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Abstract 1 

Topoisomerase II (Top2) is the essential protein that resolves DNA catenations. When the 2 

Top2 is inactivated, mitotic catastrophe results from massive entanglement of chromosomes. 3 

Top2 is also the target of many first-line anticancer drugs, the so-called Top2 poisons. Often, 4 

tumours become resistant to these drugs by downregulating Top2. Here, we have compared 5 

two isogenic yeast strains carrying top2 thermosensitive alleles that differ in their resistance 6 

to Top2 poisons, the broadly-used poison-sensitive top2-4 and the poison-resistant top2-5. 7 

We found that top2-5 transits through anaphase faster than top2-4. In order to define the 8 

biological importance of this difference, we performed genome-scale Synthetic Gene Array 9 

(SGA) analyses during chronic sublethal Top2 downregulation and acute, yet transient, Top2 10 

inactivation. We find that downregulation of cell cycle progression, especially the Mitotic 11 

Exit Network (MEN), protects against Top2 deficiency. In all conditions, genetic protection 12 

was stronger in top2-5, and this correlated with destabilization of anaphase bridges by 13 

execution of MEN. We suggest that mitotic exit may be a therapeutic target to hypersensitize 14 

cancer cells carrying downregulating mutations in TOP2.  15 

 16 

Keywords: Topoisomerase II, top2-4, top2-5, Synthetic Gene Array Analysis, Mitotic Exit 17 

Network, Anaphase bridges, Cdc15, Cdc14, Dpb11 18 
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INTRODUCTION 1 

Upon chromosome replication, topological intertwining arises between sister chromatids. 2 

These intertwines often become interlocked (i.e. catenations) due to the confinement of the 3 

very long chromosomes in the reduced space of the nucleus. Catenations preclude sister 4 

chromatid segregation at anaphase, and the key enzyme in all life forms for removing them is 5 

toposimerase II (Top2) (Nitiss 2009a; Vos et al. 2011). Top2 works by making transient 6 

double-strand breaks (DSBs) on one sister chromatid, allowing the passage of the sister 7 

through it. Importantly, a human homologue of Top2, hTOPOIIα, is the main target of first-8 

line anticancer drugs including etoposide and doxorubicin (Deweese and Osheroff 2009; 9 

Nitiss 2009b). These drugs trap Top2-mediated DSBs and are so called Top2 poisons. The 10 

resulting DSBs are more abundant and less efficiently repaired in cancer cells than in normal 11 

cells and this, in turn, leads to the selective killing of the tumour. The hTOPOIIα is often 12 

mutated and/or downregulated during acquisition of secondary resistance to Top2 poisons, 13 

and this fact could be exploited for second-line anticancer treatments (Nitiss 2009b; Holohan 14 

et al. 2013; Larsen, Escargueil, and Skladanowski 2003).    15 

Top2 is essential for cellular viability. In unicellular eukaryotes and bacteria the study of 16 

Top2 functions has been largely facilitated by the availability of conditional alleles. In the 17 

yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe early studies showed that 18 

inactivation of Top2 by means of thermosensitive (ts) alleles leads to a mitotic catastrophe as 19 

determined by a sudden loss of viability once the cells reach anaphase (Uemura and Tanagida 20 

1986; Holm et al. 1985). In agreement with a role in removing sister chromatid catenations, 21 

Top2 inactivation yielded cells with DAPI-stained anaphase bridges and broken 22 

chromosomes once cells completed cytokinesis (Uemura and Tanagida 1986; Holm et al. 23 
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1985; Uemura and Yanagida 1984; DiNardo, Voelkel, and Sternglanz 1984; Holm, Stearns, 1 

and Botstein 1989). In the case of S. cerevisiae, all these studies were carried out with two ts 2 

alleles isolated in independent screens, top2-1 and top2-4. Both alleles yield Top2-ts proteins 3 

sensitive to poisons. In the same screen where top2-4 was isolated, top2-5 was also obtained 4 

