
1

2

3

4

5

6

7

8

A computational model of shared fine-scale structure in the human connectome  

Short title:  Common model of the human connectome 

  

 

J. Swaroop Guntupalli 
1,2,3 

, Ma Feilong 
1,2 

, James V. Haxby 
1,2, 

* 

 

1 
Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 

03755 USA 

2 
Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755 USA 

3 
Vicarious AI, Union City, CA USA  

*Correspondence to:   james.v.haxby@dartmouth.edu 

 

   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2018. ; https://doi.org/10.1101/108738doi: bioRxiv preprint 

https://doi.org/10.1101/108738
http://creativecommons.org/licenses/by-nc-nd/4.0/


Common model of the human connectome Guntupalli, Feilong, & Haxby  2 

9

10

11

12

13

14

15

16

17

18

19

Abstract 

Variation in cortical connectivity profiles is typically modeled as having a coarse spatial 

scale parcellated into interconnected brain areas. We created a high-dimensional 

common model of the human connectome to search for fine-scale structure that is 

shared across brains. Projecting individual connectivity data into this new common 

model connectome accounts for substantially more variance in the human connectome 

than do previous models. This newly discovered shared structure is closely related to 

fine-scale distinctions in representations of information. These results reveal a shared 

fine-scale structure that is a major component of the human connectome that coexists 

with coarse-scale, areal structure.  This shared fine-scale structure was not captured in 

previous models and was, therefore, inaccessible to analysis and study. 
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Author Summary 

Resting state fMRI has become a ubiquitous tool for measuring connectivity in normal 

and diseased brains. Current dominant models of connectivity are based on 

coarse-scale connectivity among brain regions, ignoring fine-scale structure within 

those regions. We developed a high-dimensional common model of the human 

connectome that captures both coarse and fine-scale structure of connectivity shared 

across brains. We showed that this shared fine-scale structure is related to fine-scale 

distinctions in representation of information, and our model accounts for substantially 

more shared variance of connectivity compared to previous models. Our model opens 

new territory — shared fine-scale structure, a dominant but mostly unexplored 

component of the human connectome — for analysis and study.   
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Introduction 

Resting state functional magnetic resonance imaging (rsfMRI) reveals patterns of 

functional connectivity that are used to investigate the human connectome [1-3] and 

parcellate the brain into interconnected areas that form brain systems and can be 

modeled as networks [4-11]. The connectivity of a single area is considered to be 

relatively homogeneous and typically is modeled as a mean connectivity profile. 

Cortical topography, however, has both a coarse scale of cortical areas and a finer scale 

of multiplexed topographies within areas [12-16]. Fine-scale within-area topographies 

are reflected in patterns of activity that can be measured with fMRI and decoded using 

multivariate pattern analysis (MVPA)[12,13,17]. Fine-scale variation in connectivity, 

however, has been overlooked due to poor anatomical alignment of this variation 

across individual brains. We ask here whether local variation in functional connectivity 

also has a fine-scale structure, similar to fine-scale response tuning topographies, and 

whether such variation can be captured in a common model with basis functions that 

are shared across brains. 

We developed a new algorithm, connectivity hyperalignment (CHA), to model 

local variation in connectivity profiles with shared basis functions for connectivity 

profiles across individuals and individual-specific local topographies of those 

connectivity basis functions (Fig 1). The resultant common model connectome consists 

of transformation matrices for each individual brain, which contain individual-specific 

topographic basis functions, and a common model connectome space, which contains 

shared connectivity profiles (Fig 2).  Individual transformation matrices transform an 
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individual brain’s connectome, in its native anatomical coordinate space, into the 

common model space [13,16].  The individual transformation matrices and common 

model connectivity matrix are derived iteratively from training data.  Validity testing is 

done on connectivity profiles and other functional parameters from independent test 

data that are hyperaligned into the common model connectome space.  The results 

show that CHA can derive these shared basis functions from functional connectivity 

derived from neural activity while watching an audiovisual movie and from neural 

activity in the resting state. 

Fig 1.   Schematic of connectivity hyperalignment (CHA). 

 (A) Connectivity can be defined as any measure of similarity between a cortical locus (e.g., surface 

node/voxel) and a target region. Connectivities to a target region ( T i ,  T j ,  T k,  ... )  of loci in a 

searchlight yield a connectivity pattern for that target in that searchlight. These patterns can be 

analyzed as connectivity pattern vectors ( v i ,  v j ,  v k, , …)    in a space in which each cortical locus in 

that region is a dimension. (B) Connectivity pattern vectors ( v 1 ,   v 2 ,  …   v n )  in a region of interest or a 

searchlight to be hyperaligned are calculated for target regions ( T 1 , T 2 ...,  T n , ) distributed uniformly 

across the whole cortex. At this stage connectivity hyperalignment derives transformation matrices 

for each brain ( R 1 , R 2 , … ) in each searchlight that align these vectors across subjects into a common 

high-dimensional connectivity space. (C) For each subject, searchlight transformation matrices are 

aggregated into a whole cortex transformation matrix,  R 1A , as in [16], affording projection of 

connectivity data into a whole cortex common model connectome space.  Conversely, the transpose 

of a whole cortex transformation matrix can project connectivity data from the whole cortex common 

connectome space back into that subject’s cortical anatomy. 
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Figure 2.  Schematic of data and transformation matrices for the common connectome. 

The connectivity data for an individual subject,  i , in that subject’s native brain space,  B i , is projected 

into the common model connectome space,  M i ,   by multiplying it with the transformation matrix,  R i . 

Vectors in data matrix rows are connectivity pattern vectors — patterns of connectivity with a single 

connectivity target time-series across cortical nodes/voxels in the individual’s native brain space or 

across model dimensions in the common model connectome.  Vectors in data matrix columns are 

connectivity profile vectors — connectivities of a single node/voxel or model dimension across 

connectivity targets.  The transformation matrix contains weights for the linear transformation of 

connectivity vectors in an individual’s brain data space into the common model connectome space. 

Vectors in transformation matrix columns for model dimensions are patterns of weights for a local 

field of voxels/nodes and serve as topographic basis functions. Individual variation in the fine-scale 

topographic pattern of connectivity to a target is modeled as a weighted mixture of multiplexed or 

overlaid topographies for model dimensions. 

The resultant common model connectome accounts for substantially more 

shared variance in functional connectivity derived from both movie fMRI data and 

resting state fMRI data than was accounted for by previous models.  This shared 

variance resides in fine-scale local variations in connectivity.  We show further that this 

local variability in functional connectivity profiles is meaningful in that it is closely 

related to local patterns of response that encode fine distinctions among 

representations.    Our results indicate that shared fine-scale local variation, which was 

not evident in previous models, is a major component of the human connectome that 

coexists with shared coarse-scale areal structure.  Our common model connectome 

makes this fine-scale local variation accessible for group-level study of its network 

properties. 
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Results 

We derived a common model of the human connectome by applying CHA to 

fMRI data collected while 11 subjects viewed a full-length movie [13,16] and to rsfMRI 

data for 20 subjects in the Human Connectome Project (HCP) database [18-20]. The 

common model connectome is high-dimensional with connectivity profiles for model 

dimensions that serve as basis functions for modeling the connectivity profiles of 

cortical loci in individual brains.  We validated the common model in terms of 1) 

increased intersubject correlations (ISCs) of connectivity profiles, and 2) increased 

spatial specificity of shared connectivity profiles. To test whether this fine-scale 

structure is meaningful for the representation of information, we tested the effect of 

CHA on 3) ISCs of representational geometry for the movie, 4) between-subject 

multivariate pattern classification (bsMVPC) of responses to the movie and 5) ISCs of 

task activation and contrast maps from the HCP database.  The first two validation 

experiments are designed to test whether connectivity hyperalignment improves 

alignment of functional connectivity across brains in a way that preserves the fine-grain 

spatial granularity of variation in connectivity profiles.  These validations were tested on 

functional connectivity derived from both the movie and rsfMRI data.  The third, fourth, 

and fifth validation experiments are designed to test whether the transformation of 

individual brain spaces into the common model space better aligns topographies 

associated with representation of information and cognitive processes.  The third and 

fourth validations were tested on the movie data.  The fifth validation test used rsfMRI 

and task fMRI data from the HCP database. 
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Intersubject correlation of connectivity profiles 

CHA afforded large increases in ISCs of connectivity profile vectors in both the 

movie fMRI data   and the   rsfMRI data (Figures 3 and 4).   

