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Abstract4

Population demographic history may be learned from contemporary genetic variation data.5

Methods based on aggregating the statistics of many single loci into an allele frequency spec-6

trum (AFS) have proven powerful, but such methods ignore potentially informative patterns of7

linkage disequilibrium (LD) between neighboring loci. To leverage such patterns, we developed8

a composite-likelihood framework for inferring demographic history from aggregated statistics of9

pairs of loci. Using this framework, we show that two-locus statistics are indeed more sensitive10

to demographic history than single-locus statistics such as the AFS. In particular, two-locus11

statistics escape the notorious confounding of depth and duration of a bottleneck, and they12

provide a means to estimate effective population size based on the recombination rather than13

mutation rate. We applied our approach to a Zambian population of Drosophila melanogaster.14

Notably, using both single- and two-locus statistics, we found substantially lower estimates of15

effective population size than previous works. Together, our results demonstrate the broad16

potential for two-locus statistics to enable powerful population genetic inference.17

Introduction18

Patterns of genetic variation within a population are shaped by the evolutionary and demographic19

history of that population, so observed variation encodes information about that history. Knowing20

population demographic history serves as an important control for learning about natural selection21

(Bustamante et al., 2001; Boyko et al., 2008) and understanding the relative efficacy of selection22
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as populations change in size (Lohmueller et al., 2008; Henn et al., 2016). One particularly in-23

formative statistic used to summarize genetic polymorphism data is the allele frequency spectrum24

(AFS), which stores the distribution of observed single-locus allele frequencies from a sample of25

the population. The shape of the AFS is sensitive to demographic history, and fitting the expected26

AFS under parameterized demographic models to the observed AFS is a powerful approach for27

learning about demographic history (Marth et al., 2004; Williamson et al., 2005; Gutenkunst et al.,28

2009; Kamm et al., 2016b).29

For unlinked loci, the AFS is a sufficient statistic of the data and completely describes observed30

patterns of variation (Lohmueller et al., 2009). The expected sample frequency spectrum under31

arbitrary single- or multi-population histories can be efficiently calculated with either coalescent32

(Kingman, 1982; Tajima, 1983) or diffusion (Kimura, 1964; Williamson et al., 2005; Gutenkunst33

et al., 2009) approaches. Poisson random field theory (Sawyer and Hartl, 1992) can then be used34

to calculate the likelihood of the data given model parameters. A key assumption of the Poisson35

random field framework is that of independence between segregating loci, so that allele frequency36

trajectories are uncorrelated. However, neighboring loci are physically linked on the chromosome,37

and their allele frequencies are thus correlated. Recombination serves to reduce this correlation,38

with a higher rate of recombination between two loci more rapidly breaking down that associa-39

tion. For any two linked SNPs, their linkage disequilibrium is a measure of their non-independence.40

Furthermore, as with allele frequencies, patterns of linkage disequilibrium are shaped by histori-41

cal demographic events such as bottlenecks, growth, and admixture, and therefore they are also42

informative about history (Pritchard and Przeworski, 2001).43

For linked sites the distribution of linkage disequilibrium carries additional information to the44

allele frequency spectrum about past demography (Myers et al., 2008), and the joint distribution of45

allele frequencies and linkage disequilibrium between pairs of SNPs should afford greater power for46

demographic inferences than those based on allele frequencies alone. Characterizing two-locus allele47

frequency dynamics and calculating their sampling probabilities has attracted a large body of work.48

Kimura considered the case of genetic drift at multi-allelic loci using a diffusion approximation,49

and he calculated the time to fixation for one of the alleles when more than two alleles are present50

(Kimura, 1955). This approach was expanded over the following decade to explicitly consider the51

two-locus setting with two alleles at each locus (Kimura, 1963; Hill and Robertson, 1966; Karlin52
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and McGregor, 1968; Ohta and Kimura, 1969; Watterson, 1970). These studies were generally53

interested in the probability and rates of fixation under arbitrary recombination between the two54

loci and in characterizing the expectation and variance of linkage disequilibrium.55

More recently, sampling probabilities for two neutral linked loci were directly calculated under56

equilibrium demography (Golding, 1984; Hudson, 1985; Ethier and Griffiths, 1990), often using57

the recursion approach due to Golding (1984). Hudson (2001) extended these results to gener-58

ate those sampling probabilities with knowledge of the ancestral state and proposed a composite59

likelihood approach for fine-scale estimation of recombination rates across the genome, which has60

been implemented to infer recombination maps and identify hotspots in human and Drosophila61

populations (McVean et al., 2004; Auton and McVean, 2007; Chan et al., 2012). Xie (2011) used62

a diffusion approach to calculate the sample frequency spectrum for two completely linked loci63

under neutrality or equal levels of selection, while Ferretti et al. (2016) recently used a coalescent64

approach to calculate the expected frequency spectrum for two completely linked neutral loci, and65

neutral sampling probabilities were developed under the coalescent with recombination for moder-66

ate to large recombination rates and constant population size (Jenkins and Song, 2009, 2010, 2012;67

Bhaskar and Song, 2012). Recently, Kamm et al. (2016a) developed a coalescent approach to gen-68

erate two-locus sampling probabilities under arbitrary demography and recombination and found69

that accounting for demographic history improves accuracy in composite likelihood approaches for70

estimating fine-scale recombination rates.71

Here, we characterize the increase in power of demographic inference from using two-locus allele72

frequency statistics versus using the single-locus AFS. In particular, the depth and duration of a bot-73

tleneck are confounded when using the AFS, but we show they can be independently inferred using74

two-locus statistics. To enable our analyses, we developed a numerical solution to the diffusion ap-75

proximation for two-locus allele frequencies with arbitrary recombination. We packaged this method76

in a two-locus composite likelihood framework that can be used to infer single-population demo-77

graphic histories. Moreover, this framework allows for an estimate of the effective population size78

based on recombination that is independent from estimates based on levels of diversity. Using this79

approach, we inferred demographic history for a highly studied Zambian Drosophila melanogaster80

population, finding a smaller effective population size than previous analyses (Ne ∼ 1.5− 3× 105)81

and a demographic history of recent modest growth and no severe bottlenecks.82
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Theory and Methods83

