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Abstract1

Genetic distance is a standard measure of variation in populations.2

When sequencing genomes individually, genetic distances are computed3

over all pairs of multilocus haplotypes in a sample. However, when4

next-generation sequencing methods obtain reads from heterogeneous5

assemblages of genomes (e.g. for microbial samples in a biofilm or6

cells from a tumor), individual reads are often drawn from different7

genomes. This means that pairwise genetic distances are calculated8

across independently sampled sites rather than across haplotype pairs.9

In this paper, we show that while the expected pairwise distance un-10

der whole haplotype sampling (WHS) is the same as with independent11

locus sampling (ILS), the sample variances of pairwise distance differ12

and depend on the direction and magnitude of linkage disequilibrium13

(LD) among polymorphic sites. We derive a weighted LD value that,14

when positive, predicts higher sample variance in estimated genetic15

distance for WHS. Weighted LD is positive when on average, the most16

common alleles at two loci are in positive LD. Using individual-based17

simulations of an infinite sites model under Fisher-Wright genetic drift,18

variances of estimated genetic distance are found to be almost always19

higher under WHS than under ILS, suggesting a reduction in esti-20

mation error when sites are sampled independently. We apply these21

results to haplotype frequencies from a lung cancer tumor to compute22

weighted LD and the variances in estimated genetic distance under ILS23

vs. WHS, and find that the the relative magnitudes of variances under24

WHS vs. ILS are sensitive to sampled allele frequencies.25
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1 Introduction26

Genetic variation is the raw material for evolutionary change, consequently,27

one of the defining empirical questions in evolutionary and population genet-28

ics is the measurement of genetic heterogeneity in natural and experimental29

populations (Lewontin et al., 1974; Ellegren and Galtier, 2016). In addition30

to its importance to furthering our basic understanding of the evolutionary31

process (Hansson and Westerberg, 2002), characterization of genetic varia-32

tion has applied significance in many endeavors relevant to human welfare,33

including biomedical research. For example, the extent of genetic variation34

in populations of pathogens can be predictive of their ability to adapt to an-35

tibiotic treatment (Martinez and Baquero, 2000; MacLean et al., 2010) and36

immune response, while genetic heterogeneity among populations of cancer37

cells is predictive of their potential for metastatic disease and of a tumor’s38

ability to develop resistance to chemotherapies (Dexter and Leith, 1986;39

Burrell et al., 2013; Sun and Yu, 2015). Estimates of genetic variation are40

equally relevant to maintaining diversity in crop and livestock strains (Na-41

tional Research Council, 1993; Fu, 2015) and to the maintenance of viable42

populations in biological conservation (Van Dyke, 2008).43

The recent advent of high-throughput technologies for DNA sequencing44

allows researchers to measure genetic variation within and among popula-45

tions with very large sample sizes and high statistical power. The methods46

developed for characterizing genetic variation in studies of multicellular, usu-47

ally sexually reproducing model organisms can now be applied to genomic48

studies of typically clonal unicellular organisms such as microbes growing on49

biofilms, to populations of genetically heterogeneous cancer cells in a tumor,50

or to viruses in serums. In many cases, both the underlying population ge-51

netic models and the descriptive statistics used to measure genetic variation52
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in microbial or tumor samples must be adjusted to take into consideration53

the biological characteristics of the populations under study (such as the54

absence of meiotic recombination), as well as for the statistical properties of55

what are often different methods of sampling.56

One of the most widely used measures of genetic variation in a population57

is the mean pairwise genetic distance among genomes, which is an estimate58

of the total heterozygosity across all polymorphic sites. For a sample of n59

genotypes, the mean pairwise distance is calculated as:60

π̂1 = 2
∑
i,j

πij/n(n− 1), (1)

where πi,j is the Hamming distance for the haplotype pair zi,zj , summed61

over all polymorphic sites in haplotypes i and j, i.e. πij =
∑
s f(zis, zjs) for62

f(zis, zjs) = 1 if site s has different nucleotides in haplotypes zi, zj and 063

otherwise.64

The parameter π̂ is of importance not only as a summary statistic of65

genetic variation, but as an estimator of key population genetic parameters.66

Under neutral evolution in an infinite sites model (Kimura, 1969; Tajima,67

1996), π̂ estimates the population mutation rate (Tajima, 1989), i.e. for a68

diploid population with N individuals and a per-generation genomic muta-69

tion rate u,70

E[π̂] = 4Nu = θπ,

where θπ represents the distance-based Tajima estimator for this parameter71

(in a population of N haploids, θ = 2Nu). As a result, π̂ provides an esti-72

mate of neutral effective population size in populations when the mutation73

rate u is known approximately. Additionally, comparisons of θπ estimated74
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from genetic distances to the population mutation rate estimated from the75

number of segregating sites Sn in a sample of n genotypes76

Sn/(
n−1∑
i=1

1/i) = θS ,

(Watterson, 1975) is the basis for the Tajima D test for selection. Values of77

θπ that are inflated relative to θS may be the result of diversifying selection78

or recent population bottlenecks, while values of π̂ that are smaller than79

the value expected from the number of polymorphic sites indicate a history80

of selective sweeps or, alternatively, a recent population expansion with a81

relative large number of recent, rare variants. Understanding the error in82

estimates of π̂ relates directly to the error inherent to estimates of population83

mutation rate θ and tests for neutral evolution derived from this parameter.84

In studies of multicellular organisms, π̂ is estimated directly from com-85

plete haplotypes sampled from n different individuals, each of which has86

been sequenced over the region(s) containing the segregating sites of inter-87

est, i.e. π̂ is computed from the Hamming distances among actual haplotype88

pairs. This pairwise comparison of genotypes across multiple loci is possible89

because the co-occurring genotypes across sites in the genome are known for90

individually sequenced genomes. In contrast, for most samples of microbes91

or of cancer cells, the application of next generation sequencing (NGS) meth-92

ods (Goodwin et al., 2016) entail sampling reads from an unknown number93

of different genomes (in contrast to multicellular tissue samples from indi-94

vidual organisms, which are assumed to be genetically homogeneous). In95

the limiting case, if the read coverage depth at each segregating site is suf-96

ficiently small relative to the number of individual genomes in a sample,97

every read is likely to be drawn from a different individual cell and geno-98
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type (assuming non-adjacent segregating sites that occur on separate reads).99