(Holm et al. 1985). Later, top2-5 was shown to be resistant to poisons and served as a key 5 

tool to understand the mechanism of action of this class of clinical drugs (Jannatipour, Liu, 6 

and Nitiss 1993; Perego et al. 2000). Nevertheless, the top2-5 cell cycle was not characterized 7 

and has been assumed to be equivalent to that of top2-4.  8 

Here, we have revisited the cell cycle progression of cells expressing the broadly used 9 

top2-4 allele and compared its behaviour to an isogenic top2-5 strain. In addition, we have 10 

performed a genome-scale synthetic genetic array (SGA) analysis for these two top2-ts 11 

alleles. We show that execution of the Mitotic Exit Network has specific deleterious effects 12 

on sublethal downregulation of Top2-5.     13 

14 
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RESULTS AND DISCUSSION  1 

Cells carrying the top2-5 allele complete anaphase faster than top2-4.  2 

We started this work by revisiting fluorescence microscopy time course experiments 3 

in the original top2-4 and top2-5 ts strains (Holm et al. 1985). As a control, we also included 4 

the TOP2 reference wild type allele in the same genetic background. We first engineered the 5 

strains in order to label the histone H2A (HTA2 gene) with GFP. This strategy allowed us to 6 

complement the time course experiments with fluorescence videomicroscopy of the nuclear 7 

DNA without adding DNA intercalating dyes. We further labelled Rad52 with RedStar2 in 8 

order to detect whether cells suffered DNA damage upon inactivation of Top2. Rad52 forms 9 

nuclear foci to repair DSBs through the homologous recombination repair pathway (Lisby, 10 

Rothstein, and Mortensen 2001). 11 

All strains were arrested in G1 at the permissive temperature (25 ºC) for 3 hours and 12 

then released at 37 ºC to follow the progression through a synchronous cell cycle with Top2-13 

ts inactivated. As expected, the TOP2 control cycled normally after the release, with normal 14 

segregation of the nuclear masses (i.e., long-distance binucleated, LDB) taking place very 15 

quickly at 90’-120’ and no signs of DNA damage after that (Figure 1a, left panels). By 16 

contrast, the top2-4 mutant exhibited a phenotype of cells stuck in anaphase/telophase after 4 17 

hours, in which approximately 70% of the cells were in a “dumbbell” state (i.e., the bud as 18 

big as the mother) and about 35% had two very close split nuclear masses (i.e., short-distance 19 

binucleated, SDB) as determined by histone-labelling (Figure 1a, central panels). The 20 

presence of this abnormal form of nuclear segregation was constant from 150’ onward. 21 

Interestingly, the same SDB phenotype was described before for a strain that depletes Top2 22 
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through a degron system and referred as “cut” phenotype (Baxter and Diffley 2008). Besides, 1 

a similar terminal phenotype occurs in mouse topo IIα
–/– 

embryos and in a significant fraction 2 

(~1/3) of epithelial cells treated with Top2 catalytic inhibitors (Akimitsu et al. 2003; 3 

Wheatley, O’Connell, and Wang 1998). Coinciding with this change in the nuclear 4 

morphology, a steady increase of cells with Rad52 foci was also observed (up to 35% of cells 5 

by 240’). Strikingly, top2-5 had a very different mix of cell morphologies, which included a 6 

decrease of the dumbbell category from 150’ and the presence of “threesomes”, where the 7 

mother cell has re-budded, in up to 25% of the population (Figure 1a, right panels). 8 

Furthermore, there was only a transient peak of SDB at 120’, with less than 10% of the cells 9 

having the SDB morphology after 4 hours. Likewise, Rad52 foci abruptly rose from 120’, 10 

reaching 60% of all cells by 180’ (twice as many as in top2-4). 11 

An unexpected pattern observed in the time course experiments with H2A-GFP was 12 

the relative low frequency of chromatin anaphase bridges (i.e., stretched histone-labelled 13 