Increases in ISCs of functional connectivity derived from movie data were 

distributed across all of cortex (Fig 3).  ISC at a cortical node is the correlation of the 

one subject’s connectivity profile with the mean of other subjects’ profiles, indexing 

how well other subjects’ connectivity profiles can predict an individual’s connectivity 

profiles.  Fig 3A shows a cortical map of mean ISCs of connectivity profiles in the 

common model connectome space as compared to ISCs in anatomically-aligned data. 

Fig 3B is a scatterplot of mean ISCs for individuals after anatomical alignment and 

CHA, which shows that CHA increased ISC for each individual and preserved individual 

similarity or deviance from the group.  We quantify the increases in 24 functional ROIs, 

identified using a meta-analytic database, NeuroSynth [21](Fig 3C; table S1). Mean ISC 

of connectivity profiles across these ROIs was markedly higher in the common model 

connectome than in the anatomically-aligned data (0.67 versus 0.15; difference = 0.52, 

95% confidence interval, CI = [0.46, 0.56]).  

Fig 3. ISC of connectivity profiles calculated from movie data.   (A) Average ISCs of connectivity 

profiles in each surface node after CHA and anatomical alignment. (B) Scatter plot of individual 

whole cortex mean ISCs of connectivity profiles before and after CHA with linear fit. Each 

subject’s similarity of connectome with the group is improved by CHA while preserving similarity 

or deviance from others. Shaded region is the 95% CI.  (C) Mean ISCs of connectivity profiles in 

functional ROIs covering visual, auditory, cognitive, and social systems comparing the common 

model connectome space and anatomical alignment. Bootstrapped testing showed significantly 
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higher ISCs after CHA than after anatomical alignment in all ROIs . 

Increases in ISCs of resting state connectivity profiles were similarly distributed 

across all of cortex and replicated the findings based on ISCs of movie viewing 

connectivity profiles (Fig 4).  Fig 4A shows a cortical map of mean ISCs of resting state 

connectivity profiles in the common model connectome space and in data aligned with 

the HCP’s MSM-All method (multimodal surface matching [22]).  Fig 4B is a scatterplot 

of mean ISCs for individuals after MSM-All alignment and CHA, which shows that CHA 

of resting state data increased ISC for each individual and preserved individual 

similarity or deviance from the group.  Fig 4C shows a cortical map of within-subject 

correlations between connectivity profiles from different resting state sessions. We 

quantify the increases in 26 functional ROIs, identified using a meta-analytic database, 

NeuroSynth [21](Fig 4D; table S1). Mean ISC of connectivity profiles across these ROIs 

was markedly higher in the common model connectome than in the MSM-All-aligned 

data (0.66 versus 0.35; difference = 0.31 [0.30, 0.33]).  ISCs of resting state connectivity 

profiles in the common model connectome space are slightly higher than 

within-subject correlations of resting state connectivity profiles (mean correlation = 

0.64; CI for difference = [0.00, 0.05]) (Fig 4D). This latter result indicates that an 

individual’s connectome based on resting state functional connectivity is better 

predicted by the common model connectome, based on other subjects’ data, than by 

estimates based on a typical sample of that subject’s own rsfMRI data, due to the 

benefit of estimating connectivity profiles based on a large number of brains and the 

precision of CHA. 
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Fig 4. ISC of connectivity profiles calculated from HCP rsfMRI data.  ( A) Average ISC of 

connectivity profiles in each surface node in the common model connectome space and after 

surface alignment (MSM-All). (B) Scatter plot of individual whole cortex mean ISCs of connectivity 

profiles before and after CHA with linear fit. Each subject’s similarity of connectome with the 

group is improved by CHA while preserving similarity or deviance from others. Shaded region is 

the 95% CI.  (C) Average within-subject between-session correlations in the common space. (D) 

Mean ISCs and WSCs of connectivity profiles in functional ROIs covering visual, auditory, 

cognitive, and social systems comparing the common model connectome space, within-subject 

between-session correlation in common space, and surface alignment.  

  The substantial increase in ISCs with hyperalignment is due in part to discovery 

of shared variance that was obscured by misalignment but also to suppression of 

unshared variance and amplification of shared variance mediated by filtering the data 

in the transformation step with smaller weights for nodes with unshared or noisy 

variance and larger weights for nodes with shared variance.  To gauge the size of the 

effect of filtering independent of better information alignment, we calculated ISCs in 

data that are filtered by our algorithm but aligned based on anatomy or MSM-All (see 

methods).   ROI mean ISCs of connectivity profiles in movie data filtered with CHA but 

aligned based on anatomy was 0.22 (CHA versus filter-control difference = 0.45 [0.39 

0.49]) and for HCP resting state data filtered with CHA but aligned based on MSM-All 

was 0.41 (CHA versus filter-control difference = 0.25 [0.23, 0.27]).  These ISCs are larger 

than ISCs of unfiltered, anatomically and MSM-All-aligned data but, nonetheless, still 

markedly lower than ISCs of connectivity profiles in the common model connectome 

space, which is both filtered and re-aligned by CHA.   
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Spatial granularity of connectivity profile variation 

We investigated the spatial specificity of the common model connectome by 

computing the intersubject spatial point spread functions (PSF) of ISCs of connectivity 

profiles [16]. The PSF of connectivity profiles was computed as the correlation of the 

connectivity profile in a cortical surface node for a given subject with the average 

connectivity profiles of other subjects in the same node and nodes at cortical distances 

ranging from 3 to 12 mm.  We similarly calculated within-subject PSFs based on 

within-subject correlations (WSC) of connectivity profiles between two resting state 

sessions. Fig 5A shows the slopes of connectivity profile PSFs for movie data in 24 

functionally-defined ROIs , and Fig 5B shows the mean PSF across these ROIs as a 

function of cortical distance) in the common model connectome space and in 

anatomically-aligned data. CHA increased the average slope of PSF across these ROIs, 

relative to anatomical alignment, from 0.013 to 0.105 (difference=0.092 [0.080, 0.099]). 

Fig 5C shows the slopes of connectivity profile PSFs for resting state connectivity 

profiles in the 26 functionally-defined ROIs, and Fig 5D shows the mean PSF across 

these ROIs (ISC or WSC as a function of cortical distance) in the common model 

connectome space, in MSM-All-aligned data, and within-subject. CHA increased the 

average slope of PSF across these ROIs, relative to MSM-All alignment, from 0.012 to 

0.065 (difference=0.053 [0.047, 0.055]). The intersubject PSF slopes in the common 

model connectome space and the PSF within-subject (slope = 0.067) were not 

significantly different (difference = 0.002 [-0.002, 0.007]).  This fine spatial granularity 

was ubiquitous in cortex, with steep PSFs in sensory-perceptual areas in occipital and 
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temporal cortices as well as in higher-order cognitive areas in lateral and medial 

parietal and prefrontal cortices. 

Fig 5. Spatial granularity of shared connectivity profiles.   The intersubject point spread function 

(PSF) of connectivity profile correlations are computed as the correlation between the 

connectivity profile for a cortical locus in one subject and the profiles of the same locus and its 

spatial neighbors in other subjects at increasing distances from that locus. For the HCP rsfMRI 

data, within-subject PSFs are computed as the correlation between the connectivity profile for a 

cortical locus from one rsfMRI session and the profiles of the same locus and its spatial neighbors 

from a different rsfMRI session. Slope is estimated in each functional ROI as the linear fit of 

intersubject or within subject correlations as a function of distance. (A) Slope of PSFs for movie 

viewing connectivity profiles in 24 functional ROIs.  (B) Average movie viewing connectivity PSF 

across all ROIs is plotted as ISC as a function of cortical distance.  (C) Slope of PSFs for resting 

state connectivity profiles in 26 functional ROIs.  (D) Average resting state connectivity PSF 

across all ROIs is plotted as ISC or WSC as a function of cortical distance. 