A discrete two-locus model with influx of new mutations84

We used a diffusion approximation to a two-locus model that allows for two alleles at each locus,85

which are separated by recombination fraction r (Karlin and McGregor, 1968; Watterson, 1970).86

We allow the left locus to carry alleles A and a, while the right locus permits alleles B and b. Then87

four haplotypes are possible, AB, Ab, aB, and ab, with frequencies nAB, nAb, naB and nab that sum88

to 2N (Fig. 1A). Frequencies in the subsequent generation are found by considering the random89

pairing of haplotypes and the probability of a given pairing passing on each type to their offspring.90

These probabilities depend on current haplotype frequencies and the recombination rate and are91

described in Table 1 of Watterson (1970). For example, a parent carrying haplotypes AB/Ab will92

pass on AB with probability 1
2 and Ab with probability 1

2 , even with recombination. On the other93

hand, a parent with AB/ab will pass on AB or ab each with probability 1
2(1−r) and Ab or aB each94

with probability 1
2r. The numbers (n′AB, n′Ab, n

′
aB, n′ab) of each haplotype in the next generation95

are then pulled from the multinomial distribution for sampling 2N haplotypes with probabilities96

found by considering random pairing of haplotypes and recombination.97

New two-locus pairings, with two alleles segregating at both sites, arise when a new mutation98

occurs at one unmutated locus when the other locus is already polymorphic. Suppose, without99

loss of generality, that the right locus is already polymorphic, with derived allele B at frequency100

xB = nB/2N , and ancestral allele b at frequency xb = 1 − xB. Then a new A mutation at the101

left locus begins at frequency xA = 1/2N and occurs on the B haplotype with probability xB or102

on the b haplotype with probability xb. Two-locus frequencies then evolve under the multinomial103

process described above until one or both loci are fixed for either the ancestral or derived allele, at104

which point we stop tracking that two-locus pair. The frequencies xB are drawn from the popula-105

tion distribution of one-locus frequencies f(x), which can be approximated using diffusion theory106

(Kimura, 1964). Thus, new independent two-locus pairs enter the population with frequencies107

(xAB, xAb, xaB) = (1/2N, 0, xB − 1/2N) with rate proportional to xBf(xB) and (0, 1/2N, xB) with108

rate proportional to (1− xB)f(xB).109

The density φ(x1, x2, x3) of two-locus haplotype frequencies, where x1, x2 and x3 are the relative110

frequencies of haplotypes AB, Ab and aB, respectively (Figure 1B), can be approximated using111
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Figure 1: Two-locus model and frequency spectrum (A) Two loci with two alleles each are
separated by recombination distance ρ = 4Ner. Four haplotypes are possible, and we track the
frequencies of the three derived haplotypes. (B) Frequencies change within a tetrahedral domain,
with corners of the domain corresponding to one of the four haplotypes fixed in the population.
New two-locus pairs occur when a new mutation A occurs against the B/b background, or when B
occurs against the A/a background, so we inject density along the Ab or aB axes proportional to
the background one-locus allele frequencies. (C) A sample two-locus haplotype frequency spectrum
for a sample size of n = 12.

diffusion theory, as described in the next section. The two-locus haplotype frequency spectrum112

stores the counts of derived haplotypes in a sample, where one or both loci carry the derived allele.113

To obtain the two-locus spectrum F for n samples from the density function φ (Fig. 1C), we sample114

against the multinomial sampling distribution:115

Fi,j,k ∝
∫∫∫
xi≥0∀i

x1+x2+x3≤1

φ(x1, x2, x3)

(
n

i, j, k

)
xi1 x

j
2 x

k
3 (1− x1 − x2 − x3)n−i−j−k dx1 dx2 dx3. (1)

Here,
(
n
i,j,k

)
is the multinomial coefficient, defined as n!/(i! j! k! (n− i− j−k)!). Because we assume116

that two-locus pairs are independent realizations of this process, Poisson random field theory tells117

us that if we observe data D(i, j, k), each entry in the observed two-locus spectrum is a Poisson118

random variable with mean F (i, j, k). This allows the application of likelihood theory to compare119
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observed data to model expectations.120

The two-locus diffusion approximation121

We solved the multiallelic diffusion equation for φ to obtain the expected sample two-locus spec-122

trum. Measuring time τ in units of 2Na generations, where Na is the ancestral reference population123

size, the forward diffusion equation describes the evolution of the probability density of two-locus124

frequencies and is written as125

∂φ

∂τ
=

1

2

∑
1≤i≤3

∂2

∂x2i

(
xi(1− xi)φ

ν(τ)

)
−
∑∑
1≤i<j≤3

∂2

∂xi∂xj

(
xixjφ

ν(τ)

)

+
ρ

2

[
∂

∂x1
(Dφ)− ∂

∂x2
(Dφ)− ∂

∂x3
(Dφ)

]
. (2)

Here, D = x1(1 − x1 − x2 − x3) − x2x3 is the linkage disequilibrium, given haplotype frequencies126

(x1, x2, x3), and ν(τ) = N(τ)
NA

is a function for the relative population size to the ancestral population127

size at time τ . The population scaled recombination rate between the A/a and B/b loci is ρ = 4NAr,128

where r is the recombination rate per generation per meiotic event. The action of recombination129

is readily interpretable in the diffusion equation; recombination acts directionally on the haplotype130

frequencies xi, pushing them toward linkage equilibrium (D = 0) at a rate directly proportional to131

the recombination rate ρ.132

The domain of the two-locus diffusion equation is the tetrahedron with 0 ≤ xi ≤ 1 for i = 1, 2, 3,133

and
∑

i xi ≤ 1 (Fig. 1B). If the recombination rate ρ = 0 and there is no recurrent mutation, then134

all boundary surfaces of the domain are absorbing, so if one of the haplotypes is lost from the135

population it remains lost. However, with ρ > 0, the boundary is not necessarily absorbing, as136

recombination may reintroduce a previously absent haplotype. For example, if only Ab and aB137

types are found in the population, a recombination event between the two loci may create either138

an ab or AB type in an individual in the next generation. Some of the edges of the domain are139

absorbing, since once one of either A/a or B/b fixes at the left or right locus, respectively, that140

two-locus pair remains fixed in the absence of recurrent mutation.141

We numerically solved Eq. 2 using finite differencing in a framework similar to Ragsdale et al.142