DNA across the bud neck) in both top2-ts mutants (Figure 1a, lower panels). Instead, the 14 

above-mentioned SDB was the distinctive pattern of top2-ts relative to TOP2, especially in 15 

top2-4. In order to shed more light on this phenotype, we filmed cells growing 16 

asynchronously and focused on those cells close to reaching anaphase. We observed that all 17 

TOP2 and most top2-5 cells quickly divide and fully segregate the two nuclear masses to the 18 

daughter cell poles (Figure 1b, upper series). By contrast, in the case of top2-4 we often 19 

observed long-lasting histone-labelled SDB cells. Interestingly, this nuclear phenotype was 20 

rather dynamic and sometimes became a genuine chromatin bridge during filming (Figure 1b, 21 

lower series). To confirm that SDB was a proper split of nuclear masses, we took samples 22 

and stained the DNA with DAPI. In all cases, including the SDB phenotype, the DAPI-23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2017. ; https://doi.org/10.1101/108761doi: bioRxiv preprint 

https://doi.org/10.1101/108761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

stained signal overlapped with the H2A-GFP (Figure 1c).  These observations indicate that 1 

anaphase bridges and SDB are dynamically exchangeable.  In the case of top2-5 HTA2-GFP, 2 

where we observed neither chromatin bridges nor SDBs during the time course and the 3 

movies, further labelling with the ultrafine bridge (UFB) marker Dpb11 (Chan, North, and 4 

Hickson 2007; Germann et al. 2014), as well as the DNA and plasma membrane reporter 5 

Hoechst 33258, showed that there were very few chromatin bridges (8% [4% - 14%]) or 6 

UFBs (3% [1% - 8%]) connecting the split nuclear masses in LDB cells. Furthermore, the 7 

pre-abscission/post-abscission ratio (1:4) supports the conclusion that most LDB cells have 8 

completed cytokinesis (Figure 1d). 9 

Finally, the use of live cell imaging also allowed us to visualize other striking 10 

phenotypes that took hours to develop. Although these phenotypes occurred in less than 10% 11 

of the cells, they were significant in that they demonstrate the uncoupling of nuclear division 12 

and the cell cycle in top2-ts (e.g., rebudding before splitting the chromatin bridge) (Figure 13 

S1).  14 

 15 

Synthetic genetic array analysis reveals mitotic exit and cytokinesis as deleterious 16 

enhancers of transient Top2 inactivation. 17 

The prevalence of the dynamic SDB phenotype in top2-4 relative to top2-5 raised, in 18 

turn, the question of why this difference occurred. In order to search for players that may 19 

influence the different behaviours of the top2 alleles,  and to define its biological 20 

consequence, we carried out a synthetic genetic array (SGA) analysis with two collections of 21 

yeast mutants: the haploid gene deletion collection of non-essential genes (4322 knockout 22 
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strains) and a collection of ts alleles for essential genes (1231 ts strains) (Li et al. 2011; Tong 1 

et al. 2001; Giaever et al. 2002). SGA allows screening for genetic interactions in 2 

Saccharomyces cerevisiae by comparing the fitness of the colonies of all the different mutant 3 

combinations (i.e., single top2-ts mutants vs single mutants in the collections vs double top2-4 

ts/collection mutants). In addition, we decided to perform the SGA analysis in three different 5 

conditions that modify Top2 activity. 6 

In our first analysis, we grew all the strains constantly at the permissive temperature 7 

(25ºC), and compared the collection of top2-4 and top2-5 double mutants with the 8 

corresponding TOP2 counterparts as references. Thermosensitive alleles are expected to have 9 

mild reduced fitness at permissive temperatures and, in our case, we indeed detected genetic 10 

interactions at 25 ºC, 139 in top2-4 and 167 in top2-5 (Figure 2a, Tables S1 & S2). Eighty-11 

four interactions were shared between top2-4 and top2-5, and these interacted with both 12 

alleles in a similar way, either positively or negatively (Figure 2b, Table S3). Among them 13 

was top1∆, which is well known to have synthetic sickness with top2-ts alleles (Kim and 14 

