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Abstract: 15 

The brain’s remarkable capacity for language requires bidirectional interactions between 16 

functionally specialized brain regions. We used magnetoencephalography to investigate 17 

interregional interactions in the brain network for language, while 102 participants were reading 18 

sentences. Using Granger causality analysis, we identified inferior frontal cortex and anterior 19 

temporal regions to receive widespread input, and middle temporal regions to send widespread 20 

output. This fits well with the notion that these regions play a central role in language processing. 21 

Characterization of the functional topology of this network, using data-driven matrix factorization, 22 

which allowed for partitioning into a set of subnetworks, revealed directed connections at distinct 23 

frequencies of interaction. Connections originating from temporal regions peaked at alpha 24 

frequency, whereas connections originating from frontal and parietal regions peaked at beta 25 

frequency. These findings indicate that processing different types of linguistic information may 26 

depend on the contributions of distinct brain rhythms. 27 

 28 

One Sentence Summary: 29 

Communication between language relevant areas in the brain is supported by rhythmic 30 

synchronization, where different rhythms reflect the direction of information flow.  31 
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Main Text:  32 

The human brain is capable of effortlessly extracting meaning from sequences of written or spoken 33 

words by means of a sophisticated interplay between dedicated neocortical regions. 34 

Neuroanatomical research has revealed a number of white matter pathways that facilitate these 35 

interregional interactions (1). Electrophysiological research with electro- and 36 

magnetoencephalography (EEG/MEG) has revealed with high temporal precision the sequential 37 

activation of individual nodes embedded within the human brain network for language (2, 3). Yet, 38 

the nature of the functional interactions that enables the efficient flow of information between the 39 

nodes of this network has yet to be elucidated. Here, we show that interregional interactions in the 40 

human brain network for language are subserved by rhythmic neuronal synchronisation at specific 41 

frequencies. Specifically, we found that rhythmic activity in the alpha frequency range (8-12 Hz) 42 

propagates from temporal cortical areas to frontal cortical areas, and that beta frequency rhythmic 43 

activity (15-30 Hz) propagates in the opposite direction. These results indicate the functional 44 

relevance of rhythmic directed interactions during language processing. This functional relevance 45 

likely extends to other cognitive domains, reflecting a generic mechanism, through which  46 

information can be dynamically routed through a network of task-relevant brain regions.  47 

One important feature of cortical interregional connections is that they are frequently 48 

reciprocal in nature (4), which implies that information can be exchanged in a bidirectional fashion. 49 

Moreover, the information flow between cortical regions may be facilitated by interregional 50 

rhythmic synchronization (5), where neuronal rhythms of specific different frequencies reflect the 51 

direction in which the information is flowing (6, 7). This bidirectional flow of information should 52 

also be a crucial feature of the neurobiological system that supports language processing. 53 

Linguistic processing is not a simple bottom-up process where incoming linguistic information 54 

(for instance, when reading a sentence) drives a sequence of activations of cortical areas that 55 

gradually transforms a string of letters into a representation of sentence and discourse meaning. 56 
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Rather, contextual information, which is either already available, or built up while a sentence 57 

unfolds, can also provide top-down information, affecting the response in lower order areas. 58 

We used magnetoencephalography (MEG) to record neuromagnetic signals while 59 

participants were reading sequences of words. We reconstructed the cortical activity in a set of 60 

predefined brain areas (consisting of 156 cortical parcels), encompassing areas that are part of the 61 

core language system, areas in the visual system, as well homolog areas in the contralateral 62 

hemisphere (Fig 1A) (8). Next, we computed frequency-resolved Granger causality to quantify 63 

directed rhythmic neuronal interactions between brain areas for language that are known to be 64 

anatomically connected (9-11). Since the interpretation of connectivity estimated from 65 

neuromagnetic recordings is highly confounded by spatial leakage of source activity (12), we 66 

statistically compared, across the sample of 102 participants, the estimated Granger causality with 67 

an estimate of Granger causality after time reversal of the signals (13). This allowed us to 68 

conservatively discard a substantial subset of the predefined connections for which the direction 69 

and/or the strength of the estimated Granger causal interaction is likely confounded by spatial 70 

leakage of activity. This left us with a subset of 713 connections from the initial 4350 connections 71 

formed between 156 modelled cortical parcels. We subsequently explored the topology of the 72 

resulting network, and observed an uneven distribution in the number of connections for the 73 

cortical parcels involved (Fig. 1 B-C).  Specifically, for each of the cortical parcels, we quantified 74 

the number of in and outgoing directed connections (i.e. the node degree). We observed left and 75 

right middle temporal cortical parcels to serve as a sender node in a large number of connections, 76 

projecting to ipsilateral anterior middle and superior temporal cortex (Brodmann areas (BA) 77 