(2016). We split the diffusion operator into mixed and non-mixed terms, using an implicit alter-143
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nating direction scheme for the non-mixed spatial derivatives (Chang and Cooper, 1970) and a144

standard explicit scheme for the mixed spatial derivatives. We used equal numbers of uniformly145

spaced grid points for each spatial dimension, so that grid points coincided directly on the off-axes146

surface of the domain. This allowed for density to be accurately integrated along the surface and147

interior of the domain. As discussed in Ragsdale et al. (2016) and detailed in the Supporting Infor-148

mation, naively applying finite differencing along the off-axes surface led to numerical error in the149

solution to φ. Thus, we instead accounted for density moving between the interior of the domain150

and that surface by directly moving density between the two each timestep.151

Because the diffusion equation is linear, it can be used to solve for the density of all two-locus152

frequencies in the population by allowing for the influx of new mutations each generation. For the153

single locus diffusion equation, this amounts to the injection of density at rate θ/2 at frequency154

1/(2N), with the appropriate limit taken to allow N → ∞. In the two-locus model, one of the155

two loci will already be polymorphic (suppose the right B/b locus), and a mutation occurs at the156

other (left) locus. As described above, the new mutation A at the left locus initially has frequency157

1/(2N), while the right locus carries derived allele B with frequency x ∈ (0, 1) depending on the158

single-locus population allele frequency spectrum f(x), which will itself depend on the population159

size function ν(τ). Allele A falls on the B background with probability x and the b background with160

probability 1− x. Thus, we inject density into the two-locus diffusion equation by simultaneously161

tracking the single locus allele frequency density function f and setting the influx of density into162

φ proportional to f along the x2 and x3 axes (Fig. 1B). To solve for the two-locus spectrum under163

a nonequilibrium demographic model ν(τ), we first solve for φ at equilibrium and then integrate164

forward according to ν. We then sample φ against the multinomial sampling distribution with165

sample size n (Eq. 1) to obtain the two-locus spectrum.166

Composite likelihood estimation and demographic inference167

We follow the composite likelihood approach outlined by Hudson (2001), in which we consider168

pairs of loci and their sampling distribution. Reducing the full likelihood for more than two linked169

loci to the composite likelihood over all possible pairs of polymorphisms leads to the loss of in-170

formation. However, computing two-locus sampling statistics retains a considerable amount of171

information regarding both allele frequencies and patterns of linkage disequilibrium between them.172

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2017. ; https://doi.org/10.1101/108688doi: bioRxiv preprint 

https://doi.org/10.1101/108688
http://creativecommons.org/licenses/by/4.0/


For recombination distances ρ ∈ [ρmin, ρmax], we consider all pairs of loci separated by each ρ,173

and store sampling frequencies in the two-locus frequency spectrum for this range or ρ. In prac-174

tice, recombination distances vary continuously over any interval, so we are required to bin our175

data within subintervals of ρ by defining intervals [ρ0, ρ1), [ρ1, ρ2), . . . , [ρn−1, ρn]. For fine enough176

subintervals, we approximated the expected two-locus spectrum for an interval [ρi−1, ρi) using our177

diffusion approach with the mean recombination rate over that interval ρ = (ρi−1 + ρi)/2.178

For a given ρ-interval, we made the assumption that all pairs of loci contributing to the two-locus179

spectrum are independent, approximating the full likelihood by the composite likelihood across all180

pairs of loci. The two-locus frequency spectrum then forms a Poisson random field, so for sample181

data D and expected model M calculated under model parameters Θ, the likelihood of the data182

L(Θ|D) can be calculated by assuming each data entry Di is a Poisson random variable with mean183

Mi. Thus, the likelihood function for a single ρ-bin is184

L(Θ|D) =
∏
i

e−MiMDi
i

Di!
. (3)

We allowed the population mutation rate θ to be an implicit parameter for each bin, which scales185

the total size of the frequency spectrum while retaining its shape. The maximum likelihood value186

for θ is then θ̂ =
(∑

Di∑
M̃i

)1/2
, where M̃ is the model spectrum with θ set to one. The square arises187

because mutations that are paired to existing variant sites arise proportional to rate θ, but those188

existing mutations also arise proportional to rate θ, so that the total rate of influx of new two-locus189

pairs occur at a rate proportional to θ2.190

We simultaneously considered all bin intervals of ρ ∈ [ρmin, ρmax], and so for bin centers191

(ρ1/2, ρ1+1/2, . . .), the likelihood function is192

L(Θ|Dρj , j = 1/2, 1 + 1/2, . . .) =
∏
j

∏
i

e−Mj,iM
Dj,i

j,i

Dj,i!
, (4)

where j indexes the ρ-bins, and i indexes the frequency spectrum entries for a given ρj . In reality,193

pairs of loci are not independent, so we used the Godambe Information Matrix (GIM) to estimate194

parameter uncertainties (Coffman et al., 2016), which adjusts the composite likelihood statistics195

to account for linkage between data. This required bootstrapping the data, and we did so by196

dividing the autosomal genome into 1,000 bins of equal length and resampling these regions with197
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replacement.198

We fit single-population demographic models to the data, which are defined by the population199

size history function ν(τ) (Eq. 2). We considered simplified demographic models that may be200

described by a handful of parameters, rather than inferring a parameter free function ν(τ) as in Liu201

and Fu (2015). For example, in an instantaneous expansion model, the parameters are the relative202

change in size ν and the time T in the past that the population changed size.203

Phased and unphased data204

For data with phased chromosomes, determining haplotype frequencies is straightforward counting205

of haplotypes for a given pair of loci. Using an aligned outgroup, the ancestral state for each SNP206

may be determined, so that the two-locus spectrum stores derived two-locus allele frequencies. The207

ancestral state for each locus may be misidentified, potentially due to sequencing error or recurrent208

mutation along the lineage leading to the outgroup, and this can distort the two-locus spectrum209