Consequently, sampling in this way for a read depth of n is not statistically100

equivalent to sequencing n individuals at the same number of sites. The101

estimated mean pairwise genetic distance for independent sampling of loci102

from different genomes is:103

π̂2 = 2
∑
s

∑
is,js

f(zis,s, zjs,s)/n(n− 1), (2)

where zis,s is the identity of the ith allele sampled at locus s, which is as-104

sumed to be from a different genome (distinct cell or organism) with respect105

to the ith sample at some other site (in contrast to zis in Eqn. (1), which106

represents site s in haplotype i). We include the subindex s in is, js to high-107

light this. As in Eqn. (1), f(x, y) is an indicator function equal to 1 if the108

nucleotide pair is not identical and 0 otherwise.109

Throughout this paper, we will refer to these two modes of genotype110

sampling as as whole haplotype sampling (WHS) and as independent locus111

sampling (ILS), respectively. The difference between WHS and ILS is illus-112

trated schematically in Figure 1.113

114

FIGURE 1 HERE115

116

Although WHS is usually used to estimate genetic distances when se-117

quencing multicellular organisms while ILS is standard for assemblages of118

microbes or tumor cells, one can apply single cell sequencing (corresponding119

to WHS) to microbe and tumor cells (Navin, 2015; Gawad et al., 2016). It120

is also possible to sample loci via independent reads from different genomes121

(ILS) in multicellular organisms if one sequences sufficiently many individual122
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organisms (i.e. more individuals genotyped than there are reads), although123

it usually isn’t practical to do so. Therefore, it is instructive to compare124

the sampling distributions of π̂ obtained for WHS and ILS. Even in cases125

where only either ILS or WHS are practically feasible, it is important to126

understand the potential sources of error in estimates of genetic distance127

given the type of sampling being used. The sample variances of π̂ under ILS128

vs. WHS are of particular significance, as they determine the expected error129

in our point estimates of genetic distance in a population, and by extension,130

the reliability of test statistics for the consequences of natural selection or131

population dynamics such as Tajima’s D.132

Below, we will derive the expectations and sample variances of pairwise133

genetic distance under the two modes of sampling with the fewest possi-134

ble a priori assumptions about the number and distribution of mutations.135

We test these analytical predictions against samples from simulated popula-136

tions undergoing neutral evolution via random mutation and Fisher-Wright137

genetic drift under an infinite-sites model. We also apply these results to138

estimating the variances in genetic distances using single nucleotide variant139

(SNV) frequency data from lung cancer tumors.140

2 The sampling models141

Consider a population of N organisms with some distribution of mutations142

over S segregating sites (in the population, as opposed to Sn � S in a143

sample of n). We wish to estimate the mean genetic distance π̂ for the144

population and its sample variance var(π̂) under the WHS and ILS models145

of sampling. For WHS, we draw n� N individual organisms (or cells) from146

the population and sequence their entire genomes, exomes, or any regions147

containing the polymorphic sites of interest. For simplification but without148
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loss of generality, assume that the sample consists of n haploid genotypes149

or known/phased haplotypes, regardless of how they were sequenced or the150

number of reads (we note that if we were working with diploid genotypes,151

phasing would not matter if pairwise distances are computed with respect152

to the per-site genotype).153

For an idealized model of ILS in an aggregate sample of microbes or154

cells, we assume that the number of individual genomes (i.e. from different155

tumor cells or microbes) that contribute reads to a sample is much larger156

than the sequencing read depth (mean coverage depth) n. If this is the157

case, we can assume (approximately) that the majority of reads are sampled158

different individual genomes. If we make the further assumption that reads159

are short, the majority of reads will contain at most a single polymorphic160

site. Together, these conditions imply that the majority of polymorphic sites161

will be sampled from different genomes, or, more precisely, each polymorphic162

site is sampled independently of other polymorphic sites with respect to163

their genome of origin (in the second panel of Figure 1, several sites are164

sampled from the same genome simply because there are very few genomes to165

draw this random sample from). When computing average pairwise genetic166

distance, WHS sums over the Hamming distances of all haplotype pairs,167

while ILS is the sum over all pairs for each of the Sn segregating sites168

sampled from different individuals.169

Without loss of generality, we also assume an infinite sites model so that170

there only two alleles per segregating site. This allows an unambiguous171

binary classification of alleles, with mutations as ancestral "wildtype" vs.172

"reference" genotype (in the case of tumors, the reference corresponds to173

the normal germline genotype, with somatic mutations defining the variant174

genotypes of the clonal lineages), and to specify the direction of linkage dis-175

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 15, 2017. ; https://doi.org/10.1101/108928doi: bioRxiv preprint 

https://doi.org/10.1101/108928


equilibrium. We note, however, that the results derived below are applicable176

to multiallelic states provided that some allele (usually the most common,177

or, in the case of cancer genomics, the germline allele) is designated as a178

reference and all other alleles are pooled together to create an aggregate179

biallelic state.180

181

Definitions. In this subsection and throughout the manuscript, we will182

make use of the following definitions and terminology as a formal way of183

characterizing and distinguishing between Eqns (1) and (2) in the introduc-184

tion:185

186

Variables: Let z denote a genotype, at either single locus s or across multiple187

loci. We define the frequency distribution of z over samples i as zi ∼ p(z),188

which are iid among i = 1...n. As above, we use zis to denote site s in189

haplotype i (for WHS), and zis,s to denote sample i at site s when sites are190

sampled independently (ILS).191

192

Pairs: In both cases, that is, for WHS and ILS, respectively, the esti-193

mators π̂1 and π̂2 include an average
∑
i<j φij/n(n − 1) of some function194

φij = φ(xi, xj) of pairs of i.i.d. random variables xi, i = 1, . . . , n. In the195

case of ILS xi = zis and φ(xi, xj) = fijs with fijs = I(zis 6= zjs)(and an196

additional sum over s, outside the average). In the case of WHS the random197

variables are xi = zi and φ(xi, xj) = gij =
∑
s fijs. Importantly, while the198

r.v.’s xi are independent, pairs (xi, xj) and (xi, xk) that share a common199

element are not.200

201

Moments of φij : We define E(φij) = µ, var(φij) = σ2. We also define an202
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expectation for an indicator function on pairs of pairs with a shared element203

as E(φij , φjk) = κ.204

205

Pairs of pairs: Let P denote the set of all ordered pairs of pairs, with P3 ⊂ P206

defining the subset of ordered pairs of pairs with a single shared element,207

P = {[(i, j), (k, `)] : i < j, k < ` and (i, j) < (k, `)}

P3 = {[(i, j), (k, `)] : i < j, k < ` and (i, j) < (k, `) and |{i, j, k, `}| = 3}

