These additional estimates may provide clues
about the reliability of the main point estimate. Therefore, this second scheme
allows only for an indirect estimation of the sensory uncertainty. The drift diffusion

model could also fall within this scheme since on each trial it explicitly represents
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the decision time (Figure 3A), which can then be used to judge the task difficulty

(Kiani, Corthell, & Shadlen, 2014).

Scheme 3. Strength of evidence (minimal sensory uncertainty)

The third possibility is that the perceptual representation consists of a point
estimate complemented by a “strength-of-evidence” value (Figure 2E). For example,
the direction of a moving bar would be represented with its mostly likely value (e.g.,
50°) together with a judgment about the strength of evidence for this value. In our
neural example, the motion representation may be based on which of the 36
neurons has the highest activity, as well as on the actual level of this activity. As in
Scheme 1, more complex scenarios based on MLE or similar computations that take
into account all neurons are also possible. This third scheme allows for what could

be called “minimal” estimation of sensory uncertainty.

A popular model that falls within this scheme is signal detection theory (Green &
Swets, 1966; Macmillan & Creelman, 2005). Signal detection theory assumes the
existence of a single “evidence” axis in 2-choice tasks. On this axis, each trial
produces a single point that represents the strength of evidence (Figure 3B). It
should be noted that several variants of the drift diffusion model also fall under
Scheme 3. For example, models with separate accumulators (Usher & McClelland,
2001; Vickers, 1970) can produce a strength-of-evidence value based on the

comparison of the winning and losing accumulators.
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Scheme 4. Partial distribution (partial sensory uncertainty)

The fourth possibility is that the perceptual representation consists of several
moments of the sensory distribution (Figure 2F). For example, extracting the first
four moments of 36-neuron distribution in our example will mean that the mean,
variance, skewness, and kurtosis are explicitly represented. Other summary
statistics such as the median are also possible. For simplicity, | will equate Scheme 4
with representing the mean and standard deviation. On a single trial, the direction
of a moving bar may therefore be represented as 50° + 15°. Therefore, this fourth
scheme results in partial estimation of sensory uncertainty but still carries more
information than Schemes 1-3. No currently popular model of perceptual decision
making falls under this scheme. Nevertheless, the models discussed in Scheme 5

could be reduced to fit into this category (Ma, 2010).

Scheme 5. Full distribution (complete sensory uncertainty)

The final possibility is that the perceptual representation consists of a full
probability distribution (Figure 2G). Thus, the direction of the moving bar is not
summarized but is represented by a complete distribution and therefore allows the
complete estimation of sensory uncertainty. This scheme is the only one that will
work well in complex situations such as skewed or bimodal distributions. It is also
the only scheme that allows for fully optimal decisions on every trial. These features
have made this scheme very popular among computational neuroscientists (Beck,
Ma, Pitkow, Latham, & Pouget, 2012; Berkes, Orban, Lengyel, & Fiser, 2011;

Drugowitsch & Pouget, 2012; Fiser, Berkes, Orban, & Lengyel, 2010; Jazayeri &
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Movshon, 2006; Knill & Pouget, 2004; Ma, 2010, 2012; Ma, Beck, Latham, & Pouget,
2006; Ma & Jazayeri, 2014; Pouget et al., 2013; Pouget, Dayan, & Zemel, 2000;

Sahani & Dayan, 2003; Zemel, Dayan, & Pouget, 1998).

Two popular models that fall within this scheme are the probabilistic population
codes (Ma et al,, 2006) and neural sampling with a large number of samples (Fiser et
al., 2010). Models based on probabilistic population codes propose that operations
like cue combination can be performed using the whole 36-neuron distribution
(Figure 3C). Indeed, under certain assumptions, simply adding the distributions
produced by each cue results in optimal cue combination. Neural sampling models
(Figure 3D), on the other hand, propose that neurons take discrete samples from
the stimulus in small time intervals. These samples are then combined into a full
distribution, provided that enough samples can be taken. Note that taking a single
sample results in a Scheme 1 representation, while taking only a few samples may

be more similar to a Scheme 3 representation.
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Figure 2. Five schemes for the nature of the perceptual representation.