The mean PSFs across ROIs (Fig 5B and 5D), clearly show that CHA captures 

fine-scale variations in connectivity profiles for neighboring cortical nodes across 

subjects that are not captured by anatomical alignment or MSM-All alignment.  The 

ISCs of connectivity profiles for neighboring nodes in the common model connectome 

are substantially lower than ISCs for the same node (movie data: 0.21 [0.18, 0.23]; 

resting state: 0.09 [0.08,0.09]).  Similar fine spatial granularity is seen in the 

within-subject between-session PSFs for resting state connectivity profiles (0.10 [0.09, 

0.10]).  By contrast, ISCs for connectivity profiles in the anatomically-aligned and 

MSM-All aligned data barely differ for nodes spaced 0 versus 1 voxel/3 mm (differences 
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=0.005, [0.005, 0.005] and 0.004, [0.004,0.015], respectively) and 2 voxels/6 mm (0.01 

[0.01, 0.02] and 0.02 [0.01, 0.02], respectively) apart. Decrements for larger distances 

(ISCs of nodes spaced 3 voxels/9 mm: 0.03 [0.03, 0.03] and 0.03 [0.03,0.03], 

respectively; and 4 voxels/12 mm: (0.05 [0.05, 0.06] and 0.05 [0.04,0.05], respectively) 

were similarly small.   

Generalization to fine-scale patterns in response tuning 

Next we asked if this shared variance in fine-scale local variation in connectivity 

profiles carries meaning by testing whether it reflects fine-scale variations in response 

tuning topographies that carry fine-grained distinctions in representation.  We tested 

whether projecting movie response data into the CHA-derived common connectome 

space afforded better alignment of representational geometry for movie time-points 

and better bsMVPC of movie time segments.  

Results show that shared fine-scale structure in the common model connectome 

is closely related to fine distinctions in representations.  Fig 6A shows a cortical map of 

mean ISCs of local representational geometry after anatomical alignment and in the 

common model connectome.  Representational geometry is the matrix of all pairwise 

similarities between patterns of response to   different time-points in the movie, resulting 

in a matrix of more than 800,000 pairwise similarities (see methods).  Fig 6B shows a 

cortical map of mean bsMVPC accuracies for 15 s movie time-segments in searchlights 

after anatomical alignment and CHA.  CHA greatly increased both ISCs of 

representational geometry and bsMVPC accuracies.  Quantification of these effects in 

functional ROIs is illustrated in Fig S3. CHA significantly increased ISCs of 
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representational geometry in all ROIs  (ROI mean ISCs = 0.308 and 0.210 after CHA 

and anatomical alignment, respectively, difference = 0.097 [0.080, 0.110]).  CHA also 

dramatically increased  bsMVPC accuracies in all ROIs (ROI mean bsMVPC accuracies = 

10.37% and 1.04% after CHA and anatomical alignment, respectively, difference = 

9.33% [7.71%, 10.54%]).  

Fig 6.  Effect of CHA on ISC or representational geometries and bsMVPC of movie data.   (A) ISC 

of representational geometry in each voxel mapped onto the cortical surface. (B) Accuracies for 

bsMVPC of 15 s movie segments.  Classification was performed within each movie half 

separately, and the accuracies are then averaged across the two halves. Parameters for 

hyperalignment are derived from the half that was not used for classification. 

Generalization to task maps from the HCP database 

We tested the generalization of the common model connectome derived from 

resting state fMRI by applying connectivity hyperalignment parameters derived from 

one session of resting state data to task maps provided by the HCP database 

comprised of 32 task activation maps and 14 task contrast maps (Supplemental Table 

S2).  These task maps reflect simple operations and, thus, do not have the same 

fine-grained structure that is associated with activation by dynamic, naturalistic stimuli 

such as a movie.  We calculated the ISC of these task maps between each subject and 

the average of others before and after hyperalignment. Hyperalignment improved 

correlations on average across all tasks and in all but two (Face-Shapes and 

Body-Average, labeled ns) task contrast maps (Fig 7).  The average correlation across 

task maps increased from 0.58 to 0.65 (mean difference = 0.07 [0.06, 0.08]). 
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Figure 7.     ISCs of HCP task activation and contrast maps after CHA and surface alignment 

(MSM-All).  

Comparison of CHA and Response Hyperalignment (RHA) 

Since CHA aligned fine-scale patterns of response tuning functions across 

subjects better than anatomy-based alignment, we asked how well it compares to our 

previously published response-based hyperalignment (RHA) [16]. Because RHA requires 

responses that are synchronized across subjects in time, it cannot be applied to resting 

state data. We compare CHA and RHA of movie viewing data on 1) ISC of connectivity 

profiles, 2) ISC of representational geometry, and 3) bsMVPC of 15 s movie segments. 

Results showed that both CHA and RHA increased ISCs and bsMVPC 

classification accuracies significantly over anatomy-based alignment, but each 

algorithm achieves better alignment for the information that it uses to derive a 

common model, namely connectivity profiles and patterns of response, respectively. 

ISCs of connectivity profiles are significantly higher in a common model based on CHA 

than in a common model based on RHA (ROI mean ISCs = 0.67 and 0.575, 

respectively; CHA-RHA difference = 0.095 [0.081, 0.112])(Supplemental Figure S2).  By 

contrast, RHA marginally but significantly outperforms CHA on some validations based 

on response tuning functions, namely ISCs of representational geometry (ROI means = 

0.322 and 0.308, respectively; RHA-CHA difference = 0.014 [0.007, 

0.019])(Supplemental Figure S3), and bsMVPC of movie segments (ROI mean 

accuracies = 13.65% and 10.37%, respectively; RHA-CHA difference = 3.28% [2.76%, 
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3.78%])(Supplemental Figure S4).  

Discussion 

These results show that fine-scale local variation in connectivity profile is a major 

component of the human connectome that can be modeled with shared connectivity 

basis functions.  Each connectivity basis function has a connectivity profile that is 

shared across subjects and a different local connectivity topography in each individual 

brain.  These basis functions are derived from multiple subject data in local cortical 

fields.  An individual’s connectivity pattern in a cortical field is modeled as multiplexed 

or overlaid connectivity topographic basis functions, and the connectivity profile of 

each cortical node or voxel is modeled as a weighted mixture of local connectivity 

profile basis functions.  Thus, the connectivity profile for each voxel or node is modeled 

as a high-dimensional vector of connectivity profile bases, capturing how it varies 

locally from its neighbors, rather than modeling the connectivity of a brain area as a 

single connectivity profile that is shared by all voxels or nodes.  We show that these 

shared basis functions can be discovered with connectivity hyperalignment of data 

collected during viewing and listening to a rich naturalistic movie and during the 

resting state.  These basis functions constitute a common model connectome.  Shared 

fine-scale variation is a ubiquitous characteristic of all of human cortex and is a major 

component of the human connectome that coexists with shared coarse-scale areal 

variation. 

We show that patterns of connectivity exhibit fine-scale variation that is captured 

in the CHA-derived common model connectome.  We define fine-scale structure as 
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voxel-by-voxel or node-by-node variation in response and connectivity profiles, as 

compared to the coarse structure of parcels that consist of sets of voxels or surface 

nodes and are treated as a functional unit with a homogeneous functional profile.  In 

Figure 8 we illustrate the fine scale structure that is captured in the common model 

connectome for connectivity patterns in a left lateral-occipital/inferior-temporal cortex 

cortical field.  Quantitatively, we show that shared fine-scale structure is captured in the 

common model connectome with a direct measure of the spatial granularity of local 

variation in connectivity profiles — the intersubject point-spread function. The 

intersubject spatial point-spread function for variation in connectivity profiles is 

dramatically, six to eight-fold, steeper after data are transformed into the common 

model connectome than for data that are anatomically aligned.  Next we show that 

capture of this fine-scale structure in functional connectivity generalizes to capture of 

fine-scale structure in neural representation. Transformation of movie data into the 

common model space, using matrices derived from functional connectivity in 

independent movie data, afford bsMVPC of time segments that are tenfold higher than 

for anatomically-aligned data.  bsMVPC of movie time segments relies on fine-scale 

structure that is not well-aligned based on anatomy, nor on functional alignment using 

a “rubber-sheet” warping of cortical topographies, nor on hyperalignment based on 

responses to a limited variety of still images of visual categories [13,16, 23-25].  ISCs of 

local representational geometries also are dramatically higher after CHA than after 

anatomical alignment.  These local representational geometries reflect fine-scale 

structure that reveals how information spaces in different cortical fields vary, offering a 
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window on how these spaces are transformed along processing pathways and 

reshaped by task demands [26-28].  Finally, we also show that transformations derived 

from rsfMRI improve alignment of topographies in task activation and task contrast 

maps in the HCP database. 