Numbers of pairs: The number of ordered pairs, and the number of ordered208

pairs of pairs with a shared element are, respectively209

N2 = n(n− 1)/2

N3 = n(n− 1)(n− 2)/2

The value of N3 follows from the fact that there are n(n− 1)(n− 2)/6 ways210

to select a triplet i, j, k, and three ways to select a shared element from this211

triplet. In Appendix A1, we cover some of the properties of ordered pairs212

of pairs, including the derivation of the following relation which we will use213

below to compute var(π̂) under ILS and WHS,214

var(φ̂n) = σ2

N2
+ 2N3

N2
2

(κ− µ2), (3)

where φ̂n = 1
N2

∑
i<j φij is a sample estimate of E(φij) = µ. We will use this215

result twice, once for ILS with φij = fijs, and once for WHS with φij = gij .216
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2.1 Case 1: Independent Locus Sampling (ILS)217

For ILS, we use the indicator function at a single site s, fij,s = I(zis,s 6= zjs,s),218

where zis,s ∼ Bern(ps), i.e. p(zis,s) = ps for zis,s ∈ 0, 1 such that219

µs = E(fij,s) = hs = 2ps(1− ps)

σ2
s = var(fij,s) = hs(1− hs)

(note that hs is the heterozygosity at locus s).220

The expectation of the indicator function for ordered pairs on pairs in-221

cludes a covariance term, namely,222

κs = E(fij,s fjk,s) = p(zis,s 6= zjs,s, zjs,s 6= zks) = p(zis,s = zks,s 6= zjs,s)

= p(zis,s = zks,s = 1, zjs,s = 0) + p(zis,s = zks,s = 0, zjs,s = 1)

= p2
s(1− ps) + (1− ps)2ps = hs/2.

The sampling estimator for π̂ under ILS is given by

π̂ILS =
∑
s

 1
N2

∑
i<j

I(zis,s 6= zjs,s)

 =
∑
s

 1
N2

∑
i<j

fij,s

 .
From the assumption of statistical independence among sites s located on223

different reads under ILS, it follows (Appendix A1) that for a sample of n,224

var(π̂ILS) =
∑
s

var(f̂ns) =
∑
s

1
N2

hs

{
(1− hs) + N3

N2
(1− 2hs)

}
(4)

We remark that in practice, the assumption of independence requires that225

the number of possible samples of size n is much larger than the number of226

segregating sites (i.e. N � n so that
(N
n

)
� SN ).227
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2.2 Case 2: Whole Haplotype Sampling (WHS)228

Computing pairwise differences for independent samples of z = zi under229

WHS involves computing moments of sums rather than sums of moments,230

i.e.231

gij =
∑
s

I(zis 6= zjs) =
∑
s

fij,s

For samples of individual haplotypes i = 1...n, consider zi ∼ p(z) with232

p(zis = 1) = ps as before, but with correlated zis, zir due to linkage disequi-233

librium (LD) between sites, i.e. for (arbitrarily labeled) alleles R, r and S, s234

at the two sites, and defining qs, qr = 1− ps, 1− pr (Lewontin and Kojima,235

1960),236

p(RS) = p(R)p(S) + Dsr = prps + Dsr

p(rs) = p(r)p(s) + Dsr = qrqs + Dsr

p(Rs) = p(R)p(s) − Dsr = prqs − Dsr

p(rS) = p(r)p(S) − Dsr = qrps − Dsr.

As with ILS, we have, for hs = 2psqs,237

µf = E(fij,s) = hs and σ2
f = var(fij,s) = hs(1− hs)

With non-zero LD, the probability of different identity among sites s, r in238

a sample pair i, j is p(fijsfijr = 1) = p(RS, rs) + p(rs,RS) + p(Rs, rS) +239

p(rS,Rs), where (RS, rs) = (zi,sr = RS, zj,sr = rs) etc. Therefore240

γsr = E(fij,s · fij,r) = 2(pspr +Dsr)(qsqr +Dsr) + 2(psqr −Dsr)(qspr −Dsr)
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and similarly, considering triplet samples with shared element j paired with241

i and k, the probability of different identity between j and j at site s and j242

vs. k at site r is p(fijsfjkr = 1) = p(R, rS, s) + p(R, rs, S) + p(r,RS, s) + ....243

Using these terms, we compute the expectation:244

δsr = E(fij,s · fjk,r) = 2ps(qspr −Dsr)(qsqr +Dsr) + 2(psqr −Dsr)(qspr −Dsr)

Assuming independence (linkage equilibrium, Dsr = 0 for all s, r) gives re-245

sults equivalent to ILS, i.e. both equations simplify to γsr = δsr = 4psqsprqr.246

The mean and sample variance terms for the expected pairwise distances are,247

respectively,248

µ = E(gij) =
∑
s

hs,

σ2 = var(gij) =
∑
s

var(fij,s) + 2
∑
r<s

cov(fij,r, fij,s)

=
∑
s

hs(1− hs) + 2
∑
r<s

(γsr − hshr),

while the covariance κ for the ordered pair of pairs with a shared j element249

is:250

κ = E(gij gjk) = E

{∑
s

fij,s ·
∑
s

fjk,s

}
=

= E

{∑
s

I(zis = zks 6= zjs) + 2
∑
r<s

(I(zis 6= zjs)I(zjr 6= zkr)
}

=
∑
s

hs/2 + 2
∑
r<s

δsr.

By incorporating κ, we can construct the sample estimate and variances for

gij . For the WHS model, zi ∼ p(z), independently, from which we construct
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the sample estimate for gn as:

π̂WHS ≡ ĝn = 1
N2

∑
i<j

gij ,

now averaging over haplotypes zi (rather than independent counts for each

site).

Note that ĝn is again an average across pairs, like f̂n in the ILS case.