A. A person is judging the direction of motion of a bar. B. The moving bar creates a
distribution in motion-sensitive neurons tuned to different orientations. In this
example, 36 neurons are used with preferred directions tuned in multiples of 10°. C.
Scheme 1: Single point estimate. Only a single point estimate is extracted. D. Scheme 2:
Multiple point estimates. Several point estimates are extracted for variables relevant
to the task (e.g., the inset shows estimates of decision time and attentional state). E.
Strength of evidence. A point estimate and a strength-of-evidence value are extracted.
F. Partial probability distribution. The mean and standard deviation of the distribution

of neuron activity are extracted. G. Full probability distribution. The whole distribution

of neuron activity is used.
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Figure 3. Four popular models of perceptual decision making.

A. Drift diffusion models assume that decisions are made by a particle diffusing
towards one of two boundaries, representing the possible stimulus categories (in this
case, clockwise and counterclockwise oriented gratings). The decision is based on
which boundary was crossed first (Scheme 1). Decisions can also take into account the
decision time (Scheme 2). B. Signal detection theory assumes that decisions are made
based on which side of a criterion the evidence on a particular trial falls. The distance
from the criterion can be used as an estimate of the strength of evidence (Scheme 3). C.
Probabilistic population codes assume the existence of a complete distribution built by
a population of neurons (Scheme 5). D. Neural sampling models assume that a single
neuron takes samples over time. Sufficient number of samples results in a complete
distribution (Scheme 5). However, a single sample results in a point estimate (Scheme
1), while a situation with a small number of samples may be best described by Scheme

3.
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EMPIRICAL EVIDENCE

As already briefly touched upon, each of the five schemes comes with strong
implications about the nature of perceptual decision making. Here I make these
implications explicit and compare them with the available empirical evidence. |
specifically discuss findings related to confidence ratings and cue combination tasks
(Table 1). The reason for focusing on these two phenomena is that they directly test
people’s ability to estimate the uncertainty in their perceptual representations.
Confidence ratings reflect our uncertainty about perceptual judgments for a single
stimulus, while cue combination studies test how the uncertainty from two different

sensory signals is compared and combined.

Confidence

In virtually every perceptual task subjects automatically and naturally produce
confidence ratings (Metcalfe & Shimamura, 1994). These confidence ratings reflect
the likelihood of being correct (Baranski & Petrusic, 1994; Fleming & Lau, 2014).
This ability to naturally produce meaningful confidence ratings is strong evidence
against Scheme 1. Indeed, this scheme does not feature any information on which
appropriate confidence judgments could be based. Scheme 2 also has difficulties but
partly meaningful confidence is still possible to the extent to which additional
parameters, such as decision time, correlate with performance. Schemes 3-5 easily

explain meaningful confidence ratings: higher confidence is associated with higher
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strength of evidence (Scheme 3), lower standard deviations (Scheme 4), or

narrower distributions (Scheme 5).

On the other hand, a number of suboptimalities exist in confidence ratings (Rahnev
& Denison, 2016). For example, subjects are typically either under- or over-
confident and are rarely able to calibrate their confidence properly (Adams, 1957;
Baranski & Petrusic, 1994; Bjorkman, Juslin, & Winman, 1993; Dawes, 1980; Harvey,
1997; Keren, 1988; Koriat, 2011; Winman & Juslin, 1993). Even more importantly, a
large number of studies have reported conditions matched on accuracy that produce
different levels of confidence (Baranski & Petrusic, 1994; de Gardelle & Mamassian,
2015; Kiani et al., 2014; Koizumi, Maniscalco, & Lau, 2015; Navajas, Sigman, &
Kamienkowski, 2014; Rahnev et al., 2011; Rahnev, Bahdo, de Lange, & Lau, 2012;
Rahnev, Koizumi, McCurdy, D’Esposito, & Lau, 2015; Samaha, Barrett, Sheldon,
LaRocque, & Postle, 2016; Song, Koizumi, & Lau, 2015; Spence, Dux, & Arnold, 2015;
Vickers & Packer, 1982; Vlassova, Donkin, & Pearson, 2014; Wilimzig, Tsuchiya,
Fahle, Einhauser, & Koch, 2008; Zylberberg, Roelfsema, & Sigman, 2014). Finally, the
trial-to-trial relationship between confidence and accuracy, while usually positive,
rarely reaches its theoretical maximum (Maniscalco & Lau, 2015; Maniscalco, Peters,
& Lau, 2016; Massoni, 2014; McCurdy et al., 2013; Schurger, Kim, & Cohen, 2015;
Sherman, Seth, Barrett, & Kanai, 2015; Vlassova et al., 2014). These findings strongly
suggest the existence of heuristics in confidence computation. This conclusion is at
odds with Scheme 5 since the presence of complete probability distributions should