Figure 8.  Mean group connectivity patterns in a left lateral-occipital/inferior temporal cortical field. 

Connectivity patterns were measured from movie data for functional connectivity with connectivity 

targets in mid lateral fusiform gyrus and mid superior temporal sulcus.  Mean group connectivity 

patterns are shown for data in the common model connectome, derived with CHA based on 

responses to the other half of the movie, and for anatomically aligned data.  Mean ISCs for patterns 

after CHA are higher than after anatomical alignment for both the fusiform target (0.835 versus 

0.175) and the STS target (0.826 versus 0.306).  The occipitotemporal, mid fusiform, and mid STS 

loci are taken from the face-responsive fields identified by Visconti di Oleggio Castello, Halchenko, 

et al. [28].  The locations of the fusiform and STS targets are indicated with green and blue dots, 

respectively.  The inflated cortical surface is tipped to provide a clear view of the cortical field. 

Connectivities are correlations of time-series responses to the movie.  

The existence and importance of fine-scale connectivity is well-recognized 

[29-31] but previously was not modeled in a common computational framework and, 

consequently, was largely overlooked.  Attempts to model within-area topographies of 

connectivity either were limited mostly to within-subject analyses or coarser within-area 

topographies that could be captured with anatomy-based alignment of group data 

[31].  Consequently, when not simply overlooked, within-area variations in connectivity 

profiles were usually analyzed as gradients that have a single cycle in a cortical area, 

such as retinotopy or somatotopy [29-31]. 
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Other models of shared structure in the human connectome have focused on 

the identification of shared functional networks that can be identified with cluster 

analysis (e.g. [5,32,33]) or independent components analysis (ICA; e.g. [19]).  These 

methods do not attempt to align the fine-scale structure within areas in these networks. 

In some approaches, each voxel is assigned to one cluster or system and is, thereby, 

associated with the time-series tuning function that characterizes that cluster 

[5,8,32,33].  Approaches that use ICA, or related componential analyses such as PCA or 

SVD, have the potential to capture node-by-node variation in connectivity profiles, but 

implementations of these approaches have not adapted them to analyze this fine-scale 

topographic structure.  For example, dual regression could allow using group ICA as a 

common space for modeling each voxel in an individual as a weighted sum of 

independent components [34,35]. In practice, however, each voxel is characterized in 

ICA analyses by the network to which it belongs, not as a mixture of multiplexed 

functional topographies.  Node-by-node local variation in connectivity topographies is 

blurred in group analyses because individual variation on independent components is 

projected into anatomically-aligned brains rather than into a single reference voxel 

space to reveal shared fine-scale structure, as we do here.  A novel approach by Langs 

et al. [32,33] allows nodes to be assigned to different clusters in a common functional 

connectivity embedding space independently of anatomical location.  The 

implementations of this method, however, do not attempt to discover shared fine-scale 

structure, and the low dimensionality of the embedding space and small number of 

clusters are probably insufficient to capture this level of detail. 
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Cortical functional architecture has multiplexed topographies at multiple spatial 

scales. In primary visual cortex, retinotopy is multiplexed with ocular dominance 

columns, edge orientation, spatial frequency, motion direction, and motion velocity, 

among other low-level visual attributes [36,37].  Primary visual cortex sends coherent 

projections to other visual areas where these topographies are recapitulated and 

transformed, affording the emergence of more complex features, such as curvature, 

texture, shape, color constancy, and biological motion; and, subsequently, even 

higher-order attributes such as object categories, view-invariant face identity, and 

species-invariant attributes of animals such as action categories and dangerousness 

[12,15,26-28,38-40].  Similar transformations of multiplexed topographies characterize 

other sensory modalities and, undoubtedly, supramodal cognitive operations. 

Modeling inter-areal communication as a single value of connectivity strength sheds no 

light on how information is transformed along cortical processing pathways to allow 

high-order information to be disentangled from confounding attributes [41]. 

Multiplexed cortical topographies at multiple spatial scales can be modeled with 

individual-specific topographic basis functions that have shared tuning profiles [13,16] 

and shared connectivity profiles (as shown here).  No previous model captured multiple 

spatial scales of connectivity topographies with connectivity profiles that are shared 

across brains.  By capturing coarse- and fine-scale connectivity topographies with 

shared basis functions, the common model connectome casts a bright light on the 

dominant role of fine-scale connectivity patterns in the human connectome and opens 

new territory for investigation of the network properties of cortical connectivity at finer 
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levels of detail.  With this new perspective, inter-areal connectivity can be modeled as 

more than a simple replication of global activity, as is the assumption underlying 

existing approaches to modeling the connectome, but, instead, as information 

processing operations in which functional topographies are transformed by projections 

between areas. 

Methods 

Movie data: Raiders of the Lost Ark 

We scanned 11 healthy young right-handed participants (4 females; Mean age: 

24.6+/-3.7 years) during movie viewing.  Participants had no history of neurological or 

psychiatric illness. All had normal or corrected-to-normal vision. Informed consent was 

collected in accordance with the procedures set by the local Committee for the 

Protection of Human Subjects.  Participants were paid for their participation.  These 

data also were used in a prior publication on whole cortex RHA [16]. 

Stimuli and design.   Stimuli consisted of the full-length feature movie — “Raiders of the 

Lost Ark” — divided into eight parts of approximately 14 to 15 min duration. Video was 

projected onto a rear projection screen with an LCD projector which the subject viewed 

through a mirror on the head coil. The video image subtended a visual angle of 

approximately 22.7° horizontally and 17° vertically. Audio was presented through MR 

Confon’s MRI-compatible headphones.  Participants were instructed to pay attention to 

the movie and enjoy. See [16] for details. 

fMRI protocol.   Participants were scanned in a Philips Intera Achieva 3T scanner with an 

8 channel head coil at the Dartmouth Brain Imaging Center. T1-weighted anatomical 
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scans were acquired at the end of each session (MPRAGE, TR=9.85 s, TE=4.53 s, flip 

angle=8°, 256 × 256 matrix, FOV=240 mm, 160 1 mm thick sagittal slices). The voxel 

resolution was 0.9375 mm × 0.9375 mm × 1.0 mm. Functional scans of the whole brain 

were acquired with an echo planar imaging sequence (TR=2.5 s, TE=35 ms, flip 

angle=90°, 80 × 80 matrix, FOV=240 mm × 240 mm) every 2.5 s with whole brain 

coverage (41 3 mm thick interleaved axial slices, giving isotropic 3 mm × 3 mm × 3 mm 

voxels). We acquired a total of 2718 functional scans with 1350 TRs in four runs during 

the first session and 1368 TRs in four runs during the second session. 

fMRI data preprocessing.  fMRI movie data were preprocessed using AFNI software 

[42]( http://afni.nimh.nih.gov ). Functional data were first corrected for the order of slice 

acquisition and head motion by aligning to the last volume of the last functional run. 

Any spikes in the data were removed using 3dDespike in AFNI. Data were then filtered 

using 3dBandpass in AFNI to remove any temporal signal variation slower than 0.00667 

Hz, faster than 0.1 Hz or that correlated with the whole brain average signal or the 

head movement parameters. Each subject’s anatomical volume was first aligned to the 

motion corrected average EPI volume and then to the MNI 152 brain template in AFNI. 