Wang 1989). However, most of the observed genetic interactions were positive, which is 15 

typically a sign of suppressive pathways.  16 

Next, we sought to study the changes that increasing the temperature would produce 17 

in the observed genetic interactions. We opted for two different incubations: one set of arrays 18 

was grown at semipermissive temperature (30ºC) for 2 days, and another set was incubated at 19 

37ºC for 6 hours (i.e, enough to complete one cell cycle without Top2 on solid media), and 20 

then shifted to 25ºC to allow growth of survivors. In both cases we used the top2-ts arrays 21 

that were grown at 25ºC as controls to compare the colony size. Thus, we obtained a large 22 

number of new interactions that, unlike during growth at 25ºC, were mostly negative (Figure 23 
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2c, Tables S4 & S5). Ontological classification of significant interactions revealed common 1 

negative interactions at 37ºC x 6h with bioenergetics and autophagy (Table 1). This could be 2 

related to the heat shock treatment and putative roles of Top2 during chromosome reshape 3 

and transcription reprogramming to cope with this stress (Pommier et al. 2016). Importantly, 4 

this classification also spotlighted a high number of positive interactions between top2-5 5 

grown at 30ºC and/or 37ºC x 6h and thermosensitive alleles related to anaphase/telophase 6 

progression (Figure 2d, Table 1). Many of the genes belong to the Mitotic Exit Network 7 

(MEN), such as CDC14 and CDC15, whereas others are related to the cytoskeleton or the 8 

ribosomal DNA (rDNA) metabolism, which are known to undergo important modifications 9 

during anaphase (Machín et al. 2016). To a lesser extent, top2-4 was also enriched in mitotic 10 

division alleles when incubated at 37ºC x 6h, some of which overlap with those of top2-5 11 

(e.g. STU1, CDC10 and MOB2) (Tables S4 & S5).  12 

 13 

Anaphase bridges in top2-ts are stabilized by preventing mitotic exit. 14 

  Since MEN and cytokinesis defects were the clearest positive genetic interactions 15 

with top2-ts, we tested the consequence of disrupting MEN/cytokinesis in the original top2-ts 16 

strains.  17 

We constructed top2-5 cdc15-2 and top2-5 cdc14-1 double ts mutants and arrested 18 

these strains in telophase, together with the corresponding TOP2 cdc15-2/cdc14-1 controls. 19 

We found that top2-5 cdc15-2 could not resolve the histone-labelled anaphase bridge (89% 20 

[84%-93%] dumbbells with clearly visible chromatin bridges at 240’; one-third of them 21 

having a “short-distance” chromatin bridge phenotype, one-third having a “long-distance” 22 
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chromatin bridge, and another one-third having a complex string structure) (Figure 3a). By 1 

contrast, full segregation (96% [93%-98%]) of the histone signal was seen in all TOP2 2 

cdc15-2 cells. In the case of top2-5 cdc14-1, the nuclear segregation was worse; we observed 3 

that most of the nucleus was in the bud (Figure 3b; 84% [77%-90%]). Taking into account 4 

that cdc14-1 strains are known to form an anaphase bridge that comprises the rDNA and also 5 

tend to mistakenly segregate the nucleus to the daughter cell (Machín et al. 2005; Machín et 6 

al. 2016; Ross and Cohen-Fix 2004), the synergistic nuclear segregation defect in top2-5 7 

cdc14-1 is not that surprising. Remarkably, this highly asymmetric segregation is the 8 

hallmark of mammal epithelial cells treated with Top2 catalytic inhibitors (Gorbsky 1994; 9 