allow for fully Bayesian, rather than heuristic, computations. The extent to which
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Scheme 4 is consistent with these findings depends on whether subjects can
transform the standard deviation of the underlying distribution into probability of
being correct. This computation is challenging for humans (Zhang & Maloney, 2012)
and may explain some of the biases above. On the other hand, Schemes 2-3 fit well
with these findings of suboptimal confidence ratings. Indeed, the probability of
being correct is likely a highly non-linear function of the strength of evidence in
Scheme 3 and is only imperfectly correlated with parameters such as decision time
in Scheme 2. These considerations explain why confidence biases are to be expected
in Schemes 2-3. Since Scheme 1 cannot be used to produce confidence ratings, it also

cannot explain any of the above biases.

Scheme | Scheme | Scheme | Scheme | Scheme
Finding
1 2 3 4 5
Confidence "meaningful"
No Yes Yes Yes
in most (all?) tasks
Confidence
Confidence biases are
No Yes Yes No
ubiquitous
Cue combination near
No Yes Yes Yes
Cue optimal in many tasks
combination | Cue combination clearly
Yes Yes Yes No No
suboptimal in some tasks

Table 1. Can Schemes 1-5 account for various findings related to confidence and cue

combination?
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Cue combination

Cue combination is needed when two or more pieces of information need to be
combined to form a single decision (Trommershauser, Kérding, & Landy, 2011). For
example, the length of a bar could be estimated based on a combination of visual
and haptic (touch) information (Ernst & Banks, 2002). When the information from
each of these sensory modalities is noisy, the evidence from each is combined in

order to arrive at a better estimate than either sense can afford by itself.

Cue combination studies have often found near optimal integration (Alais & Burr,
2004; Ernst & Banks, 2002; Gu, Angelaki, & DeAngelis, 2008; van Beers, Sittig, &
Denier van der Gon, 1996). Such findings have been cited as providing the strongest
support for the existence of a full probability distribution as in Scheme 5 (Beck et al,,
2012; Berkes et al., 2011; Drugowitsch & Pouget, 2012; Fiser et al,, 2010; Knill &
Pouget, 2004; Ma, 2010, 2012; Ma et al., 2006; Ma & Jazayeri, 2014; Pouget et al.,
2013). Indeed, the existence of a full probability distribution easily explains optimal
cue combination (Ma et al.,, 2006). Importantly, Scheme 4 also naturally fits with
optimal cue combination since such combination only requires the representation of

the distributions’ mean and standard deviation.

What is less appreciated is that Scheme 3, and to a lesser extent even by Scheme 2,
can also explain near optimal performance in cue combination studies. Scheme 3

requires subjects to weight each stimulus’ point estimate by the strength-of-

15


https://doi.org/10.1101/108944
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/108944; this version posted February 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

evidence value associated with it. In many cases this strategy would result in near
optimal performance. Scheme 2 has more difficulties with near optimal cue
combination because of its indirect representation of sensory uncertainty. Still,
occasional near optimal performance is possible when parameters such as decision
time or attentional state are strongly correlated with performance. Thus only

Scheme 1 is completely inconsistent with near optimal cue combination.

On the other hand, discussions of cue combination studies often ignore the fact that
many such studies have found substantial suboptimalities (Battaglia, Jacobs, & Aslin,
2003; Battaglia, Kersten, & Schrater, 2011; Burr, Banks, & Morrone, 2009; Fetsch,
Pouget, Deangelis, & Angelaki, 2012; Knill & Saunders, 2003; Maiworm & Roder,
2011; Prsa, Gale, & Blanke, 2012; Rosas, Wagemans, Ernst, & Wichmann, 2005;
Rosas, Wichmann, & Wagemans, 2007) (reviewed in (Rahnev & Denison, 2016)).
These studies typically report that one of the cues was weighted more than its
reliability, relative to the other cue. Such findings are extremely surprising if indeed
the brain represents full probability distributions (Scheme 5) or has direct access to
the stimulus reliability through the standard deviation of the distribution (Scheme
4). Therefore, these findings argue strongly against Schemes 4 and 5. On the other
hand, Schemes 2-3 can easily explain findings of suboptimal cue combination just as
they could explain biases in confidence ratings. Scheme 1 would result in random

weighting of the cues, which will almost always be suboptimal.
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Neural evidence