Functional EPI BOLD data were then aligned to the MNI 152 brain template using 

nearest neighbor resampling by applying the transformation derived from the 

alignment of the anatomical volume to the template.  Data acquired during the 

overlapping movie segments were discarded resulting in a total of 2662 TRs with 1326 

TRs in the first session and 1336 TRs in the second session.  

Definition of masks and searchlights for movie data.   We derived a gray matter mask by 
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segmenting the MNI_avg152T1 brain provided in AFNI and removing any voxel that 

was outside the cortical surface by more than twice the thickness of the gray matter at 

each surface node. It included 54,034 3 mm isotropic voxels across both hemispheres. 

We used this mask for all subsequent analyses of all subjects.   

Hyperalignment of movie data started with hyperalignment of data in 20,484 

overlapping searchlights of 20 mm radius centered on cortical nodes with 2.9 mm 

average spacing between the nodes.    Cortical nodes were defined in a standard 

cortical surface from FreeSurfer (fsaverage)(https://surfer.nmr.mgh.harvard.edu) and 

resampled into a regular grid using AFNI’s MapIcosahedron [42,43] with 10,242 nodes 

in each hemisphere.  We defined the surface searchlights [44] in PyMVPA 

[45]( http://www.pymvpa.org)  as cortical disks.  The thickness of disks was extended 

beyond the gray matter, as defined in FreeSurfer, 1.5 times inside the white-matter 

gray-matter boundary and 1.0 times outside the gray-matter pial surface boundary to 

accommodate any misalignment of gray matter as computed from the anatomical scan 

and the gray matter voxels in the EPI scan.  To reduce the contribution from noisy or 

non-gray matter voxels that were included due to this dilation, we used a 

between-subject correlation measure on training data [13] to select 70% of the voxels 

in each searchlight [16]. The mean number of selected voxels in movie data 

searchlights was 235. 

Searchlights for defining connectivity targets were defined using a coarse 

surface grid corresponding to the ico8 surface in SUMA [43] 
  
with 1284 nodes (10.7 mm 

spacing between nodes). We used surface disk searchlights [44] centered on these 
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nodes as the movie data connectivity target searchlights.  These searchlights had a 

radius of 13 mm, as did those used for the HCP data, producing complete coverage of 

the cortex with overlapping searchlights.  Cortical disks centered on these voxels were 

dilated using the same procedure as for hyperalignment of cortical surface searchlights. 

Movie connectivity target searchlights had a mean of 99 voxels. 

Resting state data: Human Connectome Project 

In the HCP database [20], we found unrelated subjects of age <= 35 with at least 

four resting state scans, yielding a list of 64 subjects. We chose the first 20 of these 

subjects in the sorted order of subject IDs for our analysis. 

For each subject, we used their cortical surfaces and fMRI data aligned to the 

group using MSM-All [22] with 32K nodes in each hemisphere as provided by the HCP. 

We used data from one resting state session [19](“rfMRI_REST1_LR”) to derive CHA 

parameters and validated it on a different resting state session (“rfMRI_REST2_LR”), 

and task fMRI sessions [18](EMOTION, GAMBLING, LANGUAGE, MOTOR, 

RELATIONAL, SOCIAL, and WM). Resting state data were acquired for 1200 TRs with a 

TR of 0.720s in each session (total time=14 min 33 s). The data used to derive the CHA 

parameters and common model and the resting state data used for validation tests 

used the same phase-encoding direction (LR). We used a single session of rsfMRI for 

alignment to mimic a typical resting state data acquisition which usually varies from 

10-20 mins of scanning. See  [19]  for more details about the acquisition and 

preprocessing pipelines. 

Definition of masks and searchlights for HCP data.   We masked the data to include only 
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the left and right cortices (Cortex_Left and Cortex_Right), removing all the non-zero 

nodes that correspond to the medial subcortical regions, resulting in 59,412 nodes 

across both hemispheres.  These nodes also defined the centers of 59,412 surface 

searchlights [44] with 20 mm radii that were used for hyperalignment.  All nodes in 

these searchlights were included.  The mean number of surface nodes in the HCP 

searchlights was 337.  

We defined connectivity target searchlights using a coarser surface grid 

corresponding to the ico8 surface in SUMA [43] 
  
with 1284 nodes (10.7 mm spacing 

between nodes). We found the closest matching nodes on the 32K surface to the 

nodes on the ico8 surface, and used those as centers for connectivity target 

searchlights.  These searchlights had a radius of 13 mm, producing complete coverage 

of the cortex with overlapping searchlights.  HCP connectivity target searchlights had a 

mean of 142 loci.  See further details below for how time-series were extracted from 

these searchlights.  

For validation of task fMRI, we used all of the maps provided by the HCP after 

removing redundancies (such as FACE-AVG and AVG-FACE), which resulted in 46 maps 

(Supplemental Table S2). 

Connectivity Hyperalignment 

We use CHA to derive a common model of the human connectome and the 

transformation matrices that project individual brains’ connectomes into the common 

model connectome space.  The common model connectome is a high-dimensional 

information space.  In the current implementation, the model space based on movie 
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fMRI data has 54,034 dimensions, corresponding to the number of voxels in the gray 

matter mask, and the model space based on HCP resting state fMRI data has 59,412 

dimensions, corresponding to the number of cortical nodes in those data.  The 

derivation of this space starts with hyperalignment in local cortical fields, searchlights, 

which yields orthogonal transformation matrices for each subject in each field.  These 

searchlights are aligned across subjects based on anatomy (movie data) or MSM-All 

(HCP resting state data); consequently, each locus within a searchlight is similarly 

aligned across subjects before CHA.  Local transformation matrices for each searchlight 

map anatomically or MSM-All aligned cortical loci in a cortical field to CHA-aligned 

dimensions in the common model connectome.  These local transformation matrices 

are then aggregated into a whole brain transformation matrix, which is not globally 

orthogonal.  The whole brain transformation matrices are derived based on local 

hyperalignment in searchlights to constrain resampling of information to cortical 

neighborhoods defined by those searchlights. 

The basic equation for hyperalignment (both CHA and RHA).   B ij   are the original 

matrices of data for cortical fields,  j , in individual brains ,  i ,  which have  m ij  columns of 

cortical loci and  n  rows of data vectors .   Hyperalignment derives a transformation 

matrix for each cortical field in each individual,  R ij , and a matrix for each cortical field, 

M j , that is the mean of transformed individual brain matrices,  B ij R ij , minimizing the 

Frobenius norm of differences between transformed individual brain matrices and the 

model space matrix.  For each cortical field  j : 
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equation 1.                 where     
F

1 N ) (B R )  M j = ( / ∑
N

i=1
ij ij R ||  Rij = argminR ∑

N

i=1
||Bij   M j  

 

For whole cortex hyperalignment we define the cortical fields,  j , as searchlights. 

Thus, we estimate a transformation matrix,  R ij ,  for each of  N sl  searchlights in each 

subject  i .  We then aggregate these searchlight transformation matrices into a whole 

cortex transformation matrix,  R iA  (details below): 

 

equation 2. R iA   = f(R ij ) 

 

The whole cortex common model data matrix,  M , is created by transforming 

individual whole cortex data matrices,  B iA ,  into common model space coordinates and 

calculating the mean: 

equation 3. M = 1 N ) (B R )  ( / ∑
N

i=1
iA iA  

 

Conversely, other subjects’ data in the common model space can be mapped 

into any subject’s individual anatomical space using the transpose of that subject’s 

whole cortex transformation matrix, , producing a data matrix,  M i ,  in which theRTiA  

columns are that subject’s cortical loci, making it possible to analyze and visualize 
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transformed group data in any subject’s anatomical space: 

equation 4. RM i = M
T
iA  

 

In our implementations of hyperalignment, we have used a variant of 

Generalized Procrustes Analysis [46,47](described in detail below) to derive orthogonal 

transformation matrices for the improper rotations of a brain data matrix from a cortical 

field (region of interest or searchlight) to the mean of others’ matrices for the same 

region to minimize interindividual differences between the transformed individual and 

mean data matrices.  Aggregation of searchlight transformation matrices,  R ij , produces 

a whole cortex transformation matrix,  R iA .  Because  R iA  is derived from searchlight 

transformation matrices,  R ij , it imposes a locality constraint that limits remapping of 

brain data to nearby cortical loci (see details below), making the whole cortex 

transformation matrix nonorthogonal by design.  We also have tested other 

hyperalignment algorithms that use alternatives for calculating the transformation 

matrices, such as regularized canonical correlation and probabilistic estimation [48,49]. 