We again apply the result in Eqn. (3) to find

var(π̂WHS) = σ2

N2
+ 2N3

N2
2

(κ− µ2) =

1
N2

(∑
s

hs(1− hs) + 2
∑
r<s

(γsr − hshr)
)

︸ ︷︷ ︸
σ2

+2N3
N2

2


∑
s

hs/2 + 2
∑
r<s

δsr︸ ︷︷ ︸
κ

−
(∑

s

hs

)2


(5)

2.3 Difference and independence251

Using the results in Eqns. (4) and (5), we derive the difference between the252

sample variances in pairwise differences under WHS vs. ILS as253

∆ = var(π̂WHS)− var(π̂ILS) = 2
N2

∑
r<s

(γsr − hshr) + 4N3
N2

2

∑
r<s

(δsr − hshr) (6)

By collecting terms, we can rewrite the above as254

∆ = 2
N2

∑
r<s

Bsr + 4N3
N2

2

∑
r<s

Asr,

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 15, 2017. ; https://doi.org/10.1101/108928doi: bioRxiv preprint 

https://doi.org/10.1101/108928


where255

Asr = δsr − hshr = (pspr + qsqr − psqr − prqs)Dsr + 4psqsprqr − 4psqsprqr

= (ps − qs)(pr − qr)Dsr = (2ps − 1)(2pr − 1)Dsr

Bsr = γsr − hshr = 4D2
sr + 2(pspr + qsqr − psqr − prqs)Dsr + 4psqsprqr

−4psqsprqr

= 4D2
sr + 2Asr

For notational convenience, we define:256

E[Asr] = 1
N2

∑
r<s

Ars

In the absence of linkage disequilibria among pairs (Dsr = 0 and therefore257

Asr, Bsr = 0 for all s, r pairs), γsr = δsr = hshr and ∆ = 0, i.e. the sample258

variances under WHS and ILS are equal. Otherwise, because Bsr ≥ Asr259

for Asr > 0, E[Asr] > 0 is a sufficient condition for ∆ > 0. This condition260

is satisfied provided that the sum of weighted linkage disequilibria Asr is261

positive, i.e.262 ∑
sr

Asr =
∑
sr

(2ps − 1)(2pr − 1)Dsr > 0. (7)

While E[Asr] > 0 is a sufficient condition for ∆ > 0, it is not a necessary263

condition. In fact, the variance in mean pairwise distance under ILS may in264

some cases still be lower than under WHS even for E[Asr] < 0. This follows265

because negative Asr may be offset by the positive contributions of D2
sr to266

the Bsr term when pairwise LD values in the population are sufficiently267

high. However, for large sample sizes, the Asr term dominates because it268

scales as ∼ 1/n while the Bsr term scales as ∼ 1/n2, which means that for269

many practical cases the sign of E[Asr] predicts that of ∆.270
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In order to have E[Asr] > 0, it is required that on average Asr is positive,271

i.e. that for most pairs of loci s, r, the "major" alleles (those with ps, pr > 0.5)272

are in positive LD, while major and minor allele pairs (ps > 0.5, pr < 0.5 or273

vice-versa) are in negative LD. The weighted LD Asr provides a measure of274

the extent to which major alleles are in positive LD, regardless of whether the275

more common allele is a reference/wildtype or variant/mutant at a particular276

site. Our results predict that when the mean weighted LD is positive, the277

sample variance (error) in estimated pairwise genetic distance will be lower278

under ILS than under WHS.279

2.4 Implications280

To understand the conditions under which ∆ > 0 holds, we consider the dis-281

tribution of allele frequencies and pairwise LD under different evolutionary282

scenarios. Specifically, we ask whether positive weighted linkage disequi-283

libria (the conditions in Eqn. (7)) are general enough to assume that ILS284

generally leads to a reduced error in estimated genetic distance relative to285

WHS.286

Consider a population undergoing random mutation under an infinite287

sites model and Fisher-Wright genetic drift in a finite population. At an288

equilibrium of new alleles acquired via mutations and those lost by genetic289

drift, the expected number of sites ηk that have k copies of a mutant allele290

is291

E[ηk] = θ/k,

(Watterson 1975, see also e.g. Ewens 2004 Ch 9, Ch. 2 in Durrett 2008),292

so that the expected frequency of alleles occurring as k-tuples is θ/(SNk).293
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Because of this harmonic relationship, the majority of mutant alleles in a294

population are represented as singletons and as other small k-tuples (e.g.295

k = 2, 3, etc). This is consistent with a majority of alleles in the population296

being rare and of recent origin, with variant allele frequencies close to p ∼297

1/N . These rare alleles of recent origin are usually lost from the population,298

while a much smaller subset of alleles in the sample have frequencies p > 0.5299

and consequently a high probability p of eventual fixation in the population.300

As a result, for the majority of variant allele pairs in a sample, we have301

ps, pr � 0.5.302

In the absence of recombination, multilocus haplotypes behave as alle-303

les at a single locus, so that the infinite sites model becomes effectively an304

infinite alleles model (Tajima, 1996). Therefore, every new mutation is in305

positive LD with the other variant alleles with which it co-occurs and in306

negative LD with non-co-occurring mutations on other haplotypes. We con-307

sider the following scenarios: A) LD among rare, typically non-co-occurring308

alleles on different haplotypes, B) LD between rare and common alleles when309

a recent mutation appears on a common haplotype as a genetic background310

and C) co-occurrence of common alleles on dominant haplotypes.311

A) Following the Watterson distribution of k-tuples at equilibrium, there312

are a large numbers of rare alleles ps, pr ∼ 1/N . However, most of these313

rare alleles do not co-occur with one another, consequently P (sr) ∼ 0 and314

Dsr ∼ −1/N2. B) Rare alleles typically appear against a background of315

common haplotypes or subclones defined by high-frequency variant alle-316

les. If we have a recent mutation with frequency ps ∼ 1/N appearing317

on a background of common alleles at other loci pr ∼ 0.1, then the LD318

Dsr ∼ ps − pspr > 0 ∼ 1/N , because the frequency of the P (sr) haplotype319

is ps. By symmetry, new alleles that happen to co-occur on rare haplotypes320
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will have Dsr ∼ −1/N with respect to the sites on their genetic background,321

but there will be an order of magnitude fewer such associations because the322

majority of new mutations will appear against a genetic background of com-323

mon haplotypes. C) Similarly, common alleles that co-occur on dominant324

subclones have Dsr = ps − pspr ∼ 0.1 (where dominant haplotypes, and325

therefore allele frequencies can potentially be ps, pr > 0.5.326

These heuristic considerations of scale suggest that the distribution of327

Dsr in the clonal population will be highly skewed, consisting of large num-328

bers of negative but near-zero LD values for the many ps ∼ 1/N rare alleles,329

and a smaller number of large positive associations associated with muta-330

tions defining the common haplotypes. This conclusion is consistent with331

the highly skewed sampling distributions of Dsr for non-recombining loci332

computed numerically in Golding (1984), i.e. large numbers of weakly neg-333

ative associations and a small number of high positive LD.334

Because of this skew, we hypothesize that populations where the al-335

lele frequency distributions are in approximate equilibrium under mutation336

and drift will have positive E[Asr] and therefore higher sample variance in337

pairwise genetic distance under WHS than under ILS. In contrast, among338

populations where all allelic variation is of recent origin and characterized by339

low frequencies (such as in newly emergent tumors, or in populations that340

have experienced recent bottlenecks), the negative associations Dsr < 0 will341

dominate the distribution due to the fact that recent mutations will ini-342

tially occur on different reference haplotypes. Because most mutations will343

occur on disjoint branches of the genealogy, very few haplotypes with sig-344

nificant numbers of co-occurring mutations will have attained high enough345

frequencies to offset the small magnitude but negative LD values. There-346

fore, it is possible to observe E[Asr] < 0 (albeit with |E[Asr]| and ∆ ∼ 0)347
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in populations where most variant alleles occur at near zero frequencies.348