21/22/38), to contralateral middle and superior temporal cortex (BA 21/22), as well as to frontal 78 

cortex (BA 6/9/44/45/47) (p<0.05, Bonferroni corrected randomization test). Left and right inferior 79 

frontal regions (BA 47) on the other hand, were observed to receive Granger causal input from 80 

ipsilateral frontal cortex (BA 44/45/46), ipsilateral superior temporal cortex (BA 22), ipsilateral 81 
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angular gyrus (BA 39), as well as ipsilateral extrastriate visual cortex (BA 19, area 17/18 present 82 

in right hemisphere only) (p<0.05, Bonferroni corrected randomization test). Additionally, regions 83 

receiving substantial inflow were located bilaterally in the anterior temporal pole (receiving input 84 

from superior and middle temporal regions, as well as from inferior frontal cortex), in the occipital 85 

pole (receiving input from extrastriate regions as well as from inferior temporal and occipito-86 

temporal cortex), and in the right anterior temporal cortex.  87 

To gain more detailed insight into the spatial and spectral structure of this brain wide 88 

network we applied non-negative matrix factorization (NMF) to the group-level connectivity data 89 

(8). Specifically, we modelled the connectivity data as a mixture of a limited number of spatially 90 

static network components, each with a subject-specific spectral profile. The decomposition 91 

algorithm did not incorporate any specific constraints with respect to the spatial or spectral 92 

structure of the underlying components. In particular, no assumptions were made about the spatial 93 

clustering of edges (i.e. the decomposition algorithm did not favor sets of connections to end up 94 

in the same component when the cortical parcels on each end of the directed connection were 95 

spatially clustered). Yet, the majority of extracted network components were physiologically 96 

interpretable, judging from the spatial clustering of the cortical parcels participating in component-97 

specific directed interactions. Figure 2 (A-H) shows the network components with predominant 98 

connections between language-relevant cortical areas (components with predominant connections 99 

between visual cortical areas, and components with more spatially diffuse connections are shown 100 

in Supplementary figure 2). The components’ cortical locations for outflow and inflow are 101 

depicted in blue and orange/yellow, respectively, in the leftmost panel for each quadruplet of 102 

columns. For some of the components, the subject-averaged spectral profiles were band-limited to 103 

a certain frequency range, which moreover showed a consistent peak frequency across subjects 104 

(Fig. 2 B-H, middle panels for each quadruplet of columns). This suggests that these components 105 

represent frequency-specific rhythmic directed interactions between key regions in this large scale 106 
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network. We categorized the extracted components based on the dominant region for outflow. The 107 

majority of the components reflected predominantly intrahemispheric connections (Fig 2 B-H, 108 

right panel for each quadruplet of columns). We identified left and right hemispheric directed 109 

rhythmic interactions from posterior and mid-temporal cortical regions to ipsilateral frontal cortex 110 

(mainly inferior frontal), with a median peak frequency at 12 Hz (interquartile range (IQR) 11-13 111 

Hz) (Fig. 2B). A somewhat spatially more diffuse component with predominantly left 112 

intrahemispheric connections led from mid-temporal areas to inferior and superior frontal areas 113 

(Fig. 2C). Connections from posterior and mid-temporal regions to ipsilateral anterior temporal 114 

cortex had a slightly higher median peak frequency of 14 Hz (with an IQR of 12-15 Hz, and 13-115 

15 Hz for the left and right hemispheric components), as compared to the temporo-frontal 116 

connections (Fig. 2D). Next, there was a set of components predominantly interconnecting 117 

temporal cortical regions, and which showed somewhat more variability in their spectral profile 118 

across subjects (Fig. 2E). These components reflected connections from superior and middle 119 

temporal cortex (along the whole anterior-posterior axis) to mid and anterior inferior temporal 120 

cortex, and connections from mid-middle and superior anterior temporal cortex to the temporal 121 

pole.  122 

 In contrast to the network components with the outflow regions in temporal cortex, the 123 

rhythmic interactions with predominant outflow from parietal (Fig. 2F) and frontal (Fig 2G-H) 124 

regions consistently showed a higher peak frequency of interaction. Components reflecting parietal 125 

to posterior temporal interactions had a median peak frequency of 20 Hz (with an IQR of 17-22 126 

Hz and 15-26 Hz for the left and right hemispheric components, respectively), and frontal to 127 

temporal rhythmic interactions had a median peak frequency of 27 Hz (with an IQR of 25-30 Hz). 128 

Intrafrontal interactions had a somewhat more broadband spectral profile, with a median peak 129 

frequency of 24 Hz (IQR: 19-29 Hz) for directed interactions from BA 44 to BA 45/46/47. 130 

Interactions from BA 46 to BA 44/45/47 had a median peak frequency of 30 Hz (IQR: 23-35 Hz) 131 
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and 29 Hz (IQR: 25-33 Hz) for left and right hemispheric connections, respectively. We 132 

statistically evaluated the peak frequency of the rhythmic interactions between components with 133 

predominant connections between parietal, frontal, and temporal brain areas (Fig. 3A). Overall, 134 

the component-specific median peak frequencies ranged from the upper end of the alpha range (12 135 