These alternatives are effective but have not yet been extended to aggregate local 

transformation matrices for cortical fields into a whole cortex transformation matrix.   

The dimensionality of the brain and model data matrices is  n   ×   m , in which  m 

equals the number of cortical nodes or dimensions in brain and model data matrices — 

B i j ,   B iA ,  M j ,   and  M  — and  n  equals the number of data vectors across these 

dimensions.  The number of data vectors,  n , is set and determined by the number of 

connectivity targets for defining connectivity pattern vectors (see details below).  For 
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RHA,  n  is set by the number of response pattern vectors in an experimental dataset. 

The number of cortical loci in a cortical field or searchlight,  m ij , can vary across 

subjects.  If the number of cortical loci or dimensions differs between subjects or 

between an individual subject and the model space, the new subject’s data are 

transformed into a space with the same dimensionality as the first subject’s or the 

model’s space.  The number of cortical loci in the whole cortex model is set at  m  = 

59,412 for HCP data and  m   = 54,034 for movie data.  We also have shown that the 

dimensionality of a model for region of interest or searchlight ( m j ) can be reduced 

substantially relative to the dimensionality of individual brain spaces in imaging 

datasets ( m ij  ),  m Mj  << m ij  [13,16,48].  In the current version of CHA, as in whole cortex 

RHA, however, we do not reduce the dimensionality of the model space because these 

reduced dimensionality local models are difficult to aggregate into a whole cortex 

model.  

Note that the common model data matrix has two distinct components.  The 

columns define a common model space, whereas the rows are defined by the 

experimental data — either patterns of connectivity to targets elsewhere in the brain 

for CHA, or patterns of response for RHA.  The space can be illustrated as an 

anatomical space insofar as it can be rotated into any individual’s cortical loci (equation 

4), but there is no “canonical” anatomical space, rather the individuality of each 

individual brain is preserved.  We illustrate results in the anatomical space of one 

subject, the “reference subject”, but we also could illustrate the results in other 

subjects’ anatomical spaces.  The special nature of the common space derives from the 
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alignment of functional indices — connectivities and responses — to minimize 

interindividual differences and, thereby, discover shared basis functions for the 

individually variable functional architecture.  These basis functions are the response and 

connectivity profiles for model dimensions that model the response and connectivity 

profiles of cortical loci in individual brains as linear weighted sums.  In other words, 

equation 4 models single columns in  B i   as weighted sums of columns in   M i .  

Transformation matrices consist only of weights for the projection of individual 

brain spaces for cortical fields,  B ij ,  or the whole cortex,  B iA , into model spaces ( M j , M ) 

and contain no connectivity or response data. Thus, a transformation matrix can be 

applied to any matrix  of data vectors in an individual brain space.  Similarly, the 

transposes of transformation matrices, , can be applied to any data vector in theRTiA  

model space to project that vector into the cortical topographies of individual brains. 

For all applications of the common model, including the validation tests presented 

here, the transformation matrices are applied to independent data that played no role 

in derivation of the model space and the individual transformation matrix parameters. 

This is necessary to avoid overfitting [50]. Transformation matrices derived from 

connectivity data also can be applied to response data and vice versa.  In other words, 

RHA and CHA are complementary methods for deriving a common model of 

information spaces in cortex, and RHA-derived and CHA-derived transformation 

matrices are alternative projections for mapping individual brain data into the same 

common model space.  Note that each column of the transformation matrix  R iA 

contains weights for cortical loci in subject  i ’s brain.  These columns of weights are 
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basis functions for modeling functional topographies in individual brains as linear 

weighted sums of topographies associated with model dimension functional profiles.  

Derivation of transformation matrices for regions of interest and searchlights.   The 

derivation of individual transformation matrices that map individual brain spaces into 

the common model space is a three-level iterative process.   We present the iterative 

algorithm for deriving transformation matrices and the common model space in greater 

detail here to help readers understand better its structure. 

In the first step of the first level, the data matrix for a cortical field in one subject, 

B 2j ,  is transformed to be in optimal alignment with the same cortical field in another 

subject’s brain,  B 1j , referred to here as the reference subject: 

 

equation 5.             
F

rgmin||B R  ||  a 2j 2j(level1) B1j  

 

We use the Procrustes transformation to find the orthogonal matrix that affords 

the optimal improper rotation to achieve this minimization [46].  Note that this 

“rotation” is a rotation of data in the high-dimensional feature space, not a rotation in a 

two or three dimensional anatomical space.  Elsewhere we have shown that other 

algorithms can be used to achieve this minimization [48,49].   

In the following steps of the first level, the brain data matrices for the third and 

subsequent subjects are transformed to be in optimal alignment with the matrix 

defined by the mean of the previous subject’s matrix and the previous mean: 
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equation 6.              
F

rgmin ||B R  ||  a ij ij(level1) M i 1j(level1)
 

 

where 

 

equation 7. + B R  M i 1,j(level1) = ( i 1,j i 1,j(level1) ) 2  M i 2,j(level1) /  

 

M i-1,j(level1)    is the target data used to hyperalign the current subject’s data,  B ij , 

and  M i-2,j(level1)    is the target data used to hyperalign the previous subject’s data,  B i-1,j .  

Target data is updated with previous subjects’ aligned data in this first level.  In the 

subsequent two levels each subject’s data matrix is hyperaligned to the simple, 

unweighted mean of all other subjects’ matrices. 

At the end of the first level, level one transformation matrices have been derived 

for all cortical fields in all subjects,  R i,j(level1) ,  which are used   to project each subjects’ 

brain data into the provisional common spaces that evolved over level one iterations 

M i,j(level1 ) .  Each subject is then re-hyperaligned to the mean data matrix for all other 

subjects’ transformed data from level one to derive new individual transformation 

matrices,  R ij(level2) .  Note that the new transformation matrices are derived using each 

subject’s original brain data,  B ij .    Note also that the mean matrices in provisional 

common spaces, ,  exclude data from the subject being hyperaligned:M¬i,j(level1)  
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equation 8.             Frgmin ||B R  ||  a ∑
N

i=1
  ij ij(level2) M¬i,j(level1)

 

 

where is the equally-weighted mean of level one transformed data for allM¬i,j(level1)  

subjects but subject  i : 

equation 9. 1 (N )) (B R  )  M¬i,j(level1) = ( / 1 ∑
N

k=1(¬i)
kj kj(level1)  

 

After the level two transformation matrices,  R ij(level2) , are calculated for each 

subject, the level one transformation matrices are discarded, and the group mean of 

transformed individual brain data matrices is recalculated, using these new 

transformation matrices, producing the model matrix,  M : 

equation 10. 1 N ) R   M j = ( / ∑
N

i=1
Bij ij(level2)   

 

In level 3, the last level, the final searchlight transformation matrices,  R ij , are 

recalculated for each subject (see equation 1 above). 