We will assess these heuristic predictions about the sign and magni-349

tude of E[Asr] and ∆ under different frequency distributions of p and Dsr350

through simulations of mutation and genetic drift for a range of population351

parameters.352

3 Comparison to individual-based simulations353

To simulate Fisher-Wright genetic drift in an infinite sites model, we initial-354

ized a population of N haploid genotypes characterized by K = 108 sites355

with reference genotypes (all alleles set to 0 value, to distinguish them from356

variant mutations set to 1). In every generation, N individuals were sampled357

with replacement from the existing pool, with each individual sampled pro-358

ducing a single progeny. The number of mutations m for each progeny was359

m ∼ Poiss(Ku), with the mutations randomly distributed among the K360

sites. This process was iterated over T generations; in order to approximate361

a distribution of mutation frequencies near equilibrium, we chose T ∼ 4N362

(because expected coalescent time for all N haplotypes in a population is363

E[TC ] = 2N). In addition, simulations were run for a range of values T < N364

for comparison to non-equilibrium distributions of allele frequencies and365

pairwise LD. For each combination of parameters, the simulation cycle was366

run over 100 replicates.367

In order to simulate WHS sampling, n haplotypes were randomly selected368

without replacement from the model population. The Hamming distances369

were calculated for all pairs in a sample, while variant allele frequencies and370

linkage disequilibria were calculated for all individuals and all pairs in the371

model population. ILS sampling was simulated by selecting n alleles without372

replacement at every segregating site, summing pairwise distances over all373
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sites (this can be thought of as sampling with replacement with respect374

to genomes, but without replacement with respect to each locus). ∆ was375

estimated as the difference in the sample variances between the WHS and376

ILS pairwise distances. For each simulation replicate, Asr was calculated377

from the mutation frequencies ps, pr and from Dsr using Eqn. (6). All378

simulations were implemented using Python 2.7.3, the code is available from379

the corresponding author upon request.380

Simulation output for population sizes N = 200, 500, a sample size of381

n = 20 and a range of generation times T are summarized in Tables 1 and382

2. The first table shows the estimated parameter values from which ∆ is383

calculated - including the number of polymorphic sites SN in the population384

(as opposed to the sample number of segregating sites Sn), the population385

mean allele frequency across polymorphic sites, the sample mean pairwise386

genetic distances under WHS and ILS (for n = 20), as well as their respec-387

tive sample variances over 100 replicates.388

389

TABLES 1 and 2 HERE390

391

For small time intervals T < N , there are few (∼ 100) polymorphic sites,392

all of which are characterized by low variant allele frequencies. Consequently,393

the mean and variance of genetic distances are of the order ∼ 1, ∼ 0.1, re-394

spectively. For T ∼ 4N , allele frequencies and genetic distances tend towards395

the equilibrium values predicted under the neutral infinite sites model, e.g.396

the estimated pairwise genetic distance π̂ converges to the Tajima estimator397

for haploids θ = 2Nu, which is π̂ = 150, 300 for N = 200, 500, respectively.398

Table 2 shows the population mean LDs D̄sr and the sum of weighted LD399

values
∑
Asr = ĀsrN2. We remark that while the mean values of LD are400
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effectively 0 even for large values of T and SN , this is not due to individual401

LD values being near 0. Rather, D̄sr ∼ 0 is the result of large numbers of402

positive and negative LD values with high absolute value, as can be seen403

from the large magnitudes of the summed weighted LD. Figures 2a and 2b404

show frequency distributions of pairwise LD and weighted linkage LD for a405

representative model population.406

407

FIGURE 2a-b HERE408

409

Using
∑
Asr, we compute the predicted difference between WHS and410

ILS variances ∆P from Eqn. (6). This predicted value is compared to411

the simulation estimate ∆S = varWHS − varILS . The close correspon-412

dence between observed and predicted values of ∆ is confirmed by the fact413

that even the largest deviations are within less than two standard error414

SE∆S
=
√
var(∆S)/n units with respect to the point estimate ∆S . The fit415

between analytical predictions and observed values improves for longer time416

intervals (i.e. as the population distribution of allele frequencies and pair-417

wise LD approach equilibrium), in part because of the much larger number418

of polymorphic sites and the higher frequency of variant alleles at those sites.419

420

With the exception of populations where there are very few mutations421

and where weighted LD values are very close to 0, we have ∆ > 0 for most of422

the simulated populations. These results conform to our hypothesis that the423

error in genetic distance estimates based on WHS will be greater than those424

for ILS for the majority of natural and model populations. The reduction425

of error through ILS is strongest for near-equilibrium distributions of allele426

frequencies, for large numbers of segregating sites, and for small sample sizes427
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(corresponding to low coverage depth with NGS). ∆ scales approximately428

as ∼ 1/n for sufficiently large n; consequently, for sample numbers and429

coverage depths of the order ∼ 100, ∆ will be smaller by nearly an order of430

magnitude relative to the values shown in Table 2 for n = 20 (simulations431

were performed for n = 10, 50, the results are not shown due to qualitative432

similarity to the data in Tables 1-2).433

The two observed cases with Āsr < 0 are for T = 10 at both simulated434

population sizes, with a negative predicted value ∆P for N = 500 (though435

not for N = 200). In these cases, the ∆ values are effectively zero within436

a standard error unit, so whether positive or negative values are observed437

is of purely formal interest (note that for even smaller time intervals T = 5438

and even fewer polymorphic sites, both Āsr and ∆ > 0, albeit very small).439

This suggests that at least under neutral evolution, E[Asr] < 0 occurs under440

rather restricted conditions corresponding to very small absolute values of ∆441

and negligible reduction of error in estimating π̂ through either WHS or ILS,442

while for large numbers of segregating sites and increasing allele frequencies,443