Little neural evidence has been used to distinguish between schemes for perceptual
representation. A notable exception is a recent paper by van Bergen et al. (van
Bergen, Ma, Pratte, & Jehee, 2015). The authors showed that the degree of sensory
uncertainty could be directly decoded from activity in the visual cortex. van Bergen
et al. interpreted these results as consistent with the existence of full probability
distributions (Scheme 5). However, these results do not directly show what
information subjects actually used when making their decisions. In fact, the results
can easily be explained by any of Schemes 2-5. Nonetheless, van Bergen et al.’s
findings provide strong evidence against Scheme 1. More generally, the
considerations above demonstrate the difficulty of using neural data to distinguish

between Schemes 2-5.

THEORETICAL ARGUMENTS AGAINST FULL DISTRIBUTIONS

As noted above, full probability distributions (as in Scheme 5) have been accepted
among computational neuroscientists almost to the exclusion of other alternatives
(Becketal,, 2012; Berkes et al,, 2011; Drugowitsch & Pouget, 2012; Fiser et al,,
2010; Jazayeri & Movshon, 2006; Knill & Pouget, 2004; Ma, 2010, 2012; Ma et al,,
2006; Ma & Jazayeri, 2014; Pouget et al., 2013, 2000; Sahani & Dayan, 2003; Zemel
et al.,, 1998). There seem to be three main reasons for this acceptance. First,
computational neuroscientists often prefer to build normative models of how the
visual system should or could deal with uncertainty. Full distributions are best for

normative computations but there is no a priori reason to expect that the brain
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implements normative solutions, especially in complex situations (Gigerenzer &
Brighton, 2009; Juslin, Nilsson, & Winman, 2009; Simon, 1956). Second, discussions
of empirical findings typically focus on findings of optimality, while an extensive
literature on suboptimalities in perception (Rahnev & Denison, 2016) is often
ignored. Finally, Scheme 1 and 5 are typically considered as the only alternatives. In
this view, any finding that the brain can extract uncertainty estimates from sensory
representations is taken as evidence for full probability distributions. As
demonstrated by Schemes 2-4, many other options exist. The issue is further
complicated by the fact that terms such as “Bayesian” and “probabilistic” have are
often used with different meanings (Box 1). Full probability distributions are

further contradicted by several theoretical considerations discussed below.

Real-world tasks are exceedingly complex

Real-life perception comes with an explosion in computational complexity. Such
complexity virtually guarantees that decisions will be based on heuristics rather
than fully principled computations (Gigerenzer & Brighton, 2009; Juslin et al.,, 2009;
Simon, 1956). Even supporters of full probability distributions admit that complex
situations call for simplified computations (Pouget et al., 2013). Perception evolved
to serve us in real life rather than in the laboratory. Thus complex conditions are the
norm rather than the exception for the brain. If heuristics are necessary anyway,
then perceptual representations that allow the estimation of more than minimal
sensory uncertainty (as in Schemes 4 and 5) and are mostly applicable in very

simple situations may be an unnecessary luxury.
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Discrete judgments

The example used to introduce Schemes 1-5 used a continuous quantity: the motion
direction of a bar. However, many decisions involve discrete judgments: who is this
person in your high school reunion or what species is the bird on the distant tree? It
is unclear how full probability distributions can be constructed and meaningfully
used in such situations, especially since relevant possibilities may not be available
(e.g., we may have forgotten about Ricardo or not know about the existence of
brown-headed cowbirds). Scheme 4 would be completely impossible in such
situations since discrete judgments do not allow the computation of a mean and a

standard deviation.

Improvements with practice

Perceptual judgments are known to become more optimal with practice (Balci et al.,
2011; Baranski & Petrusic, 1994; Maddox & Bohil, 2005). Such findings fit well with
Schemes 2 and 3. The reason is that in both of these schemes, the additional
quantities (beyond the point estimate) such as decision time and strength of
evidence may predict one’s accuracy differently for different tasks. Thus, both
Schemes 2 and 3 require learning to calibrate how these additional quantities
should be used. However, if full probability distributions are present on every trial,

itis less clear how and why learning would make judgments more optimal.
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Box 1. Are perceptual decisions Bayesian? Are they probabilistic?
The notion that perceptual representations at the decision stage do not consist of

full probability distributions has relevance to theories about “Bayesian

” « ” «

computation,” “probabilistic computation,” “probabilistic approach,” and
“probabilistic brains” (Beck et al., 2012; Drugowitsch & Pouget, 2012; Knill &
Pouget, 2004; Ma, 2010, 2012; Ma et al., 2006; Ma & Jazayeri, 2014; Pouget et al.,
2013). These concepts sound similar but are not necessarily synonymous. Here |

explore the implications of rejecting Scheme 5 for these theories.