Hz), to the upper end of the beta range (30 Hz). Moreover, components with rhythmic Granger 136 

causal outflow predominantly from temporal areas had a consistently lower peak frequency than 137 

components with Granger causal outflow from parietal or frontal areas (p<0.05, non-parametric 138 

permutation test, multiple comparison corrected). Notably, based on the NMF we could distinguish 139 

temporo-frontal interactions, with a peak frequency of 12 Hz (Fig. 2A-B, 3B-C, connection in dark 140 

red) from fronto-temporal interactions, with a peak frequency of 27 Hz (Fig. 2F, 3B-C, connection 141 

in dark blue). Figure 3B shows a schematic summary of the dominant rhythmic interactions, with 142 

the corresponding spectral profile in Fig. 3C. 143 

We proceeded to test whether the strength of the rhythmic interactions were modulated by 144 

the functional requirements imposed by the perceptual input. To this end, we divided the stimulus 145 

material into four conditions, based on whether the subjects were reading a well-structured 146 

sentence or a pseudo-random sequence of words (sentences and word lists), and based on the 147 

ordinal position of the words (early and late words). Importantly, we stratified the data for lexical 148 

frequency and overall signal variance, to avoid as much as possible interpretational confounds for 149 

the estimated connectivity (12, 14) due to differences univariate signal and stimulus properties (8). 150 

Subsequently we computed the Granger causal interactions for each subject and condition for the 151 

most prominent functional connections, which were extracted from the NMF-results by means of 152 

spatial clustering. We constrained the analysis to band-limited estimates of Granger causality, 153 

where the connection-specific frequency bands were obtained from the components’ peak 154 

frequencies and interquartile ranges. Contrasting sentences with sequences, we observed the 155 

strength of the interactions to be modulated from left middle temporal regions to the left temporal 156 
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pole, where sequences elicited stronger interactions than sentences, and from right striate to 157 

extrastriate visual regions (Fig 4A, p<0.05, non-parametric permutation test, Holm-Bonferroni 158 

correction for multiple comparisons). Comparing early words with late words in the sentence 159 

condition showed several significantly modulated connections, with rhythmic interactions being 160 

stronger early in the sentence (Fig 4B). These connections were bilateral from temporal to frontal 161 

regions, and from middle temporal regions to the temporal pole. In addition, in the right 162 

hemisphere, we identified significantly modulated connections from frontal regions to temporal 163 

regions, and from the superior temporal gyrus to the middle temporal gyrus (p<0.05, non-164 

parametric permutation test, Holm-Bonferroni correction for multiple comparisons). Moreover, 165 

we identified two right hemispheric connections that showed a significant interaction effect 166 

between early versus late words and sentences versus sequences (Fig. 4B). 167 

In sum, we have provided evidence for directed interactions between cortical regions in the 168 

human brain network for language during sentence reading. Topological analysis of the overall 169 

network revealed a high degree of Granger causal inflow into anterior inferior frontal cortical 170 

regions, right anterior temporal cortex and the temporal pole bilaterally. This is in line with these 171 

regions being ‘high order’ regions, involved in the processing of more abstract features of the 172 

linguistic input, which requires integration of converging information. Frontal regions are engaged 173 

in unification operations (15), integrating lexical units into the larger context. Anterior temporal 174 

cortex is associated with conceptual object representations (16, 17).  175 

Middle temporal cortical regions on the other hand displayed a high degree of Granger 176 

causal outflow. This is in agreement with the middle temporal gyrus’ crucial role in language 177 

comprehension at the level of single words (18, 19). Its functional connections to more anterior 178 

temporal areas, as well as to inferior frontal cortex reflect the necessity to propagate information 179 

about individual lexical items to areas that subserve integration operations. Notably, we did not 180 
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observe a clear lateralization in the pattern of connections, which lends support to the evolving 181 

notion that both cerebral hemispheres are involved in the processing of linguistic stimuli (20). 182 

Data-driven decomposition of the overall network into smaller subnetworks revealed 183 

several spatially-constrained components, corresponding with local and long range directed 184 

interactions. The clear frequency-resolved profile displayed by some of these components 185 

displayed is indicative of the interactions being mediated by rhythmic interareal synchronization. 186 

Connections originating from temporal cortical areas showed a consistently lower peak frequency 187 

(alpha, low beta) than connections originating from parietal or frontal regions (high beta). As a 188 

specific example, temporal to frontal interactions are subserved by rhythmic synchronization at 189 

~12 Hz, whereas interactions in the opposite direction, from frontal to temporal regions peak at a 190 

frequency of ~27 Hz. 191 

At first glance, these findings correspond well with recent work in the visual system. There 192 

it was shown that feedforward and feedback connections, as defined by their characteristic cortical 193 

laminar connectivity profile (21),  could be distinguished in terms of their frequency of interaction 194 

(7, 22, 23). However, in the visual system, feedforward connections have been functionally 195 

characterized by gamma band synchronization (>50 Hz) (and to a lesser extent by theta band 196 

synchronization) and feedback connections by alpha/beta synchronization. A Granger causality 197 

spectral peak in the gamma frequency range was absent in our data. While studies in the visual 198 

system allow for experimental paradigms eliciting robust gamma band rhythmicity, language 199 

paradigms do not typically lead to very distinct local gamma band responses (24), rendering the 200 

likelihood of detecting gamma band interactions low. In addition, characterization of feedforward 201 

and feedback connections based on their cytoarchitectonic connectivity profiles is likely to be more 202 

distinct in peripheral sensory systems than in higher cortical regions (25), such as the higher order 203 

areas in the human brain network for language. Consequently, there is no reason to assume that 204 

the emergent functional properties of the language network, in terms of the frequency of 205 
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interactions should directly map onto observations in the visual system. Nevertheless, our data 206 

reveal frequency-specific subnetworks in the brain system for language.  207 

Further exploration of the potential functional significance of these interactions revealed 208 

that the linguistic context modulates left lateralized mid-temporal to anterior temporal interactions, 209 

as well as right lateralized extrastriate to striate interactions. In a sentential context, the incremental 210 

availability of contextual information allows for the generation of constraining predictions about 211 

the upcoming input, likely facilitating processes such as lexical selection. Bilateral interactions 212 

from temporal to frontal regions, from mid-temporal to anterior temporal regions, from right 213 

lateralized frontal to temporal regions, and from superior temporal to middle temporal regions are 214 

stronger early in the sentence, when the constraining context is still relatively weak, as opposed to 215 

later in the sentence. These stronger interactions early in the sentence might reflect the increased 216 

need for information exchange between these regions, in order to establish a linguistic context. 217 