Wheatley, O’Connell, and Wang 1998). Overall, these two double mutants demonstrate that 10 

the top2-5 strain gives rise to actual chromatin bridges and that the contraction of the 11 

cytokinetic furrow, or an alternative MEN-mediated activity, can quickly split this bridge 12 

apart.  13 

We also made a top2-4 cdc15-aid strain. We used cdc15-aid (Cdc15 depletion by 14 

auxin addition rather than temperature shift) because it was difficult to phenotypically 15 

confirm top2-4 cdc15-2 as top2-4 alone arrested in telophase (Figure 1a). We also observed 16 

chromatin bridges when both Top2-4 and Cdc15-aid were depleted (33% [24%-43%]). In this 17 

case, most chromatin bridges had a SDB-like appearance (Figure 3c).      18 

 19 

Conclusions and perspectives. 20 

In this work, we have characterized the consequences of depleting yeast cells of Top2 21 

using two top2-ts alleles that differ in their resistance to chemotherapeutic Top2 poisons. As 22 
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previously reported, the first cell cycle takes place with normal kinetics until anaphase, when 1 

top2-ts form anaphase bridges. We have shown that top2-5 (poison-resistant) splits apart this 2 

bridge more quickly than top2-4 (poison-sensitive) and is more susceptible to the execution 3 

of mitotic exit. Our results point towards upregulation of mitotic exit and/or cytokinesis as 4 

new putative targets to synergistically promote cell death upon Top2 5 

downregulation/mutation in cancer cells.  6 

7 
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MATERIALS AND METHODS 1 

Yeast strain construction, cell cycle experiments and fluorescence microscopy.  2 

All the strains used in this work are listed in Table S6 together with their relevant 3 

genotypes. C-terminal tagging with GFP/RFP variants or auxin-based degron system, gene 4 

deletions and ts allele transfers were made using standard PCR methods as described before 5 

(Tong et al. 2001; Janke et al. 2004; Nishimura et al. 2009). 6 

Cell cycle time course experiments and fluorescence microscopy were performed as 7 

described before (Quevedo et al. 2012; García-Luis and Machín 2014; Silva et al. 2012). 8 

DNA was stained using DAPI (Sigma-Aldrich) at 4 µg/ml final concentration after keeping 9 

the cell pellet 24h at -20ºC. Plasma membrane was stained with 5 µg/ml Hoechst 33258 10 

(Sigma-Aldrich) for 15 min at 37°C before processing for fluorescence microscopy. For the 11 

time-lapse movies, an asynchronous culture was concentrated by centrifugation to 3 OD600 12 

equivalents and plated on YPDA (YPD, agar 2% w/v). Patches were made from this plate and 13 

mounted on a microscope slide. They were incubated at 37ºC in high humidity chambers to 14 

avoid drying of the agarose patch. 15 

95% confidence intervals for proportions of selected cell phenotypes were calculated 16 

assuming a binomial distribution and are indicated in the main text between brackets.    17 

Synthetic genetic array analyses 18 

Synthetic genetic array (SGA) was performed as described before (Li et al. 2011; 19 

Tong et al. 2001). In order to make the strain arrays (described in detail in Figure S2), we 20 

first replaced the TOP2 locus in the haploid MATα strain Y7092 with our query top2-ts 21 
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alleles attached to the selection marker natMX4 (resistance to nourseothricin). For 1 

consistency, we also attached the natMX4 marker to our reference TOP2 Y7092 strain. The 2 

new natMX4 strains were then mated with the MATa mutant colletions (4322 knockout 3 

strains for non-essential genes plus 1231 strains with thermosensitive alleles for essential 4 

genes.). These panels of MATa strains bear the kanMX4 marker (resistance to G418) at the 5 

mutated loci. Diploids were selected on YPD plates containing both nourseothricin and G418, 6 

and later sporulated and selected for MATa haploids containing both markers. Once the 7 

TOP2, top2-4 and top2-5 arrays were constructed they were replicated onto plates with the 8 

same medium used in the MATa selection and exposed to the different temperature regimes 9 

described in the Results section. 10 

 The image analysis, processing and fitness scoring of the arrays were done using 11 