Derivation of whole cortex transformation matrices.   Orthogonal transformation 

matrices for hyperaligning a cortical field can map information from a cortical locus into 

model dimensions anywhere else in that cortical field.  To constrain the remapping of 
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information to nearby locations in the reference subject’s cortical anatomy, we 

developed a searchlight-based approach [16].  We hyperalign the data in  N sl 

overlapping searchlights, where  N sl  is the number of searchlights (59,412 for HCP data, 

20,484 for movie data).  The number of model dimensions in each searchlight 

transformation matrix is determined in the movie data by cortical location and the 

number of selected features in the reference subject (mean = 235) and in HCP data by 

the cortical location of the searchlight (mean = 337).  The transformation for each 

searchlight,  R ij , has dimensionality that corresponds to the number of nodes in an 

individual’s searchlight ( m ij  rows) and the number model dimensions in that searchlight, 

derived from the reference subject’s anatomy ( m 1j   rows). Thus, each transformation 

matrix has on the order of 28K and 57K free parameters for movie data and HCP data, 

respectively.  Because the searchlights are overlapping, there are multiple estimates of 

weights for mapping each cortical locus to each model dimension.  As described in 

Guntupalli et al. [16] these weights are aggregated across searchlights by adding all 

weights for each cortical-locus-to-model-dimension mapping.  In essence, this is 

equivalent to creating a whole cortex transformation matrix,  R iA , of dimensionality  m × 

m , by padding each searchlight transformation matrix,  R ij , with zeroes in all rows and 

columns for cortical loci and model dimensions that are not in the individual or model 

searchlight cortical field to give them the same dimensionality to produce  R ij(padded) , 

and then summing these padded transformation matrices.  Thus, for each subject,  i : 

equation 11.  R ij(padded)RiA = ∑
N sl

j=1
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where  N sl  is the number of searchlights and  R ij(padded)  is the padded transformation 

matrix for subject  i  in searchlight  j  with dimensionality  m  ×  m .  As noted above,  m 
  
is 

the number of cortical loci — 59,412 surface nodes for HCP data and 54,034 voxels in 

the gray matter mask for movie data — and the number of whole cortex model 

dimensions.  Because the searchlight approach constrains 

cortical-locus-to-model-dimension mapping to nearby cortical locations, the whole 

cortex transformation matrix,  R iA , is sparse with zero weights for all mappings of 

cortical loci to model dimensions that are separated by more than 2x the searchlight 

diameter (~4 cm in this implementation).  The whole cortex transformation matrices, 

R iA , are large ( m × m ) but sparse.  98.7% of the entries are zeros, and roughly 20 million 

entries have nonzero values in each of these matrices.  The additive aggregation of 

mapping parameters weights nearby cortical location pairs, which co-occur in more 

searchlights than distant pairs, more strongly than distant pairs, adding a further locality 

constraint.  Note that the searchlight transformation matrices,  R ij , are orthogonal but 

the whole cortex transformation matrices,  R iA , are not by design, to introduce the 

locality constraint. The whole cortex transformation matrices,  R iA , are used in all 

validation tests to hyperalign independent new data matrices after normalizing the 

data in each cortical node or voxel.  In other words, all validation tests are performed 

on independent data that played no role in deriving the transformation matrix 

parameters or the common model connectome, providing cross-validated 

generalization testing.  CHA of movie data was based on one half of the movie data 
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(~55 min, ~1300 TRs) and the other, independent half of the movie data was used for 

validation tests with two-fold cross-validation.  CHA of HCP data was based on one 

session of resting state data (~15 min, 1200 TRs) and a second session of independent 

resting state data was used for validation tests, as well as independent data from task 

fMRI [18].  

Note that transformations map the cortical loci of a subject’s data matrices 

(columns) into the reference subject’s cortical loci.  Thus, we use the reference subject’s 

cortex for illustration, but note that the anatomical coordinates for model dimensions 

are an abstraction, as even the reference subject’s data are mapped into model space 

coordinates with a transformation matrix that is not the identity matrix.   Data matrices 

in the model space also can be mapped into any subject’s cortical anatomy by using 

the transpose of that subject’s transformation matrix (equation 4).  Thus, the 

hyperaligned data in the common model space can be illustrated in any subject’s 

anatomical space.  The anatomical space that we use for illustration, that of the 

reference subject, should not be considered a canonical space but, rather, simply as 

one of many possible physical instantiations. 

Connectivity targets.    We define functional connectivities as the correlations of the 

response profiles — series of responses across time — of cortical loci or dimensions 

with the response profiles of targets ( t j   ) distributed across the cortex. We use two sets 

of connectivity targets, one reduced set to derive the transformation matrices and 

common model connectivity data matrix, and a more complete set to test the validity 

of the model.  We define a reduced set of connectivity targets using surface-searchlight 
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target ROIs to make derivation of the model more computationally tractable, as 

compared to using all cortical loci as individual connectivity targets.  For the reduced 

set, we use 3852 targets (top 3 components for 1284 searchlights; note that the 

searchlights for connectivity targets are different from the searchlights that are 

hyperaligned as described above in the Resting State Data and Movie Data sections; 

see details for defining searchlight PC connectivity targets in the next section).  For 

validation testing we analyze the full connectome, defining connectivity targets as all 

cortical loci in the brain  ( N cl  = 54,034 gray matter voxels in the movie data and  59,412 

cortical nodes in the HCP resting state data).   

Searchlight ROI connectivity targets.   Each surface-searchlight connectivity target has a 

radius of 13 mm and is centered on a node of a coarse surface with a total of 1284 

nodes covering both hemispheres. Thus, neighboring connectivity targets searchlights 

are overlapping. Unlike others (e.g., [5]) we do not assume that a searchlight 

connectivity target has a single response profile.  We find, rather, a variety of response 

profiles for individual cortical loci in a target searchlight that can be captured as 

principal components.   We used the top three principal components to represent the 

response profiles in a target searchlight.  

To insure that the top components in target searchlights capture the same 

connectivity patterns across subjects, we performed a singular value decomposition 

(SVD) on the group mean connectivity matrix for each target searchlight after a 

simplified hyperalignment of individual matrices. Note that using a naive PCA/SVD to 

derive top components in each subject’s searchlight independently will not guarantee 
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their functional similarity. Target searchlights had a mean of 142 loci (HCP data) or 99 

voxels (movie data).  At this stage it was not yet possible to break the response profiles 

for searchlight targets into multiple components with shared connectivity profiles. 

Consequently, connectivity targets for the procedure to derive these components were 

simply the mean time-series responses for target searchlights.  For each target 

searchlight with  N s  features (surface nodes or voxels), we computed a 1284 ×  N s 

correlation matrix (the correlations between each cortical locus in the target searchlight 

and the mean time series for all target searchlights) for each subject. We hyperaligned 

the features (cortical loci) in each target searchlight across subjects based on these 

matrices and calculated the mean correlation matrix after hyperalignment in each 

target searchlight.  We then performed a singular value decomposition (SVD) of each 

searchlight’s group mean matrix to obtain the top three components that explained the 

most shared variance. Each of these components is a weighted sum of cortical loci in a 

target searchlight for each subject, and these weights afford calculation of a time-series 

response whose connectivity profile with other targets is shared across subjects. Each 

individual subject’s time-series responses for the top three components were then used 

as target response profiles for CHA. This step gave us 1284 × 3 = 3852 target response 

profiles in each subject’s cortex. 

Validation tests and statistical analyses 

Functional ROIs.   In addition to analyzing the results of validation tests in each feature 

or searchlight across the whole cortex, we also examined the results of validation tests 

in functional ROIs associated with different sensory, perceptual, and cognitive functions 
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to assess the general validity of the common model [16]. We searched for terms and 

cortical areas implicated in visual, auditory, cognitive, and social functions in 

NeuroSynth [22] and took the coordinates for the peak location associated with each of 

24 terms (Supplementary Table 1). For validation testing using the movie dataset, we 

used volume searchlights centered around those peak loci with a radius of 3 voxels as 

our functional ROIs. For validation testing using the HCP dataset, we found the closest 

surface node corresponding to each peak locus and used a surface searchlight with a 

10 mm radius around that surface node as the functional ROI. Functional ROIs that 

were medial and encompassing both hemispheres in the volume space were split into 

left and right ROIs in the surface space resulting in 26 ROIs for tests on the HCP data. 

For analyses of ISCs and PSFs of connectivity profiles in functional ROIs, we calculated 

the mean ISC or PSF across all cortical loci within the ROI searchlights (Figs. 3C, 4D, 

5A, and 5C).  

Statistics.  We used bootstrapping to test for significance of the contrasts between 

alignment methods by sampling subjects 10,000 times to compute 95% CIs using 

BootES [51]. We did this for each ROI and for the mean of all ROIs separately. We used 

the same bootstrapping procedure for all validation tests unless specified otherwise.  