there can be considerable increases in error when π̂ is estimated via WHS444

rather than ILS.445

4 Analysis of cancer sequence data446

We apply the results of our derivations and numerical analyses to genomic447

data by estimating
∑
Ars and ∆ to haplotype frequencies estimated from448

a lung adenocarcinoma tumor sequence data. The data was obtained from449

whole-exome sequencing of 4 sections of a primary solid tumor taken from450

a lung cancer patient. DNA from the samples was extracted using Agilent451

SureSelect capture probes. The exome library was sequenced using paired-452

end 100 bp reads on the Illumina HiSeq 2000 platform. Reads were mapped453
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onto the human genome HG19 using BWA (Li and Durbin, 2009), giving454

a post-mapping mean coverage (depth) of 60-70 fold across sites. Variant455

calls were performed using GATK (McKenna et al., 2010). The unpublished456

data were provided to the authors as summaries of variant frequencies and457

haplotypes by K. Gulukota and Y. Ji.458

Through the matching of read ends, somatic mutations co-occurring459

within ∼ 100 bp in single genomes were identified (Sengupta et al. 2015,460

unpublished). These mutation pairs define two locus haplotypes that can461

be tallied without the need of phasing. This allows us to estimate the fre-462

quencies of haplotypes defined at two adjacent loci directly from the read463

counts, along with individual allele frequencies. Following the terminology of464

this paper, while non-adjacent polymorphic sites are sampled as (effectively)465

ILS, adjacent sites are effectively sampled as whole haplotypes. Because re-466

production in tumor cells is asexual and ameiotic, estimates of Dsr and Asr467

using a subset of nearly adjacent sites is as representative of other haplotype468

pairs as if they came from more distant sites or on different chromosomes.469

The adenocarcinoma data contain estimated frequencies of 69 haplotypes470

defined by variant alleles at two sites on a single read, and allele frequen-471

cies for a total of 138 sites (comparable to the number of somatic mutations472

identified in the exomes of lung adenocarcinoma and other cancer types, e.g.473

TCGA 2014, Hoadley et al. 2014). The provided haplotype data is used to474

determine how the LD values and allele frequencies would effect the error in475

estimation of π̂ for this data set under WHS vs. ILS sampling.476

A naive application of Eqn. (6) to the distribution of mutation frequen-477

cies and LD values gives ∆ ∼ 0.1 for n = 65, suggesting lower error in π̂478

estimates from ILS for this data. However, several aspects of cancer ge-479

netics complicate this estimate. First, because cancer cells reproduction is480
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clonal, somatic mutations appear in heterozygous genotypes in the absence481

of mitotic recombination and gene conversion. A SNV frequency of p = 0.5482

corresponds to "fixation" of a somatic mutation in a population of asexual483

diploids. Therefore, if we have heterozygous fixation at a single SNV site,484

a population consisting of 0/1 (reference and variant) genotypes, a mean485

genetic distance measure of π̂ = 1/2 is meaningless because the population486

is homogeneous with respect to the 0/1 genotype. Variant allele frequencies487

must be rescaled to reflect these considerations.488

Figure 3 shows the distribution of mutant allele frequencies in Sample 1,489

note the high frequency of values near p = 0.5, and the fact that this distri-490

bution is not consistent with an equilibrium neutral distribution of ∼ θ/k491

k-tuples, due to the scarcity of detected rare variants.492

493

FIGURE 3 HERE494

495

Williams et al. (2016a,b) (see also Ling et al. 2015) address the issue496

of the fixation of heterozygous genotypes by only considering polymorphic,497

segregating sites when comparing allele frequencies in tumors to those pre-498

dicted from the neutral model, to the exclusion of sites that are ≥ 0.5 within499

a margin of sampling error. This also excludes those sites with frequencies500

p > 0.5 due to loss of heterozygosity. In addition, with a range of allele501

frequencies p = [0, 0.5], the frequencies are rescaled to reflect the frequency502

of the heterozygous genotype, which for diploids means mapping p′ = 2p, or503

more generally, p′ = p/fc where fc is the cutoff for the inference of fixation.504

With this mapping, the genetic distance for a sample where all genotypes505

at a variant site are 0/1 is 0.506

With the assumption of diploidy at all of the genotyped SNV sites and507
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defining fixation as p = 0.5, we find that for n = 65, the binomial prob-508

ability of observing fewer than x = 26 mutant alleles is Bin(x ≤ 25|n =509

65, p = 0.5) = 0.041. Thus, we use fc = 0.4 as as a cutoff defining poly-510

morphic sites. Using this criterion, and the rescaling p′ = p/fc, there are511

only between 6 (sample 4) and 10 (sample 3) adjacent segregating sites, and512

consequently between 3 and 5 haplotypes defined by such a pair out of the513

original 69. The LD and ∆ values for this subset of haplotypes are summa-514

rized in Table 3. The differences in variances ∆ remain positive, consistent515

with sample variance under WHS being greater than under ILS as before.516

However ∆ is small (0.034 ≤ ∆ ≤ 0.070), suggesting that in practice the517

estimation errors for π̂ are negligibly different for this data set. The small ∆518

are partly a consequence of the small number of segregating sites (because519

π̂max = Sn/2). Therefore, the variance in π̂ estimation under WHS may520

be expected to increase for greater numbers of segregating sites, as was the521

case in the simulation data for larger time intervals and S.522

523

TABLES 3a-b HERE524

525

The values of ∆ are also sensitive to the choice of truncation, as many526

of the SNVs occur in genotypes that are close to fixation in the tumor.527

For example, if we use fc = 0.49, x = 32 as a cutoff to define segregat-528

ing sites rather than fc = 0.40, we obtain Āsr < 0 and ∆ < 0 (of the529

order ∼ 0.1). The sign reversal results from some lower frequency SNVs530

uniquely co-occuring in genomes with other SNVs that are close to fixation.531

The remaining allele and haplotype distributions contribute negative link-532

age disequilibria between the high frequency SNVs at one locus and high533

frequency reference alleles at the other site. The greater absolute value of534
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∆ is a consequence of the fact that with a cutoff of fc = 0.49, there are535

now 21-28 haplotypes (and 42-56 segregating sites) rather than the 6-10 for536

the fc = 0.40 cutoff. The negative weighted LDs and ∆ with this cutoff537

are shown in the second panel Table 3b, as an illustration of how for some538

samples, the variances in π̂ may actually be lower under WHS than under539

ILS.540

5 Discussion541

Heuristically, the higher error in estimated genetic distance under WHS542

when weighted LD are positive on average reflects the loss of information543

due to non-independence across sites. If for most pairs of sites, the most544

frequent (major) alleles are in positive LD, then any error in estimating545

frequency and heterozygosity at one site covaries with the error at the other546

sites. In contrast, with ILS, each site provides independent information and547

the error across sites is uncorrelated. If there are Sn segregating sites in a548