(Hernandez et al., 2007). To account for ancestral misidentification, we included the probability210

pmis ∈ [0, 1] that a given SNP had a misidentified state in our model fitting. Thus, with probability211

pmis(1 − pmis) the A allele was misidentified but the B allele was correctly identified, and with212

the same probability the B allele was misidentified and the A allele was correctly identified. Both213

alleles A and B were misidentified with probability p2mis. In our demographic model fits to data,214

we fit pmis along with the parameters from the demographic model.215

When data is unphased, as is the case for many genomic datasets, observed haplotypes can not216

be tallied. Rather, we are left with counts of genotypes in individuals, (nAABB, nAABb, nAAbb, nAaBB, . . .).217

The composite linkage disequilibrium statistic D̂ is an unbiased estimator for D (Weir, 1979; Zaykin,218

2004),219

D̂ =
1

n

(
2nAABB + nAABb + nAaBB +

1

2
nAaBb

)
− 2pq, (5)

where n is the number of sampled individuals. One possible approach to summarize observed data220

might be to work with the joint statistics p = nA, q = nB, and D̂. Instead, we directly used221

genotype counts in the “genotype frequency spectrum” G. In genotype data, individuals may carry222

AA, Aa, or aa at the left locus, and BB, Bb, or bb at the right locus. Thus, there are nine possible223

two-locus genotypes (AABB, AABb, AAbb, AaBB, . . . ) that could be observed to be carried by224

an individual, so that G is an eight dimensional object with size (n + 1)8. However, G is sparse225
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and can be stored efficiently. Each genotype can only be formed by the pairing of two specific226

haplotypes (e.g. AABb can only be from one haplotype of each AB and Ab), except for AaBb,227

which could be formed by AB+ab or Ab+aB. Thus, we expected G to still carry information about228

demography through the joint patterns of allele frequencies and linkage disequilbrium. Expected229

genotype frequencies can be calculated from expected haplotype frequencies, and we detail our230

approach in the Supporting Information.231

Drosophila sequence data and recombination map232

As an application, we considered a single Zambian population of fruit flies, using data from phase 3233

of the Drosophila Population Genomics Project (DPGP3), available from the Drosophila Genome234

Nexus (Lack et al., 2015). The data consisted of 197 sequenced haploid embryos, so genomes were235

necessarily phased. We used Annovar (Wang et al., 2010) to annotate all biallelic SNPs across236

the genome, and we used intronic and intergenic regions in our two-locus analysis. We determined237

the ancestral allele for each SNP using the alignment to D. simulans (April 2006, dm3 aligned to238

droSim1, downloaded from the UCSC genome browser), by assuming the D. simulans allele was239

ancestral. If the D. melanogaster site had no alignment, or if the D. simulans allele was different240

than the two melanogaster alleles, we discarded that site.241

For each chromosome, we considered all pairs of biallelic SNPs in intergenic and intronic regions242

for which an ancestral state could be determined, within recombination distance ρmax. We deter-243

mined recombination distances using the recombination map inferred by Comeron et al. (2012),244

which reports cumulative recombination rates in units of cM over 100,000 bp intervals along each245

chromosome. We converted to ρ = 4Ner by taking the map distance d (in cM) separating the two246

SNPs and multiplying by 4Ne/100. This required an estimate for Ne, so we used neutral demo-247

graphic fits to intronic and intergenic single-locus data, which provided an estimate for θ = 4NeµL.248

Here, µ is the mutation rate, and we used µ = 5.5× 10−9 (Schrider et al., 2013). The total length249

of sequences that were included in our analysis was L ≈ 3.93× 107. Then Ne = θ/(4µL) ≈ 3× 105.250

For each two-locus pair, we counted the number of AB, Ab, aB, and ab haplotypes across all 197251

samples and then subsampled to a sample size of n = 20. In the supporting information, we show252

how to project data to a smaller sample size, but for the sample sizes in our dataset the full projec-253

tion would have required more memory than we had available. This allowed for more pairs to be254
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included in the data, as any pair of loci without missing haplotype data for at least 20 samples was255

included, and a smaller sample size allowed for more rapid evaluation of the expected frequency256

spectrum for optimization.257

Independent inference of Ne258

Two-locus statistics are binned by the populations size-scaled recombination rate ρ = 4Ner, where259

r is the recombination rate per meiotic event per generation. Thus, given a recombination map we260

require an accurate estimate for Ne to appropriately bin the data. In the case that the effective261

population size is unknown, Ne may be left as a parameter to be fit during optimization of the262

model to the data. In this approach, we guess an initial effective population size N0 to first bin263

the data by ρ0 = 4N0r (for example, 104 for human populations, or 106 for Drosophila) and then264

allow the ρ-value for each bin to be rescaled by αN as ρ = 4N0rαN . If the best fit αN = 1, then265

N0 turned out to be the best fit effective population size, while if αN is larger or smaller than one,266

then the best fit Ne is inferred to be larger or smaller than N0 by that factor. We rescaled the ρ267

value for each bin of data instead of reassigning data to fixed bins for fair comparison of likelihoods268

across varying values of αN , and because reassigning two-locus data each iteration of optimization269

would be computationally burdensome.270

Results and Discussion271

Numerical accuracy of solution to two-locus allele frequency spectrum272

We first compared our numerical solution for two-locus statistics for a population in demographic273

equilibrium to those calculated by Hudson (2001). Our solution matched those using Hudson’s274

algorithm across all values of ρ, from completely linked (ρ = 0) to loose linkage (ρ = 100) (Fig. 2,275

top row). To verify our numerical solution for nonequilibrium demography, we compared it to276

simulations of the discrete two-locus process with an influx of mutations. We simulated a population277

of N = 1000 diploid, randomly mating, individuals for independent pairs of loci separated by a278

given recombination rate. New two-locus pairs entered the population at a rate proportional to279

Eqs. S3 and S4. We allowed the simulation to proceed for 20N generations and then applied280

specified population size changes, sampling two-locus haplotype frequencies from the population281
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after each simulation completed. Our nonequilibrium solution matched the simulated two-locus282

statistics (Fig. 2, bottom row). See Supporting Information for further details regarding simulation283

and numerical accuracy.284
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Figure 2: Verification of numerical solution. For sample size n = 30, the distribution of nAB
is shown, when the frequencies of A and B are p = 10 and q = 15 and ρ is varied. Top row:
Comparison to equilibrium statistics from Hudson (2001). Bottom row: Comparison to discrete
simulation under growth model.