SGAtools (http://sgatools.ccbr.utoronto.ca/about) (Wagih et al. 2013). Gene Ontology (GO) 12 

enrichment analysis was performed using the Generic Gene Ontology Term Finder 13 

(http://go.princeton.edu/cgi-bin/GOTermFinder) of Princeton University (Boyle et al. 2004). 14 

Networks were made with Cytoscape v3.3.0 (http://www.cytoscape.org/cy3.html) (Shannon 15 

et al. 2003). 16 
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 1 

Figure 1. Anaphase bridges in top2-5 are quickly split apart at anaphase. (a) HTA2-GFP Rad52-RedStar2 2 
yeast cells carrying different alleles of the TOP2 gene (wild type TOP2 and thermosensitive alleles top2-4 and 3 
top2-5) were synchronized in G1 at the permissive temperature (25ºC) and then released into a synchronous cell 4 
cycle at 37ºC for 4 h. Samples were taken every 30' and directly analysed by fluorescence microscopy. Upper 5 
charts depict the budding pattern of the population. Lower charts depict the percentage of cells with histone-6 
labelled split nuclear masses that either remained at a short distance (≤2 µm) from one another (“SD 7 
binucleated”) or were separated by a longer distance (“LD binucleated”). Percentage of cells with at least one 8 
Rad52 focus is also included. (b) HTA2-GFP cells carrying the top2-ts alleles were grown at 25ºC, concentrated 9 
to OD600=3, spread onto YPD agarose patches and filmed under the microscope at 37ºC for 6 hours, taking 10 
images every 30’. Representative cells are shown. White filled triangles point to chromatin bridges visible with 11 
H2A-GFP. (c) HTA2-GFP top2-4 after 4 hour at 37ºC in liquid cultures showing a perfect colocalization of 12 
H2A-GFP and DAPI staining. (d) HTA2-GFP Dpb11-yEmRFP top2-5 cells were grown to exponential phase in 13 
synthetic complete medium containing 100 µg/ml adenine before shifting to 37°C for 4h. Samples were taken 14 
every 30’ and further stained for 15’ with 5 µg/ml Hoechst 33258 to visualize the plasma membrane. Since we 15 
observed no delay in anaphase for top2-5 (panels a and b), we pooled data from 150’-240’ to analyze LDB cells 16 
(131 out of 951 cells). The blue arrowhead indicates abscission. Scale bars correspond to 5 µm. BF, bright field. 17 
DIC, differential interference contrast. 18 
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 1 

Figure 2. SGA analyses identify the Mitotic Exit Network (MEN) as deleterious enhancers of Top2 2 
downregulation. (a) The z-scores of the genetic interactions detected at permissive temperature (steady 3 
growth at 25ºC) are plotted. The top2-ts arrays of mutants were compared to the TOP2 arrays as a 4 
control. 5553 alleles were screened in total. Positive and negative genetic interactions that meet the 5 
cutoffs (>2 or < -2) are indicated. (b) Network of the genes that interact with top2-4 and top2-5. Green 6 
background encircles the 84 shared genes between the two top2-ts. Pink nodes indicate the positive 7 
interaction between top2-5 and genes involved in the aggregation and bonding of cellular components 8 
(GO: 0071844). (c) The numbers of genetic interactions identified during steady growth at 30ºC and after 9 
6h incubation at 37ºC are shown. Reddish circles, positive interactions; bluish circles, negative 10 
interactions. (d) Heatmap of top2-5 SGA scores (those with p<0.05). Red, positive interactions; green, 11 
negative interactions; black, no interaction. The 25ºC column represents the z-score obtained comparing 12 
top2-5 versus TOP2 at 25ºC, whereas the 30ºC and 37ºCx6h columns compare top2-5 at these 13 
temperature regimes versus top2-5 at 25ºC. MEN, mitotic exit network; Ck/Cs, Cytokinesis/Cell 14 
separation; Skln, cytoskeleton; rDNA, ribosomal DNA metabolism. 15 
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 1 