sample of n and the variance in estimated genetic distance per site is σ2,549

then with independent sampling the error across sites will approach σ2/Sn.550

In contrast, in the extreme case where allele frequencies across sites are551

nearly identical (complete linkage), the sample variance is σ2 independent552

of the number of sites. In the case of negative LD (i.e. negative association553

among common alleles), there is an information gain across sites.554

On the other hand, a negative association of allele frequencies across555

pairs of sites means that an error in estimated distance at one site will on556

average be compensated by an error in the opposite direction at another557

site, leading to reduction in variance under WHS (analogous to improved558

estimation of the mean by sampling positive and negative extremes of a559

distribution). Both heuristic considerations and simulation results suggest560
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that such a scenario is unlikely except for distributions of allele frequencies561

that give very small error values regardless.562

Because ∆ will either be positive or close to 0 for most distributions563

of allele frequencies, our results suggest that ILS should be used to mini-564

mize error in genetic distance estimation for most natural and experimental565

populations. However, there are several caveats to this conclusion, some the-566

oretical, others practical. For example, we know that when most pairwise567

LD are approximately 0, the difference ∆ between WHS and ILS estimates568

will be very small. A number of recent studies have shown that LD are569

generally among sites that are not physically linked in the genomes of sex-570

ually reproducing model organisms, including Drosophila (Andolfatto and571

Przeworski, 2000) and humans (Peterson et al., 1995; Reich et al., 2001).572

This suggests that any error introduced by sampling alleles from genomes573

(WHS) rather than individually via ILS will be negligible.574

In contrast, for the genomes of clonal, ameiotic organisms or for regions575

of genome under very low recombination in sexually reproducing organisms,576

LD values will be high. Depending on the distribution of allele frequencies,577

∆ will be large when evaluated over many polymorphic sites. In the cases of578

cancer and microbial genomics, the standard NGS approach to sequencing579

reads from large numbers of cells (approximating ILS) suggests an improved580

estimation of π̂ (and consequently, θ and Ne) relative to what would be581

obtained from more expensive single cell sequencing approaches. Moreover,582

single-cell sequencing usually entails a much smaller sample size n than the583

coverage depths of 100-1000 that are standard for NGS. Even in cases where584

∆ < 0 (such as for some of the simulated data with small numbers of rare585

mutations, or for some truncations of the lung cancer data), the magnitude586

of the effect is going to be small and outweighed by the reduction of error587
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through high coverage. Moreover, ∆ is defined on the assumption of the588

same effective sample size n for both WHS and ILS, if ILS allows for much589

larger n, as is often the case, then this is often sufficient to reverse the sign590

of var(π̂WHS)− var(π̂ILS).591

In addition to providing a summary statistic of genetic variation in a592

population, π̂ is an estimator of population mutation rate θ (and, with a593

known mutation rate, effective population size Ne) under a neutral model594

of sequence evolution. As noted in the introduction, these parameter es-595

timates can be used to detect the population genetic signatures of natural596

selection and/or demographic histories when compared to θ estimates from597

the sample number of segregating sites Sn. Consequently, our derivation598

of the expectation and sample variance in π̂ under WHS and ILS are key599

to calculating the error in estimates of θ and Ne. Sampling error in the600

Tajima D statistic can be estimated using our derivation of ∆ together with601

an analogous estimate for the sampling error of Sn.602

Another future research direction suggested by our results is deriving603

analytically the conditions under which E[Asr],∆ > 0. Eqn. (7) provides604

the conditions in terms of allele frequencies and LD under which ∆ > 0,605

but does not specify the population genetic conditions under which these606

distributions hold. For example, showing that an equilibrium distribution607

of allele frequencies under Fisher-Wright drift both without recombination608

and for a range of recombination rates leads to ∆ > 0 requires deriving a609

population distribution (as opposed to the distribution within the sample)610

of pairwise LD values Dsr. Computing E[Asr] over a distribution of al-611

lele frequencies and pairwise LD would essentially formalizing the heuristic612

argument presented in subsection 2.4613

Finally, we remark that this study was to a large part motivated by614
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efforts to apply the methods and theory of population genetics to cancer615

biology, where whole haplotype versus individual locus sampling appear as616

options under single cell sequencing versus WGS of multicell samples, re-617

spectively. The case study from lung cancer data in the previous section was618

used as proof of principle. A more accurate and refined analysis would have619

to take into consideration a number of potentially confounding variables.620

These include polyploidy and aneuploidy (so that with ploidy X, fixation621

corresponds to p = 1/X), as well as accounting for the loss of heterozygosity622

through mitotic recombination, reflected in frequencies p > 0.5. The sensi-623

tivity of ∆ to the choice of cutoff fc defining fixation, even in the diploid624

cases, bears further investigation as well.625
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8 Figures and Tables638

Figure 1. Illustration of whole haplotype sampling (WHS) versus indi-639

vidual locus sampling (ILS). In this example, the population consists of 8640

haploid organisms G1...G8 characterized by 4 segregating sites S1...S4. We641

assume a sampling depth of n = 3 and sufficiently many reads to capture642

all segregating sites. In the left panel, we have a random instance of WHS643

via the sampling of G2, G4, G5 (gray ovals representing sampling), giving a644

mean pairwise distance of π̂ = 2. In the right panel, we have a random ILS645

such that G1, G3, G8 are sampled at S1, G4,G5 and G8 at S2, etc, giving646

a mean genetic distance π̂ = 8/3.647

648

Figures 2a-b. Population distributions of pairwise linkage disequilibriaDsr649

(2a) and weighted linkage disequilibria Asr (2b) for a simulated population650

with N = 500 haploid genotypes after T = 2500 generations of mutation651

and Fisher-Wright genetic drift, corresponding an approximate equilibrium652

allele frequency distribution.653

654

Figure 3. Distribution of allele frequencies p in the first lung adenocarci-655

noma sample, for Sn = 138 polymorphic sites. Values of p near 0.5 indicate656

heterozygous variant genotypes near fixation. Values p > 0.5 are a conse-657

quence of loss of heterozygosity via gene conversion during mitotic recom-658

bination, these are excluded from our analyses.659

660

Table 1. A summary of results for a Fisher-Wright model of genetic drift661

with infinite sites. The table shows a comparison of ∆P values predicted662

from Eqn. (6) with simulation the values ∆S for N = 200, 500 and sample663

size/coverage depth n for a range of time intervals (the last pair of time664
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values for each population size is of the order 4N , corresponding to an ap-665