Two-locus statistics are sensitive to demography285

To assess the increase in statistical power for demographic history inference using the two-locus286

spectrum versus the single-locus spectrum, we used the information theoretical measure Kullback-287

Leibler (KL) divergence (Kullback and Leibler, 1951). The KL divergence measures the amount288

of information lost if an incorrect demographic model M0 is used to approximate the true model289

Mtrue, and it can be interpreted as the expected likelihood ratio statistic for testing Mtrue against290
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M0. For discrete distributions, such as frequency spectra, KL divergence is defined as291

DKL(Mtrue‖M0) =
∑
i

Mtrue(i) log
Mtrue(i)

M0(i)
. (6)

In our comparisons, we took M0 to be a model of constant demography and compared the KL diver-292

gence for two demographic models, an instantaneous growth model and a bottleneck and recovery293

model, between two-locus and single-locus frequency spectra (Fig. 3). A larger KL divergence in-294

dicated that more information is contained in the data to reject the constant size model. For the295

two model types, we considered varying recovery times T since the demographic event, so in the296

growth model T is the time since the instantaneous expansion (ν = 2), and in the bottleneck model297

T is the time since recovery from the bottleneck (νB = 0.1, TB = 0.05). In all cases, the two-locus298

spectrum is more informative about the demography per pair of linked loci than are two unlinked299

loci in the single-locus frequency spectrum.300

We considered the KL divergence for varying values of recombination rate ρ from completely301

linked (ρ = 0) to loose linkage (ρ = 100). For large ρ, KL divergence from two-locus statis-302

tics converged to the measure for unlinked single-locus data, which is to be expected as ρ → ∞303

implies unlinked loci. Importantly, the most informative recombination distance varied between304

demographic models and recovery times T since demographic events. As T increases, lower recom-305

bination rates are relatively more sensitive, because higher recombination rates will restore levels of306

linkage disequilibrium faster than lower recombination rates. Therefore, loosely linked loci are more307

informative about recent demographic events, while tightly linked loci ar emore informative about308

deeper events. We performed the KL divergence analysis on genotype data as well (Figure 3, red309

curves), and we found that two-locus statistics at the genotype level are also more sensitive than310

one-locus statistics. For the growth model, the KL divergence of genotype data was intermediate311

between the KL divergences of one-locus and haplotype data, but for the bottleneck model, very312

little sensitivity is lost when using genotype data instead of haplotype data.313

Fits to simulated data314

To further validate our model and to explore efficient and informative ways to collate two-locus315

statistics, we simulated single-population demographic history under neutrality with realistic human316

mutation and recombination rates for many large (1 Mb) regions using ms (Hudson, 2002) (details317
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Figure 3: Sensitivity to demography. We compared KL divergence measures between two-locus
statistics and the single-locus frequency spectrum for a simple growth model (A, top row) and a
bottleneck model (E, bottom row). The blue curve shows the KL divergence for phased (haplotype)
data, while the red curve is for unphased (genotype) data. In each comparison, we considered the
KL divergence between the specified demographic model and a null model of constant population
size. (A) In the instantaneous growth model, the population doubled in size some time T in the
past, and we considered (B) T = 0.05, (C) 0.1, and (D) 0.2. (E) In the bottleneck model, the
population shrank to 1/10 its original size for TB = 0.05 genetic time units and then recovered
to its original size T genetic units ago for (F) T = 0.05, (G) 0.1, and (H) 0.2. In all cases, and
across all values of ρ, KL divergence was greater for two-locus statistics than the corresponding
single locus statistics of the same number of unlinked sites. The two-locus spectrum is thus more
sensitive to demographic history than the single-locus spectrum.

in Supporting Information). Using sets of 100 simulated 1 Mb regions, we simulated a simple318

growth model (instantaneous expansion by a factor of 2, 0.1 time units before present) and fit319

the demography to both simulated single- and two-locus statistics (Supporting Information). We320

repeated this simulation and fitting process 50 times and checked how accurately and precisely321

we recovered the simulated demographic parameters. We used the same simulations to check the322

accuracy of our fits to genotype data, by pairing chromosomes to create diploid individuals. Fig. 4323

shows our fits to simulated data, with two-locus genotype statistics more precisely recovering the324

true demographic model than single-locus statistics, and haplotype statistics more precisely than325

genotype statistics. When we allowed Ne to vary, we also accurately recovered the simulated326
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parameters including αN (Fig. 4B).327
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Figure 4: Fits to data from simulated growth model. A: We simulated 50 replicate data sets
with length 100Mb under an instantaneous growth model using ms and checked how accurately we
recovered the simulated parameters for both single- and two-locus data, including allowing Ne to
vary (B). C-D: For both ν and T , fits to the two-locus frequency spectrum were more accurate than
single-locus fits. Here, the median values and top and bottom quartiles are indicated by the boxes,
and the whiskers extend to the largest and smallest inferred values from the simulated datasets.