Control for effect of filtering.   In addition to the anatomically-aligned movie data and 

MSM-All aligned HCP resting state fMRI data, we calculated a third dataset that 

controls for the effect of filtering the data through CHA transformations but aligns 

those filtered data across subjects based on anatomical or MSM-All alignment.  To 

produce the filter control data, we created  multiple common model connectomes 
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using each subject as the reference.  Each subject’s connectome was transformed into 

the common connectome whose reference subject was the next subject in our order of 

subjects.  The last subject’s connectome was transformed into the common model 

connectome whose reference brain was that of the first subject.  Thus, each subject’s 

connectome is filtered by hyperalignment, but since the common model connectome 

for each subject has a different reference, the correspondence across filtered 

connectomes is based only on anatomical alignment and preserves the anatomical 

variability in the movie data and HCP datasets. 

Intersubject correlation (ISC) of connectivity profile vectors.  For validity testing we 

applied a more detailed definition of the connectome to measure fine-grained 

structure.  The connectivity profile vector for a feature (or a cortical node or voxel) was 

defined as the correlation of its time-series with of all other cortical nodes or voxels. 

ISCs of connectivity profiles were computed between each subject’s connectivity 

profiles and the average connectivity profiles of all other subjects in each cortical locus.   

For the movie data ISCs of connectivity profiles were computed within each 

movie half separately and before and after CHA based on the other half of the movie. 

Correlation values were Fisher transformed before averaging across both halves of the 

movie in each voxel. These were then averaged across all subjects and inverse Fisher 

transformed before mapping onto the cortical surface for visualization.  ISCs of resting 

state connectivity profiles were computed for session REST2.  Session REST1 was used 

for deriving the common model connectome and transformation matrices.  ISCs were 

calculated for data mapped into the common model connectome, for movie data 
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aligned anatomically, for HCP resting state data aligned with MSM-All, and for filter 

control movie and HCP data. 

We also computed within-subject between-session (REST1 and REST2) 

correlation of resting state connectivity profiles. Within-subject between-sessions 

correlations were calculated on data that are transformed by CHA as used for our main 

analyses. 

Spatial point spread function.   To investigate the spatial granularity of representation, 

we computed a spatial point spread function (PSF) of ISCs or WSCs of connectivity 

profiles. We computed the correlation of connectivity profiles in each cortical locus 

(surface node or voxel) with the average connectivity profiles of cortical loci at varying 

cortical distances in other subjects’ data. To account for the effect of filtering, we did 

this analyses with filter control data that were filtered with CHA but aligned based on 

anatomy and MSM-All and after CHA with each subject aligned to the same reference 

subject [16].   We computed similar PSFs for connectivity profiles within-subject 

between-sessions (REST1 and REST2). This was also performed after CHA to account 

for any filtering effects but to a single common space as used for our main analyses. 

ISC of representational geometry.   ISCs of similarity structures were computed within 

each movie half separately using a searchlight of 3 voxel radius.  The mean number of 

voxels in these searchlights was 102. In each searchlight, similarity structure was 

computed as a matrix of correlation coefficients between patterns of response for every 

pair of time-points from that movie half for each subject. The flattened upper triangle 

of this matrix excluding the diagonal was extracted as the profile of representational 
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geometry at each searchlight for each subject. ISC of representational geometry in 

each searchlight was computed as the correlation between each subject’s 

representational geometry and the average of all other subjects’ representational 

geometries for that searchlight. Correlation values were Fisher transformed before 

averaging across both movie halves in each voxel. These were then averaged across all 

subject-average pairs and inverse Fisher transformed before mapping onto the cortical 

surface for visualization. The same steps were performed to compute inter-subject 

correlation of representational similarity before and after hyperalignment. 

Between-subject multivariate pattern classification (bsMVPC).   bsMVPC of 15 s movie 

time segments (6 TRs) was computed within each movie half separately using 

searchlights of 3 voxel radius, as in the analysis of representational geometry. bsMVPC 

was performed using a one-nearest neighbor classifier based on correlation distance 

[12,16]. Each 15 s (6TR) sequence of brain data for an individual was compared to other 

subjects’ mean responses to that sequence and all other 15 s sequences in the same 

movie half using a sliding time window, resulting in over 1300 alternative time 

segments (chance classification accuracy < 0.1%). Classification accuracies in each 

searchlight were averaged across both halves in each subject before mapping the 

subject means onto searchlight center voxels on the cortical surface for visualization.  

We implemented our methods and ran our analyses in PyMVPA 

[45]( http://www.pymvpa.org)  unless otherwise specified. All preprocessing and analyses 

were carried out on a 64-bit Debian 7.0 (wheezy) system with additional software from 

NeuroDebian [52]( http://neuro.debian.net ). 
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Supporting information legends 

S1 Text.  Overview of supplemental data and figures on common model connectome 

based on responses to a movie. 

S2 Fig. Spatial granularity of shared connectivity profiles from the movie data .  The 

common model connectome based on the movie data produced similar results to the 

common model connectome based on resting state data in terms of ISC of connectivity 

profiles (Fig 5) and the spatial granularity, as indexed by the PSF of ISCs.  (A) Mean PSF 

slopes in functional ROIs. (B) Mean PSF across all ROIs. 

S3 Fig. ISC of representational geometries in the responses to movie time-points. 

Analysis procedure was identical to Fig 4 with results after RHA included for 

comparison.  (A) ISC of representational geometry in each voxel mapped onto cortical 

surfaces after anatomical alignment, RHA, and CHA. (B) ISC of representational 

geometries in 24 functional ROIs and their mean after anatomical alignment and in the 

common model connectome. Bootstrapped testing showed significantly higher ISCs of 

representational geometry after both CHA and RHA relative to anatomical alignment in 

all ROIs, and some differences after CHA and RHA (“-” : CHA<RHA; “ns” : no 

significant difference between ISCs after CHA and RHA; “+” : CHA>RHA). CHA 

increased the ISC of representational geometry in all of the ROIs (ROI mean ISC=0.291) 

relative to anatomical alignment (ISC=0.173) (difference=0.118 [0.103, 0.129]), but the 

increase is slightly, but significantly, less than that provided by RHA (ISC=0.306) 

(difference=0.015 [0.009, 0.019]). 

S4 Fig.   Between-subject classification of movie segments .  Analysis procedure was 

identical to Fig 4 with results after RHA included for comparison. (A) Classification 

accuracies in each searchlight mapped on cortical surfaces after anatomical alignment, 

RHA, and CHA. (B) Classification accuracies in 24 ROIs covering visual, auditory, 

cognitive, and social systems across the cortex and their mean after anatomical 
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alignment, RHA, and CHA. Bootstrapped testing showed significant, six to seven-fold 

higher accuracies after both the hyperalignment methods relative to anatomical 

alignment (ROI mean bsMVPC is 1.74%, 12.95%, 9.93% after anatomical alignment, 

RHA, and CHA, respectively and slightly but significantly higher accuracies after RHA 

relative to CHA (mean difference = 3.02% [2.52%, 3.40%]).  (C) Classification accuracies 

using information from multiple systems across the whole cortex. Dimensionality of the 

data is reduced using SVD and classification is performed with different set sizes of top 

singular vectors. Peak accuracy is reached after 200 dimensions for hyperaligned data 

and at 50 dimensions for anatomically aligned data. Peak accuracy after RHA is 92.98% 

and after CHA is 89.61% (mean difference = 3.37% [2.32%, 4.99%]). 

S5 Fig. ISC of HCP task activation and contrast maps.   Connectivity hyperalignment 

parameters derived from a session of resting state data were applied to the task maps 

and the correlation of these maps is computed between each subject and the average 

of others before and after hyperalignment. Hyperalignment improved correlations on 

average across all tasks and in all but two (Face-Shapes and Body-Average, labeled ns) 

individual task maps.  The average correlation across task maps increased from 0.58 to 

0.65 (mean difference = 0.07 [0.06, 0.08]).  

S6 Table.   Selected cortical loci implicated in visual, auditory, cognitive, and social 

functions from Neurosynth . 

S7 Table.   Task maps used from the HCP data . 
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