In conclusion, this study shows directional interactions in the highly dynamic cortical 218 

network of language-relevant areas, with salient differences in the specific frequencies that support 219 

the communication protocols in the temporo-frontal and the fronto-temporal directions. Although 220 

our findings are in line with earlier reports of a frequency difference between feedforward and 221 

feedback connections, the carrier frequencies in the language network shown here deviate from 222 

what has been observed in the visual system. Yet, the effect of linguistic context on the strength 223 

of some of these connections suggests the functional relevance of dynamic rhythmic cortical 224 

interactions during cognitive processing in general, and language processing in particular (26).  225 
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321 
Fig. 1. Topology of the brain network for language as quantified with Granger causality. (A): 322 
Overview of the left hemispheric anatomical parcels used for source reconstruction and serving as 323 
network nodes, displayed on the inflated cortical surface. Lateral and medial surfaces are shown 324 
on the left and right, respectively. Right hemispheric homologous parcels were also considered for 325 
network estimation, yet not displayed here. (B, upper panels): Node degree for inflow (left), i.e. 326 
the number of nodes from which each of the nodes receives significant Granger causal input 327 
(p<0.05, non-parametric permutation test, Bonferroni corrected) and outflow (right), i.e. the 328 
number of nodes to which each of the nodes sends significant Granger causal output. (B, lower 329 
panels): Uncorrected p-values associated with the statistical comparison (non-parametric 330 
permutation) of the topology observed in the upper panels, and randomly connected networks, 331 
keeping the overall degree distribution constant. Orange/yellow parcels survive Bonferroni 332 
correction for multiple comparisons (the number of edges), and reflect hubs in the network. (C): 333 
Topology of the connections for each of the highly connected hubs identified in B, and the other 334 
cortical areas, for inflow hubs (left panels) and outflow hubs (right panels), with the hubs displayed 335 
in yellow, and the sending/receiving areas in red.  336 
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Fig. 2. Network components obtained with non-negative matrix factorization show frequency, 338 
regional, and direction-specific interactions. (A): Location of the cortical nodes, displayed on an 339 
inflated cortical sheet (left) with color coding and labelling convention (right), as used in (B-H). 340 
Circular grouping was according to anatomical location, using Brodmann Area (BA) labelling for 341 
the parcels outside temporal cortex, and using their relative location along the anterior/posterior and 342 
superior/inferior axis for temporal parcels). (B-H): Components reflecting connections between 343 
language-relevant cortical areas. Leftmost panels show the location of the parcels involved. 344 
Dark/light blue colors: regions for outflow (the lighter the color of the parcel, the stronger the relative 345 
contribution of the parcel to the component). Orange/yellow/white colors: regions for inflow. The 346 
histograms show for each of the components the distribution of the subject-specific peak frequency. 347 
The spectra show, the median (and interquartile range) spectral profiles across. The circular plots 348 
show the directed connections between the parcels. The thickness of the arrows reflects the relative 349 
strength of the connection. Components with predominantly left-hemispheric, right-hemispheric, or 350 
bilateral connections are displayed in red, light blue, and purple, respectively. (B): Left and right 351 
hemispheric components from temporal regions to ipsilateral frontal regions. (C): Component with 352 
bilateral intrahemispheric temporal to frontal connections. (D): Left and right hemispheric 353 
components with predominant connections from middle to anterior temporal regions. (E): 354 
Components with predominantly intra-temporal connections from superior to inferior regions (upper 355 
two rows), and from mid-anterior regions to the temporal pole (bottom row). (F): Components with 356 
predominant connections from the angular gyrus (BA 39) and supramarginal gyrus (BA 40) to 357 
posterior temporal cortex. (G): Component from frontal regions to temporal regions. (H): 358 
Components with predominantly fronto-frontal connections.  359 
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 360 
Fig 3. Rhythmic interactions originating from temporal/parietal cortex have consistently lower 361 
peak frequencies than those originating from frontal cortex (A): Pair-wise comparison between 362 
components of the peak frequencies of their corresponding spectral profiles (non-parametric 363 
permutation test, corrected for multiple comparisons). Colors represent the median across subjects 364 
of the difference in peak frequency. The values in the black boxes along the main diagonal reflect 365 
the median peak frequency for each component. (B): Schematic representation of the directed 366 
rhythmic cortico-cortical interactions in the language system, grouped according to the cortical 367 
output area. The temporal lobe is split into two ‘nodes’, to be able to display the rhythmic mid to 368 
anterior connection. The colored arrows refer to the spectra shown in (C). The black spectrum in 369 
(C) is the average of the components shown in (Fig. 2E), with dominant connections from superior 370 
temporal to middle temporal gyrus, and is not displayed as a separate connection in (B).  371 
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 372 
Fig. 4: The strength of directed interactions is modulated by the linguistic input. (A): Connections 373 
showing stronger interactions in the word list condition than in the sentence condition (p<0.05, 374 
corrected Bonferroni-Holm). Blue parcels indicate nodes for outflow, yellow parcels indicate 375 
nodes for inflow. (B): Connections showing stronger interactions for early words in the sentences, 376 
compared to late words in the sentences. The connections shown in the red boxes show a 377 
significant interaction effect (p<0.05, corrected), on top of a significant early versus late effect. 378 
(C): Bar graphs show condition-specific mean (+/- SEM) Granger causal strength for the outlined 379 
connections.  380 
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Materials and Methods 381 