In an identical fashion, we also simulated a bottleneck model, in which the population size328

shrank by a factor of 0.1 for 0.05 genetic time units and then recovered to its original size for 0.2329

time units until sampling at present (Fig. 5). For this demography, the fits to single-locus statistics330

were inconsistent, and many replicates did not converge to reasonable parameter values, with νB331

tending to 0. The two-locus haplotype fits more accurately recovered the modeled parameters,332

although the inferred values of νB were consistently slightly elevated. The fits to genotype data333

were also more accurate than using single-locus data, consistent with our KL divergence results334

(Figure 3). Disentangling the depth and duration of a bottleneck from allele frequency data is335

notoriously challenging (Keinan et al., 2007; Bunnefeld et al., 2015), and jointly incorporating336
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Figure 5: Fits to data from simulated bottleneck model. A: We simulated 50 replicate
data sets with length 100Mb under a bottleneck and recovery demographic history, in which the
population declined to 0.1 its original size for T = 0.05 genetic time units and then recovered to
its original size for 0.2 time units. C-F: Demographic inferences using single-locus data alone could
not consistently recover the true parameters. However, using genotype or haplotype two-locus data
allowed for precise inference of model parameters, including when Ne was allowed to vary (B).

information about linkage disequilibrium dramatically improves parameter identifiability.337
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Demographic inference of a Zambian Drosophila population338

As an application of our approach, we considered the demographic history of a Zambian population339

of Drosophilia melanogaster, which is thought to be a close proxy to the ancestral population (Lack340

et al., 2015). We first fit two- and three-epoch single-population demographic models to intronic341

and intergenic single-locus data in order to estimate θ and Ne (Table 1). We inferred the ancestral342

effective population size to be approximately 3 × 105, which is somewhat lower than previously343

suggested sizes for D. melanogaster (Keightley et al., 2014; Garud and Petrov, 2016). Using the344

recombination map of Comeron et al. (2012), we determined distances in ρ between pairs of loci,345

assuming an effective population size of 3× 105, and we binned two-locus data as described above.346

We then fit the two- and three-epoch models to the two-locus data, with and without varying347

Ne (Table 1) and calculated parameter uncertainties using the Godambe Information Matrix (Ta-348

ble S1). For all fits, we subsampled the data to 20 samples for computational speed, and additional349

speed-up was afforded by calculating each ρ-bin’s expected frequency spectrum in parallel.350

Table 1: Point estimates from fits to Drosophila data. Reported log-likelihoods (LL) are for
two-locus data using the demographic history parameters from each fit. 95% confidence intervals
are given in Table S1.

Data statistics (Model) ν1 ν2 T1 T2 pmis Ne LL

One-locus (2-epoch) 4.23 0.329 0.0476 302, 900 −1068200
One-locus (3-epoch) 2.35 10.7 0.388 0.0938 0.0496 291, 500 −1404200

Two-locus (fix Ne, 2-epoch) 3.83 0.371 0.0449 3× 105 −1025600
Two-locus (fix Ne, 3-epoch) 34.3 1.69 0.220 0.053 0.0434 3× 105 −844200

Two-locus (var. Ne, 2-epoch) 4.02 0.379 0.0456 179, 900 −851700
Two-locus (var. Ne, 3-epoch) 1.53 4.58 0.352 0.286 0.0473 170, 000 −825600

For the two-epoch model, parameter values inferred using single- and two-locus data were quite351

similar (Table 1). For the three-epoch model, however, inferred values were quite different. In352

particular, the two-locus fit with fixed Ne inferred a large population size increase followed by a353

sharp decline, but the single-locus fit and the two-locus fit with variable Ne both inferred two-stage354

increases with qualitatively similar estimates. When we allowed Ne to be simultaneously fit to the355

data, we found the best-fit value was smaller (1.7 × 105), and the variable Ne three-epoch model356

best fit the two-locus data. The disagreement of inferred parameters for the fixed-Ne fit is likely357

due to the model attempting to fit observed LD but being constrained by an Ne larger than the358

optimal value. This suggests that scaling the recombination map by a fixed estimate for Ne may359
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introduce significant bias into downstream parameter estimates.360

All of the inferred models fit the single-locus frequency spectrum well (Fig. S2), but they varied361

in their ability to capture patterns of LD (Fig. 6). The two-locus data fit with a three-epoch model362

including variable Ne fit the LD decay curve much better than any of the other model fits, although363

it still underestimated long-range LD. Previous models of D. melanogaster demographic history364

also underestimated long-range LD (Garud and Petrov, 2016). While a more complex demography365

might be able to better fit the LD curve, factors aside from single-population demography may366

be critical to generating the pattern of long-range elevated LD, including population substructure,367

recent admixture, or the effects of linked selection.368
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Figure 6: Fits to LD-decay from Drosophila data. LD-decay curves for two-locus models
compared to observed decay curves from the data. (A) The two-locus model using the best fit
parameters from single-locus data, (B) the two-locus model fit with Ne set to 3× 105, and (C) the
two-locus model with Ne allowed to vary. Each of the models underestimates long-range LD decay,
as also observed by Garud and Petrov (2016), although the two-locus fits that allow variable Ne

attempt to compensate for the poor fit to observed levels of LD (C).

Our estimates of the ancestral effective population size of D. melanogaster are notably smaller369

than previous estimates. Keightley et al. (2014) estimated the spontaneous mutation rate by370

sequencing a family of two parents and 12 full-sibling offspring and used their estimation to infer371

Ne ∼ 1.4 × 106. The effective population size may also be estimated from observed levels of372
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diversity, and Charlesworth (2015) estimated Ne ∼ 0.7 × 106 using observed synonymous site373

diversity. Furthermore, Ne is often assumed to be ≥ 106 in many population genetic studies of D.374

melanogaster (Sella et al., 2009; Garud et al., 2015; Garud and Petrov, 2016). Our estimates for375

Ne were substantially lower. Using levels of diversity for intronic and intergenic loci, we estimated376

Ne ∼ 3 × 105 through our demographic fits to the single-locus AFS (Table 1). In an alternative377

approach, we allowed Ne to vary in the two-locus inference, and we estimated a smaller value of378

Ne ∼ 1.7×105. This approach is based on the rescaling of the recombination map without assuming379

a fixed mutation rate, and it thus provides an independent inference of the effective population size.380