Figure 3. The Mitotic Exit Network (MEN) destabilizes top2-mediated chromatin anaphase 2 
bridges. (a) The cdc15-2 HTA2-GFP and top2-5 cdc15-2 HTA2-GFP strains were synchronized in G1 at 3 
the permissive temperature (25ºC) and then released into a synchronous cell cycle at 37ºC for 4 h. 4 
Samples were taken at the end of the experiment and analysed by fluorescence microscopy. (b) The 5 
cdc14-1 HTA2-GFP and top2-5 cdc14-1 HTA2-GFP strains were treated as in panel A. (c) The top2-4 6 
cdc15-aid HTA2-GFP strain was synchronized in G1 at 25ºC and then released at 37ºC in the presence of 7 
1 mM of the auxin indolacetic acid (IAA) for 3 h. Scale bars correspond to 5 µm. BF, bright field. Hollow 8 
arrowheads point to examples of short-distance anaphase bridges. Filled arrowheads point to examples of 9 
long-distance anaphase bridges (with an asterisk to highlight the complex strung chromatin bridges). All 10 
arrowheads point exactly at the bud neck.   11 
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Table 1. Significant biological processes that genetically interact with the top2-ts at different 1 

downregulating regimes. 2 

SGA group
1 

Gene Ontology
2 

p-value
3 

top2-4 30ºC  

positive interactions 
Carbohydrate biosynthetic process (GO:0016051) 0.04323 

top2-4 37ºC 6h 

positive interactions 

Anaphase-promoting complex-dependent proteasomal ubiquitin-

dependent protein catabolic process (GO:0031145) 

Cell division (GO:0051301) 

0.00681 

 

0.00706 

top2-4 37ºC 6h 

negative interactions 
Macroautophagy (GO:0034262) 0.03361 

top2-5 30ºC  

negative interactions 

Macromolecular complex subunit organization (GO:0043933) 

Organelle assembly (GO:0070925) 

0.00115 

0.04773 

top2-5 37ºC 6h 

positive interactions 

Cell division (GO:0051301) 

Mitotic cell cycle process (GO:1903047) 

Mitotic cell cycle (GO:0000278) 

Mitotic nuclear division (GO:0007067) 

Mitotic cell cycle phase transition (GO:0044772) 

Cell cycle phase transition (GO:0044770) 

Cell separation after cytokinesis (GO:0000920) 

Nuclear division (GO:0000280) 

Regulation of cell division (GO:0051302) 

1.49E-05 

0.00017 

0.00033 

0.00035 

0.0006 

0.00068 

0.02562 

0.03884 

0.04929 

top2-5 37ºC 6h 

negative interactions 

Macroautophagy (GO:0034262) 

Cellular respiration (GO:0045333) 

Oxidative phosphorylation (GO:0006119) 

Generation of precursor metabolites and energy (GO:0006091) 

Phosphorylation (GO:0016310) 

Autophagy (GO:0006914) 

Homoserine metabolic process (GO:0009092) 

Sister chromatid biorientation (GO:0031134) 

Energy derivation by oxidation of organic compounds (GO:0015980) 

0.00048 

0.00067 

0.00238 

0.00301 

0.01924 

0.02062 

0.02391 

0.02391 

0.04017 

 3 
1
 The corresponding top2-ts double mutant arrays were grown at 25ºC x 2d, 30ºC x 2d and 6h x 37ºC + 25ºC x 4 

2d. The genetic interactions shown refer to the comparison between the downregulating temperature regimes 5 
and steady growth at 25ºC. 6 
2
 Gene Ontology (GO) enrichment analyses were done using the Generic Gene Ontology Term Finder 7 

(http://go.princeton.edu/cgi-bin/GOTermFinder). GO terms that contained more than 1500 genes were 8 
discarded, as they are usually too general. Similarly, redundant GO terms with fewer than 10 genes were 9 
discarded as well. 10 
3
 P-values were computed using a hypergeometric distribution, and adjusted with the Bonferroni 11 

correction. 12 
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