Experimental procedure and MEG data acquisition 382 

A total of 102 native Dutch speakers (51 males), with an age range of 18 to 33 years (mean of 22 383 

years), participated in the experiment. All participants were right-handed, had normal or corrected-384 

to-normal vision, and reported no history of neurological, developmental or language deficits. The 385 

study was approved by the local ethics committee and followed the guidelines of the Helsinki 386 

declaration. Participants received monetary compensation for their participation. 387 

The participants were seated comfortably in a magnetically shielded room, and were instructed to 388 

read sequences of words (total number of 240, with 9 to 15 words per sequence), which were 389 

presented sequentially on a backprojection screen, placed in front of them.  All words were 390 

presented at the center of the screen within a visual angle of 4 degrees, in a black mono-spaced 391 

font, on a grey background using Presentation software (Version 16.0, Neurobehavioral Systems, 392 

Inc). The vertical refresh rate of the LCD projector was 60 Hz. The sequences of words formed 393 

either well-formed sentences, or consisted of a scrambled version of a sentence, where the word 394 

order was randomly shuffled. For the remainder we refer to these latter stimulus sequences as word 395 

lists. See Lam et al. 2016 (24) for more details about the stimulus material used. Sentences and 396 

word lists were presented in small blocks, of 5 sentences (or word lists) each, to a total of 120 397 

stimuli per condition. In order to check for task compliance, in a random 10% of the word 398 

sequences, they were followed by a yes/no question about the content of the previous 399 

sentence/word list.  400 

MEG data were collected with a 275 axial gradiometer system (CTF). The signals were analog 401 

lowpass filtered at 300 Hz, and digitized at a sampling frequency of 1200 Hz. The participant’s 402 

head was registered to the MEG-sensor array using three coils, attached to the participant’s head 403 

(nasion, left and right ear canals). Throughout the measurement the head position was continuously 404 

monitored using custom software (27). During breaks the participant was allowed to reposition to 405 

the original position if needed. Participants were able to maintain a head position within 5 mm of 406 

their original position. Three bipolar Ag/AgCl electrode pairs were used to measure the horizontal 407 

and vertical electro-oculogram, and the electro-cardiogram. 408 

 409 

Artifact rejection and subtraction of single-trial activity 410 

All analyses were done with custom written Matlab scripts and Fieldtrip (28). Data were initially 411 

epoched from -100 to 600 milliseconds relative to word onset.  Segments contaminated by artifacts 412 

due to eye movements, muscular activity and SQUID jumps were discarded prior to further 413 

analysis. Next, we subtracted the event-related response from the single trial data with the ASEO 414 
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algorithm (29). The acronym ASEO stands for Analysis of Single-trial ERP and Ongoing activity, 415 

and the aim of the application of this algorithm in this context was to attenuate the effects of evoked 416 

transients on the estimation (and subsequent interpretation) of Granger causality (30). Transients 417 

in the signals violate the underlying assumption of stationarity, and moreover may result in non-418 

zero Granger causality estimates, due to systematic latency differences of the peak of the transient 419 

signals across regions. Although such latency differences may reflect an actual interaction (where 420 

temporal precedence of a transient signal peak in region A, compared to region B, may be an 421 

indication that A is causing B), their spurious effect on the estimated Granger causality is 422 

unwanted, if the aim is to interpret the frequency domain Granger causality in terms of directed 423 

synchronized interactions. In our experimental setup, transient brain responses could not be 424 

avoided (as opposed to for instance (7)), and we developed a procedure (performed at the sensor-425 

level) to attenuate the effect of transient evoked components, combining the ASEO algorithm with 426 

a blind source separation technique (denoising source separation (DSS) (31)). In short, the ASEO 427 

algorithm models single-trial signals as a combination of ongoing activity and event-related 428 

components, where the latter are modelled as a set of ‘canonical’ components, each with a trial-429 

specific latency and amplitude. In a typical application (32), the single-trial estimates of latencies 430 

and amplitude are used as dependent variables for subsequent analysis. Here, however, we 431 

subtracted the single-trial evoked responses that were reconstructed from the latency and 432 

amplitude estimates, which results in a better account of ongoing activity, as compared to the 433 

subtraction of a fixed average event-related response from each signal. DSS was used to iteratively 434 

unmix the sensor-level data into a set of components, where the DSS framework allows for the 435 

unmixing algorithm to capitalize on specific features of the requested components. Specifically, 436 

we applied an iterative procedure, where each iteration consisted of the following steps: 437 