Together, our results suggest that ancestral Ne for D. melanogaster may be substantially lower than381

previously estimated, and studies that require an assumed effective population size should consider382

a wider range of possible Ne values. Notably, it has been suggested that linked selection is common383

throughout the genome of D. melanogaster (Garud and Petrov, 2016), and linked selection is known384

to increase the variance in offspring distribution, which in turn decreases the effective population385

size (Leffler et al., 2012).386

Conclusions387

Based on the continuous approximation to a two-allele two-locus discrete Wright-Fisher model388

with recombination, we developed a numerical solution to the two-locus diffusion equation that389

handles arbitrary recombination rates and demographic history. We used this method to develop a390

composite likelihood framework to infer demographic history from observed two-locus data, which391

can handle data sampled as either haplotypes or genotypes. While two-locus statistics have been392

successfully and extensively used to infer fine-scale recombination maps for many organisms, we393

focused on quantifying the additional power afforded by two-locus over single-locus statistics for394

demographic history inference. We found that two-locus statistics do provide substantial additional395

power. For example, while inferring the parameters of a bottleneck model from single-locus data396

is notoriously difficult (Keinan et al., 2007), we were able to precisely and consistently recover the397

correct demographic parameters using two-locus statistics. Moreover, for at least some scenarios,398

little power is lost when data are unphased and genotype frequencies are fit. Finally, we turned399

to data from a Zambian fruit fly population, and we found that using two-locus statistics to infer400

demographic history provided a much better fit to both the allele frequency spectrum and observed401
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patterns of LD. The demographic history that we inferred still underestimates the observed long-402

range levels of LD, which has been previously observed in this population (Garud and Petrov,403

2016). Moreover, using two independent approaches, one based on levels of diversity and the404

other based on scaling the recombination map, we inferred the ancestral effective population size405

to be substantially lower than previous inferences. It is likely that additional factors to single406

population demography are at play, including potentially complicated demographic features such407

as substructure and admixture, and the effects of linked selection.408
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Supporting Information414

Two-locus solution numerics415

Our numerical solution to two-locus diffusion equation (Eq. 2) uses finite differences, closely fol-416

lowing the numerical methods described in Ragsdale et al. (2016). We separately apply the mixed417

and non-mixed spatial derivatives, using an alternating direction implicit (ADI) method for non-418

mixed terms and a standard explicit term for the mixed terms. The grid spacing is uniform with419

equal number M of grid points in each direction xi, so that grid spacing ∆ = 1/(M − 1). For the420

ADI method, each direction was sequentially integrated forward in time. For the x1 direction, we421

discretized Eq. 2 as422
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∆
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∆
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∆
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∆
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where

Vi = xi(1− xi)

and

Mi,j,k = −ρ
2

[xi(1− xi − xj − xk)− xjxk] .

The x2 and x3 discretizations were similar, but with the opposite sign for Mi,j,k. For the mixed423

derivative terms, we sequentially applied an explicit scheme over the (x1, x2), (x1, x3), and (x2, x3)424

planes. In the (x1, x2) direction, we used the discretization425

φn+1
i,j,k − φni,j,k

∆τ
= −(Cφn)i+1,j+1,k − (Cφn)i+1,j−1,k − (Cφn)i−1,j+1,k + (Cφn)i−1,j−1,k

4∆2
. (S2)

The (x1, x3) and (x2, x3) planes were analogous.426

Sequentially applying the ADI and explicit mixed derivative methods along the off-axes surface427

resulted in significant error, with an excess of density pushed to the surface. Again, similar to428

Ragsdale et al. (2016) we integrated φ forward in time using the methods described above for429

all grid points not on the off-axes surface. For each grid point near that surface, we calculated430

the amount of density that should be lost to the surface each time step and directly moved that431

density to the surface. This density from a grid point at (x1, x2, x3) may be found by numerically432

integrating the analogous one-dimensional process forward one time unit from a point mass placed433

at x = x1 + x2 + x3 and measuring the amount of density that fixes at x = 1. We similarly434

directly moved density from the surface back into the interior of the domain each time step due435

to recombination events along that surface. Each time step we also integrated the density on the436

surface forward in time using Eqs. S1 and S2 for the analogous three state process.437

To model the influx of new mutations, we coupled our numerical solution to the two-locus dif-438

fusion equation to single-locus models φbi for the background allele frequencies. These simulations439

were carried out using ∂a∂i (Gutenkunst et al., 2009), and densities φbi were added to the two-locus440

solution φ along the x2 and x3 axes, corresponding to the new haplotype starting at low frequency441

after mutation. Specifically, suppose B/b alleles are already segregating at the right locus with the442

frequency of B as x, and a new A mutation occurs at the left locus. The mutation A lands on the443

B background with probability x and lands on the b background with probability 1− x. We thus444
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added the amount445

θ

2

1

∆3
∆τφbik (1− xk) (S3)

to φ0,1,k, and446

θ

2

1

∆3
∆τφbik xk (S4)

to φ1,0,k. The injection for B onto A/a was analogous, adding to φ0,j,1 and φ1,j,0.447

The diffusion equation is valid in the limit of large population size Ne, so we extrapolated on448

grid spacing ∆ to approximate the solutions for ∆ → 0. In practice, the number of grid points449

should exceed the number of samples in the frequency spectrum. With a sample size of 20, we450

typically used grid spacings with M = 40, 50, and 60. We also found that accuracy was improved451

by extrapolating on ∆τ as well, and we used ∆τ = [0.005, 0.0025, 0.001] for these grid spacings.452

Binning data by ρ453

Differences in the two-locus frequency spectra for varying values of ρ are more pronounced at small454

ρ. (For exampole, the differences between spectra for ρ = 1 and 2 are much more pronounced than455

the differences between spectra for ρ = 49 and 50.) Thus, we used tighter bins for low recombination456

rates and wider bins for higher recombination rates. We partitioned data into 28 bins, chosen to457

match the number of cores on a node of our compute cluster, and computation of spectra for each458

bin was parallelized. The bin edges were ρ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4,459

1.6, 1.8, 2, 3, 5, 7, 9, 11, 14, 17, 20, 25, 30, 35, 40, and 50.460

Details of simulation using ms461

We simulated two demographic models using ms: a growth model and bottleneck model, as described462

in the Results and Discussion. Each simulation consisted of 100 1Mb regions, and we repeated each463

simulation 50 times, with a sample size of 20 chromosomes. For both demographies, we set the464

per-base recombination rate to r = 2.5× 10−8 and the mutation rate to µ = 2.5× 10−8. The input465

command for the growth model was466

./ms 20 5000 -t 800 -r 400 1000000 -p 6 -eN 0.025 .5,467

and for the bottleneck model was468

./ms 20 5000 -t 400 -r 400 1000000 -p 6 -eN 0.1 0.1 -eN 0.125 1.0.469
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Projection470