Are perceptual decisions Bayesian? Decisions are Bayesian as long as they follow
Bayes’ rule. Much evidence suggests that they do (Rahnev & Denison, 2016).
Importantly, many Bayesian models require a single point estimate per stimulus and
build the Bayesian machinery around inferring how the point estimates vary over
trials. Thus all five schemes from Figure 2 and all four models from Figure 3 are fully

consistent with the notion that our perceptual decisions are Bayesian.

Are perceptual decisions probabilistic? The term “probabilistic” is more challenging
since it has been used in different ways. Ma (Ma, 2010) distinguishes between
probabilistic models (in which trial-to-trial observations are stochastic; such models
can feature representations consistent with all five schemes) and models of
probabilistic computation (which require the representation of at least two

moments of the sensory distribution; such models are only consistent with Schemes
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4 and 5). Nevertheless, Ma’s terminology is not widely used. Other papers equate
phrases such as the “probabilistic approach” (Pouget et al.,, 2013) and representing
stimuli in a “probabilistic manner” (Fiser et al.,, 2010) with the existence of the full
probability distributions from Scheme 5. Thus, rejecting Scheme 5 means rejecting

the notion of probabilistic decisions in some but not other definitions of the term.

Referring to Schemes 1-5 should clarify the exact concept researchers seek to
advance. It may also help avoid common logical traps such as stating that the brain
computes in a Bayesian manner (true) and concluding that full probability

distributions are necessarily needed (false).

WHICH IS THE CORRECT SCHEME?

The empirical evidence is strongly against Scheme 5, which posits full probability
distributions. This conclusion is in stark contrast to most of the recent work on
computational models of perception that have assumed the presence of complete
distributions (Beck et al., 2012; Berkes et al., 2011; Drugowitsch & Pouget, 2012;
Fiser et al., 2010; Jazayeri & Movshon, 2006; Knill & Pouget, 2004; Ma, 2010, 2012;
Ma et al,, 2006; Ma & Jazayeri, 2014; Pouget et al., 2013, 2000; Sahani & Dayan,
2003; Zemel et al,, 1998). This conclusion questions the plausibility of probabilistic
population codes (Ma et al., 2006) and neural sampling with a large number of
samples (Fiser et al., 2010). Scheme 4 - which proposes that the brain computes

partial distribution information such as mean and standard deviation - is also
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unlikely, especially in the light of the numerous examples of suboptimal cue

combination (Table 1).

On the other hand, the empirical evidence also strongly contradicts Scheme 1, which
posits a single point estimate. This conclusion questions the plausibility of the
simplest version of the drift diffusion model where the subject only knows which
boundary has been crossed (Ratcliff & McKoon, 2008). Scheme 2 - which only
allows an indirect estimate of sensory uncertainty - has trouble with findings of
meaningful confidence or optimal cue combination. Nevertheless, it is possible the
brain computes sufficient number of related parameters to achieve high
performance in these tasks. Still, potential proponents of Scheme 2 have the tall task
of determining what these parameters are and demonstrating that they are

sufficient for near optimal behavior in a number of tasks.

The evidence as a whole therefore provides greatest support for Scheme 3 (Table
1). It should be noted that it is possible to extend Scheme 3 so that different related
parameters, such as decision time and attention state, are also estimated (as in
Scheme 2). These parameters would still contribute to the decision and can each
feature a strength-of-evidence value. Clearly, models that feature this type of
uncertainty need to specify explicitly how the strength of evidence is computed and
how people learn to relate it to the probability of being correct. Still, the ability of
Scheme 3 to naturally account for both findings of optimality and suboptimality

makes it a particularly promising model of perceptual decision making.
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CONCLUSION

The nature of the perceptual representation at the decision level is still a mystery.
Proposals vary from single point estimates to full probability distributions. This
paper presents five possible schemes for the nature of the perceptual
representation. Evidence from confidence and cue combination studies is at odds
with both single point estimates and full distributions. The latter are the preferred
schemes in most popular models in computational neuroscience. Instead, the most
likely scheme features a point estimate accompanied by a strength-of-evidence

value.
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