1. Estimation of the dominant DSS-component using quasi-periodic averaging, which 438 

essentially extracts components with strong evoked transients, time locked to word onset. 439 

This step yields a spatial map of mixing weights, describing for each MEG sensor the extent 440 

to which this component is present in the MEG signals, as well as an observations-by-time 441 

matrix of the component time series. 442 

2. Application of the ASEO-algorithm to the single-trial time series of the estimated DSS-443 

component, yielding single trial estimates of the evoked transients. 444 

3. Backprojection of the component’s single-trial evoked transients to the MEG sensor-level, 445 

using the spatial map of mixing weights, obtained in step 1. 446 

4. Subtraction of the backprojected evoked transients from the MEG sensor-data, yielding 447 

MEG-sensor data that served as input data for the next iteration. 448 
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We performed 5 iterations, i.e. we removed 5 timelocked components. Removal of additional 449 

components did not affect the global field power appreciably (Supp.fig.1E). The different steps 450 

and the effect of this cleaning procedure are illustrated in Supplementary Figure 1. 451 

 452 

Source reconstruction and parcellation of source-reconstructed activity 453 

After the cleaning of the sensor data with the combined DSS-ASEO procedure, we performed 454 

source reconstruction using a linearly constrained minimum variance beamformer (LCMV) (33). 455 

For this, we computed the covariance matrix between all MEG-sensor pairs, as the average 456 

covariance matrix across the cleaned single trial covariance estimates. This covariance matrix was 457 

used in combination with the forward model, defined on a set of 8196 locations on the participant-458 

specific reconstruction of the cortical sheet to generate a set of spatial filters, one filter per dipole 459 

location. Individual cortical sheets were generated with the Freesurfer package (version 5.1) 460 

(http://surfer.nmr.mgh.harvard.edu), coregistered to a template based on a surface-based 461 

coregistration approach, with a dedicated script using the Caret software 462 

(http://brainvis.wustl.edu/wiki/index.php/Caret:Download, 463 

http://brainvis.wustl.edu/wiki/index.php/Caret:Operations/Freesurfer_to_fs_LR), and 464 

subsequently downsampled to 8196 nodes, using the MNE software (http://martinos.org/mne/). 465 

The forward model was computed using Fieldtrip’s ‘singleshell’ method (34), where the required 466 

brain/skull boundary was obtained from the subject-specific T1-weighted anatomical images. 467 

Next, we applied an atlas-based parcellation scheme to further reduce the dimensionality of the 468 

data. To this end, we used the Conte69 atlas 469 

(http://brainvis.wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas), which provides a 470 

parcellation of the neocortical surface, based on Brodmann’s cytoarchitectonic atlas, consisting of 471 

41 labelled parcels per hemisphere. This parcellation scheme was further refined, breaking up the 472 

larger parcels into a set of subparcels, respecting the original boundaries (e.g.: breaking up the 473 

middle temporal gyrus in smaller parcels along the anterior/posterior axis). This resulted in a 474 

parcellation scheme consisting of 191 parcels per hemisphere. 475 

For each parcel we obtained a parcel-specific spatial filter as follows: we concatenated the spatial 476 

filters of the vertices comprising the parcel, obtained a set of time courses of the event-related 477 

field at each parcel, and performed a principal component analysis on the result. We selected for 478 

each parcel the first 2 spatial components explaining most of the variance in the signal. For the 479 

parcels used, the two dominant spatial components explained on average 90% of the signal 480 

variance within each parcel (range: 74%-96%). 481 

482 
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Preselection of the connections between language-relevant areas 483 

For the connectivity analysis, we constrained ourselves a priori to a subset of connections between 484 

parcel-pairs, using known ‘long range’ macro-anatomical fibre pathways between parcels 485 

comprised of core language regions and the visual system as described in the literature (1, 9-11). 486 

This preselection was motivated by the fact that direct functional connections should be supported 487 

by direct anatomical connections. In addition, we allowed a priori for direct connections between 488 

neighboring nodes, which is a fair assumption given the characteristics of cortico-cortical 489 

connections observed in anatomical tracing studies (e.g. (25, 35)), where local connections are 490 

abundant. We included intrahemispheric connections from both hemispheres, and also included 491 

interhemispheric connections between homologous areas. The nodes were defined based on the 492 

labelling scheme of Brodmann, where each of these nodes could consist of one or more subparcels 493 

(where subparcels were defined as described above). In addition, nodes in temporal cortex were 494 

classified according to their position along the anterior-posterior axis (distinguishing anterior, 495 

middle and posterior parts), and along the superior-inferior axis (distinguishing superior, middle 496 

and inferior parts). Figure 2A in the main text shows how the individual nodes were labeled. As 497 

major long-range fiber pathways we included the arcuate fasciculus (AF), the superior longitudinal 498 

fasciculus (SLF), the extreme capsule (EC), the uncinate fasciculus (UC), and the inferior fronto-499 

occipital fasciculus (IFOF). The AF provides widespread connections between the temporal cortex 500 

(predominantly the middle and superior temporal gyri) and various frontal areas (BA44/45/6/9). 501 

The SLF connects frontal areas (notably BA44) with posterior superior temporal, and parietal 502 

areas. The EC connects frontal areas with the middle part of superior and middle temporal gyrus. 503 