In many genomic data sets, some SNPs might not be called in every individual. Moreover, SNPs471

will vary in the number of individuals for which data exists. Instead of discarding those SNPs with472

missing data, by projecting the frequency spectrum down to a smaller sample size nproj, all data473

called in at least nproj sampled chromosomes may be included (Marth et al., 2004). To project474

the single-locus frequency spectrum from a sample size of n to a smaller sample size of nproj, one475

averages over all possible ways of picking subsamples of size nproj from the n observed samples476

using the hypergeometric function (Marth et al., 2004).477

For two-locus statistics, we only included data when both the left and right alleles were478

called in an individual. To project from n observed samples to nproj, with nproj < n, we aver-479

aged over all possible ways of subsampling the n observed haplotypes. For data with sampled480

haplotype counts (nAB, nAb, naB, nab),
∑
n∗∗ = n, we counted the number of ways to sample481

(ñAB, ñAb, ñaB, ñab),
∑
ñ∗∗ = nproj from that collection of n samples. The probability that we482

choose (ñ∗∗) = (i, j, k, l) haplotypes from (n∗∗) can be expressed as483

P (i, j, k, l) = CnAB
i CnAb

j CnaB
k Cnab

l /Cnnproj
, (S5)

where Cni indicates the binomial coefficient with parameters n and i.484

Genotype frequency expectations from haplotype frequencies485

For a given entry (i, j, k) in the two-locus spectrum with haplotype frequencies

(nAB, nAb, naB, nab) = (i, j, k, n− i− j − k),

we determined expected genotype frequencies by counting all possible ways that the haplotypes486

could be paired. To calculate pairing probabilities and visualize the computation, consider pairing487

a collection of n (even) colored balls that could be any of four colors (red, green, blue, and yellow),488

where nR is the number of red balls, nG the number of green, and so forth. The total number of489

ways than n objects can be paired is490

Pairings(n) =
n!

(n/2)! 2n/2
. (S6)
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For a given configuration (n∗∗) = (nRR, nGG, nBB, nY Y , nRG, nRB, nRY , nGB, nGY , nBY ), we491

must also count the total number of ways that the colored balls may be distributed. Here, nRR is492

the number of pure red ball pairings in the set, nGY is the number of pairs of a green and yellow ball493

paired together, and so forth. First, for pure-colored (e.g. red) pairings, there are
(
nR

2nRR

)
ways to494

assign red balls between pure and mixed pairings. Of the pure pairings, there are Pairings(2nRR)495

(Eq. S6) ways to split the pure red balls into pairs. (The other three colors follow the same496

calculations.) nRG+nRB +nRY = nR−2nRR red balls will be paired with non-red balls. For these497

red balls in mixed pairings, there are
(
nRG+nRB+nRY
nRG,nRB ,nRY

)
ways to split them into the given number of498

RG, RB, and RY pairs, where
(
n
i,j,k

)
is the trinomial coefficient, with i + j + k = n, defined as499

n!
i! j! k! . Finally, for red balls that will be paired with green balls, there are nRG! permutations of500

these possible pairings. Again, the other colors follow the same calculation.501

Now, the probability that haplotypes with frequencies (nR, nG, nB, nY ) will the paired as (n∗∗)502

is the number of ways that unique pairings lead to that configuration of genotypes, divided by the503

total number of possible pairings:504

P ((n∗∗)|(nR, nG, nB , nY )) =
1

Pairings(n)

(
nR

2nRR

)
Pairings(2nRR)

(
nG

2nGG

)
Pairings(2nGG)(

nB

2nBB

)
Pairings(2nBB)

(
nY

2nY Y

)
Pairings(2nY Y )(

nRG + nRB + nRY

nRG, nRB , nRY

)(
nRG + nGB + nGY

nRG, nGB , nGY

)(
nRB + nGB + nGY

nRB , nGB , nGY

)
(
nRY + nGY + nBY

nRY , nGY , nBY

)
nRG!nRB !nRY !nGB !nGY !nBY !. (S7)

505

Table S1: 95% confidence intervals from fits to Drosophila data. We used the Godambe
Information Matrix (Coffman et al., 2016) to estimate uncertainties for our best fit parameter
values.

Data (Model) ν1 ν2 T1 T2 pmis Ne

1-loc (2-ep) 4.16− 4.30 0.321− 0.337 0.0468− 0.0486 295, 600− 310, 700
1-loc (3-ep) 2.26− 2.44 8.2− 13.2 0.374− 0.402 0.084− 0.107 0.0488− 0.0504 284, 500− 299, 000

2-loc (fix Ne, 2-ep) 3.69− 3.96 0.358− 0.383 0.0437− 0.0460
2-loc (fix Ne, 3-ep) 9.03− 59.6 1.64− 1.75 0.209− 0.231 0.0524− 0.0536 0.0422− 0.0446

2-loc (var Ne, 2-ep) 3.94− 4.10 0.370− 0.388 0.0450− 0.0462 179, 500− 180, 500
2-loc (var Ne, 3-ep) 1.30− 1.76 4.37− 4.79 0.347− 0.357 0.242− 0.330 0.0460− 0.0486 169, 000− 171, 000
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Figure S1: Demographic models fit to data. The two single-population models we simulated
data under and then fit to the observed D. melanogaster data. (A) The two epoch model has a
relative size change ν some time T in the past, while (B) the three epoch model includes two periods
of recent size change with sizes ν1 and ν2 relative to the ancestral population size and lasting for
times T1 and T2, resp.
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Figure S2: Fits to single-locuds AFS. All inferred models fit the single-locus data well. (A)
We fit two- and three-epoch models to the single-locus AFS, including a parameter to account for
ancestral misidentification that causes the over-representation of high frequency alleles. (B) We fit
those same models to two-locus data and fixed Ne = 3 × 105, which was inferred from our fits to
the single-locus data. (C) Ne was allowed to vary, rescaling the effective recombination rates.
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