proximate equilibrium in allele frequencies). The standard error of ∆S is666

also shown, where ∆P lies within less than two SE units from ∆S even for667

small time intervals where there are few mutations. Mean population pair-668

wise linkage disequilibrium values are all essentially zero for all simulations,669

while the magnitudes of Asr increase with T as predicted. p is the mean670

variant allele frequency across all segregating sites.671

672

Table 2. This table shows the number of segregating sites Sn in a sample673

of n = 20, the mean pairwise genetic distances π̂W , π̂I (for WHS and ILS,674

respectively), and the variances in pairwise genetic distance for WHS and675

ILS. The latter are used to compute ∆S in Table 1.676

677

Table 3. Calculation of ∆ from haplotype and allele frequencies in the678

lung adenocarcinoma sequence data, where haplotype frequencies for sites679

on individual long reads are known. Note that Â > 0 and ∆ > 0 for all680

4 samples, indicating that the error in pairwise genetic distance estimates681

for this data set are greater under WHS than under ILS, albeit weakly682

given the small number of unique haplotypes. ∆ is computed using the683

actual mean coverage depth n = 65 for two different cutoffs used to define684

polymorphic sites. The upper panel shows the values for a cutoff of fc = 0.40,685

selected based on a binomial probability. The lower panel shows the same686

for fc = 0.49, selected arbitrarily close to p = 0.5 to show the sensitivity687

of ∆ to the cutoff. The fc = 0.40 calculations are based on 6-10 remaining688

polymorphic sites, the fc = 0.49 on 42-56 sites, depending on the sample.689

Note that p̄′ is based on p′ = p/fc, rescaled with respect to the diploid cutoff690

value.691
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9 Appendix A1: Ordered Pairs of Pairs778

Recall the definitions µ = E(φij), σ2 = var(φij) and κ = E(φij , φjk).779

Lemma 1. Let µ = E(φij) where the expectation is over pairs xi ∼ p(x)

and xj ∼ p(x), independently. Let φ̂n = 1
N2

∑
i<j φij, denote a sample esti-

mate for µ, averaging over all pairs (i, j) of samples. Then φ̂n is unbiased,

E(φ̂n) = µ, and

var(φ̂n) = σ2

N2
+ 2N3

N2
2

(κ− µ2).
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Proof. Unbiasedness is straightforward:780

E(φ̂n) = E( 1
N2

∑
i<j

φij) = 1
N2

∑
i<j

E(φij) = µ.

For the variance, note that781

cov(φij , φkl) = E(φijφkl)− E(φij)E(φkl) =


0 when {i, j} ∩ {k, `} = ∅

κ− µ2 when |{i, j, k, `}| = 3

Then782

var(φ̂n) = σ2

N2
+ 1
N2

2

∑
P

cov(φij , φkl) = σ2

N2
+ 2
N2

2
N3(κ− µ2).

783

Proof of Eqn. (4). Let f̂ns = 1
N2

∑
i<j fij,s. From the statistical indepen-784

dence among sites s located on different reads under ILS, it follows that for785

a sample of n,786

var(π̂1) =
∑
s

var(f̂ns)

with787

var(f̂ns) = σ2
s

N2
+ 2N3

N2
2

(κs − µ2
s) = 1

N2
hs(1− hs) + 2N3

N2
2

(hs/2− h2
s)

= 1
N2

hs

{
1− hs + N3

N2
(1− 2hs)

}

where the first equality is due to Eqn. (3).788
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N T 𝑺N 𝒑 ′ 𝝅 w 𝝅 𝑰 varw 

 

varI 

200 5 112.7 0.012 2.94 2.94 0.249 0.241 

200 10 181.5 0.016 5.82 5.81 0.468 0.476 

200 20 250.1 0.024 11.47 11.47 0.878 0.819 

200 50 351.2 0.043 26.79 26.80 2.27 1.58 

200 800 770.6 0.315 115.59 114.58 272.0 3.70 

200 1000 847.7 0.361 122.90 122.77 415.7 3.97 

500 5 308.4 0.0049 2.96 2.96 0.279 0.271 

500 10 455.9 0.0066 5.97 5.97 0.537 0.543 

500 20 616.9 0.0096 11.61 11.60 1.04 1.04 

500 50 875.5 0.0172 28.61 28.68 2.53 2.27 

500 100 1078.3 0.0281 54.67 54.67 6.23 3.71 

500 2000 2202.4 0.296 301.16 301.22 1532.1 9.09 

500 2500 2395.1 0.153 316.06 315.64 2089.8 10.53 

Table 1 
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N T 𝑫 sr  𝑨𝒔𝒓 
ΔP ΔS SE(ΔS) 

 

200 5 -4.57 x 10-7 4.18x10-3 -9.57 x 10-4 8.01x10-3 4.58x10-3 

200 10 1.16 x 10-6 0.0997 0.0129 -7.85x10-3 0.012 

200 20 -3.16 x 10-7 0.0529 0.0482 0.0587 0.0226 

200 50 -9.30 x 10-8 1.14 0.766 0.687 0.0927 

200 800 -8.89 x 10-6 660.5 297.96 268.34 44.56 

200 1000 1.49 x 10-5 1009.0 444.94 411.68 51.51 

500 5 1.16 x 10-7 4.58x10-3 2.13x10-3 8.08x10-3 3.00x10-3 

500 10 -2.83 x 10-7 -0.0242 -7.92x10-3 -6.23x10-3 7.53x10-3 

500 20 7.70 x 10-8 0.393 0.00 0.0269 0.0213 

500 50 -1.43x10-7 0.269 0.256 0.259 0.0546 

500 100 -9.80x10-8 4.35 2.74 2.52 0.182 

500 2000 -4.46x10-6 3362.8 1606.1 1523.0 213.90 

500 2500 5.31x10-6 4871.9 2241.3 2079.3 273.37 

Table 2 
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Pr=0.40 S 𝒑  𝑫 sr  𝑨𝒔𝒓 
Δ 

Sample 1 8 0.492 0.223 0.321 0.045 

Sample 2 8 0.423 0.555 0.225 0.034 

Sample 3 10 0.457 0.408 0.380 0.054 

Sample 4 6 0.328 0.500 0.510 0.070 

Pr=0.49 S 𝒑  𝑫 sr  𝑨𝒔𝒓 
Δ 

Sample 1 42 0.753 -0.713 -1.951 -0.653 

Sample 2 56 0.760 0.0352 -3.077 -1.040 

Sample 3 46 0.754 -0.0907 -1.998 -0.653 

Sample 4 56 0.759 -0474 -2.422 -0.778 

Table 3b 

Table 3a 
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Figure 2b
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