The UC connects frontal areas with the temporal pole, and the IFOF connects frontal areas with 504 

occipital areas. Connections between directly adjacent parcels were excluded for further analysis 505 

to reduce spurious estimates of connectivity due to spatial leakage of source reconstructed activity. 506 

The selection scheme resulted in 4350 connections between pairs of parcels, which notably 507 

consisted of a sparse subset of all possible pairwise connections between the 156 parcels used for 508 

the Granger causality analysis. 509 

 510 

Granger causality computation and statistical evaluation of overall network topology 511 

For computational efficiency, we computed the spectral representation of the signals at the sensor-512 

level, and projected this into source space, using the parcel-specific spatial filters. The spectral 513 

representation of the signals was obtained using the Fast Fourier transform in combination with 514 

multitapers (using 5 Hz smoothing), on the time domain data from 200 until 600 ms after word 515 
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onset. The sensor-level Fourier transformed data was projected into source space, and for each pair 516 

of parcels we computed the cross-spectral density matrix. Subsequently we performed non-517 

parametric spectral matrix factorization for each pair of parcels, followed by computation of 518 

Granger causality (36, 37). We computed Granger causality based on the source-projected Fourier 519 

transform of time-reversed data, where time-reversal is essentially equivalent to complex 520 

conjugation of the Fourier coefficients, in order to distinguish ‘weak’ asymmetries from ‘strong’ 521 

asymmetries, as described by Haufe et al. (13, 38). Essentially, a weak asymmetry is an apparent 522 

directional interaction between a pair of network nodes, which is the consequence of a difference 523 

in signal-to-noise ratio across nodes (14), and difficult to avoid when the signals consist of a linear 524 

mixture of underlying sources (39). We compared Granger causality with reverse Granger 525 

causality, and selected only parcel pairs for subsequent analysis for which the parametric null-526 

hypothesis of the means (across subjects) could be rejected at a p-value < 0.05, corrected for 527 

multiple comparisons (one sided T-test, with Bonferroni correction). This reduced the number of 528 

connections that were used for subsequent analysis from 4350 to 713. Next, we evaluated the 529 

topology of this resulting network by quantifying the node degree for each of the 156 parcels 530 

involved, identifying ‘hubs’ for inflow and outflow (figure 1). We quantified the probability of 531 

observing the computed node degree under the null hypothesis of the 713 connections being a 532 

random subset of the originally included 4350 connections, using a permutation test. Using 533 

Bonferroni correction, a p-value of 0.05/(2*156)=1.6x10-4 was considered significant (each of the 534 

156 parcels was tested twice, once for the degree for inflow, and once for the degree for outflow). 535 

As an important control analysis, we computed, across parcels, the Spearman’s rank correlation 536 

between the inflow and outflow degree on the one hand, and signal variance, the norm of the spatial 537 

filter, and the signal-to-noise ratio (SNR) on the other hand. The norm of the spatial filter 538 

corresponds with an estimate of the projected noise, and the ratio between the signal variance and 539 

the spatial filter’s norm corresponds with an SNR estimate. The motivation for this analysis is to 540 

check whether there is a relationship between the node degree and simple univariate signal(-to-541 

noise) properties, which may give rise to spurious inferences about the directionality of estimated 542 

interactions (14).  Specifically, assuming the worst, one could hypothesize that parcels with a large 543 

degree of inflow (outflow) also show on average a low (high) signal(-to-noise), when comparing 544 

across parcels. The results of this control analysis are shown in Supplementary Table 1. Based on 545 

this analysis, which did not reveal any significant correlations, we argue that the observed patterns 546 

of node degree in the brain network for language are not consequences of systematic differences 547 

in univariate signal properties.  548 
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Non-negative matrix factorization and network visualization 549 

We explored the network topology by performing non-negative matrix factorization (NMF) with 550 

sparsity constraints (40) on the resulting Granger causality spectra. The purpose of this analysis is 551 

to describe the reconstructed connectivity data as a low-dimensional mixture of network 552 

components, each of which with a subject-specific spectral profile. We opted for NMF, because 553 

the non-negativity constraint facilitates the interpretation of the components (as opposed to e.g. a 554 

statistical independence constraint as applied in independent component analysis). This is because 555 

Granger causality is strictly non-negative. The data matrix that was subjected to the factorization 556 

algorithm was constructed by concatenating across subjects Granger causality spectra, normalized 557 

for the standard deviation per subject. The columns in this matrix reflect the individual connections 558 

(across subjects and frequencies), and the rows in this matrix (number of frequency bins times 559 

number of subjects) reflected the connections for a given frequency bin and subject. Typically, the 560 

outcome of NMF is dependent on the number of components (which has to be chosen a priori), 561 

and of the initial random starting conditions. We explored a range of ‘number of components’ but 562 

settled on the number 20 for the remainder of the paper, because this number provided a reasonable 563 

balance between providing a small number of easily interpretable components, while at the same 564 

time maintaining a good separation between subnetworks. We used the ‘icasso’ framework (41), 565 

which applies a hierarchical clustering procedure on the outcome of repeated decompositions 566 

(which differ due to the random starting conditions). For this we used 40 repeated random 567 

initializations to estimate the components that robustly represent the underlying structure of the 568 

data, irrespective of the random initializations of the NMF algorithm. 569 

The outcome of this procedure consisted of two matrices. One matrix represents the network 570 

component spatial fingerprints, quantifying for each of the edges its relative contribution to the 571 

network components. The other matrix contains for each network component a subject-specific 572 

spectral profile, quantifying the subject-wise relative and frequency-specific contribution to the 573 

network components. For visualization purposes, we assigned each of the edges to a unique 574 

network component based on their relative weight. Subsequently, the different aspects of the 575 

network components were depicted as follows: To obtain spatial maps of the nodes (i.e. anatomical 576 

parcels) participating in a particular component, we summed across each node’s contributing edges 577 

the outflow and inflow separately, and displayed these onto an inflated representation of the 578 

cortical sheet, using hcp-workbench (http://www.humanconnectome.org/software/connectome-579 

workbench.html).  580 

To visualize the connections between the parcels, for each pair of parcels we averaged the 581 

connection weights across all pairs of subparcels that constituted the parcel pair. Connections 582 
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where drawn as directed arrows, where the thickness of the lines reflects the overall weight of the 583 

connection. The spectral profiles of the network components were visualized as the median across 584 

subjects and their interquartile range. For display purposes we ordered the components according 585 

to their dominant regions for outflow. Figure 2 in the main text shows the components that are 586 

made up predominantly by connections between language-relevant cortical parcels. 587 

Components that are made up predominantly by connections between visual cortical parcels, as 588 

well as components with spatially very diffuse connections are displayed in supplementary figure 589 

2. 590 

Condition-specific statistical evaluation  591 

To investigate whether the involvement of the network components was modulated by functional 592 

constraints of the linguistic input, we estimated condition-specific Granger causality in the 593 

dominant connections extracted from the identified network components. The individual 594 

conditions were defined according to whether the words were presented in a well-formed sentence 595 

context (or were part of a word list), and according to whether the words were presented early in 596 

the sentence/word list (words 2-4), or late in the sentence/word list (n-3 until n-1, with n the 597 

number of words in the sentence/word list). In order to account for potential interpretational 598 

confounds of the resulting Granger causality estimates we adopted a stratification procedure to 599 

ensure that, for each of the parcel pairs in each of the subjects, the marginal distributions of the 600 

epoch-wise signal variances as well as the words’ lexical frequencies were equalized across 601 

conditions. Lexical frequencies were estimated using the Subtlex-NL database 602 

(http://crr.ugent.be/programs-data/subtitle-frequencies/subtlex-nl). Condition-specific histograms 603 

for lexical frequency were generated using 13 log-spaced bins. Histograms for signal variance 604 

were generated using 6 log-spaced bins. The consequence of this procedure is that only a subset 605 

of epochs is used for the subsequent estimation of Granger causality, where the parcel-pair specific 606 

number of epochs varies across parcel pairs. On average 50% of the epochs were retained (range: 607 

20-75%), corresponding to 147 (range: 45-235) epochs. 608 

 609 

From each of the extracted network components we defined a dominant connection as a spatially 610 

clustered set of edges that fulfilled the following criteria: 611 

- Each cluster consisted of at least 4 edges. 612 

- The inflow/outflow nodes consisted of spatially adjacent cortical parcels. 613 

- Nodes that for a given cluster of edges served both as input and output node were discarded, 614 

as well as the edges to which these nodes contributed. 615 
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 616 

This resulted in 42 connections for which we computed subject and condition specific Granger 617 

causality, as an average across the contributing edges, and across the component specific frequency 618 

range, defined by the interquartile range across subjects. We performed a non-parametric 619 

permutation test to evaluate the following contrasts: 620 

1. sentence – word list words 621 

2. for the sentence condition: early – late words 622 

3. interaction effect: (early-late words sentences) – (early-late words sequences). 623 

 624 

The statistical test performed was a two-sided permutation test (using 20,000 permutations) on 625 

Wilcoxon’s signed rank statistic (Z-score) with a Bonferroni-Holm stepdown control for the 626 

family-wise error rate.  627 
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 628 

Fig. S1. 629 

Illustration of combined DSS/ASEO procedure tor the removal of word-onset event-related signal 630 
transients. (A): spatial topography of the mixing coefficients for the first extracted DSS-631 
component, for an example subject. (B): single trial time courses (in gray) of the first DSS-632 
component, time-locked to word onset, average across trials in red. (C): single trial estimates of 633 
the stimulus-locked transient response, estimated with the ASEO algorithm, average across trials 634 
in red. (D): overlay of single channel event-related averages before (gray) and after (red) the 635 
cleaning procedure. (E): global field power across channels of the event-related average (light 636 
orange) and after iterative removal of 5 DSS components (colors going from orange to dark red).  637 
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Fig. S2 638 

Network components obtained by group-level non-negative matrix factorization with 639 
predominant connections between visual cortical areas (A), and with spatially diffuse 640 
connections (B).  641 
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 Node degree inflow Node degree outflow 
 Correlation P-value Correlation P-value 
Signal variance 0.054 0.51 0.077 0.34 
Spatial filter 
norm 

0.096 0.23 0.12 0.15 

SNR -0.097 0.23 0.032 0.69 

Table S1. 642 

Correlation between node degree and univariate signal properties. 643 
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